No Cover Image

Journal article 988 views 151 downloads

Interferometric Laser Cooling of Atomic Rubidium

Alexander Dunning, Rachel Gregory, James Bateman Orcid Logo, Matthew Himsworth, Tim Freegarde

Physical Review Letters, Volume: 115, Issue: 7

Swansea University Author: James Bateman Orcid Logo

Abstract

We report the 1-D cooling of 85Rb atoms using a velocity-dependent optical force based upon Ramsey matter-wave interferometry. Using stimulated Raman transitions between ground hyperfine states, 12 cycles of the interferometer sequence cool a freely-moving atom cloud from 21 μK to 3 μK. This pulsed...

Full description

Published in: Physical Review Letters
ISSN: 0031-9007 1079-7114
Published: American Physical Society (APS) 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa30578
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-10-14T12:54:31Z
last_indexed 2020-07-28T12:46:40Z
id cronfa30578
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-28T08:45:25.3127488</datestamp><bib-version>v2</bib-version><id>30578</id><entry>2016-10-14</entry><title>Interferometric Laser Cooling of Atomic Rubidium</title><swanseaauthors><author><sid>3b46126aa511514414c6c42c9c6f0654</sid><ORCID>0000-0003-4885-2539</ORCID><firstname>James</firstname><surname>Bateman</surname><name>James Bateman</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-10-14</date><deptcode>SPH</deptcode><abstract>We report the 1-D cooling of 85Rb atoms using a velocity-dependent optical force based upon Ramsey matter-wave interferometry. Using stimulated Raman transitions between ground hyperfine states, 12 cycles of the interferometer sequence cool a freely-moving atom cloud from 21 &#x3BC;K to 3 &#x3BC;K. This pulsed analog of continuous-wave Doppler cooling is effective at temperatures down to the recoil limit; with augmentation pulses to increase the interferometer area, it should cool more quickly than conventional methods, and be more suitable for species that lack a closed radiative transition.</abstract><type>Journal Article</type><journal>Physical Review Letters</journal><volume>115</volume><journalNumber>7</journalNumber><publisher>American Physical Society (APS)</publisher><issnPrint>0031-9007</issnPrint><issnElectronic>1079-7114</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-08-31</publishedDate><doi>10.1103/physrevlett.115.073004</doi><url>http://dx.doi.org/10.1103/physrevlett.115.073004</url><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-28T08:45:25.3127488</lastEdited><Created>2016-10-14T10:35:08.7131822</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Alexander</firstname><surname>Dunning</surname><order>1</order></author><author><firstname>Rachel</firstname><surname>Gregory</surname><order>2</order></author><author><firstname>James</firstname><surname>Bateman</surname><orcid>0000-0003-4885-2539</orcid><order>3</order></author><author><firstname>Matthew</firstname><surname>Himsworth</surname><order>4</order></author><author><firstname>Tim</firstname><surname>Freegarde</surname><order>5</order></author></authors><documents><document><filename>0030578-30052017170049.pdf</filename><originalFilename>Dunning_intcool_resubmission.pdf</originalFilename><uploaded>2017-05-30T17:00:49.0270000</uploaded><type>Output</type><contentLength>481174</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-05-30T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-28T08:45:25.3127488 v2 30578 2016-10-14 Interferometric Laser Cooling of Atomic Rubidium 3b46126aa511514414c6c42c9c6f0654 0000-0003-4885-2539 James Bateman James Bateman true false 2016-10-14 SPH We report the 1-D cooling of 85Rb atoms using a velocity-dependent optical force based upon Ramsey matter-wave interferometry. Using stimulated Raman transitions between ground hyperfine states, 12 cycles of the interferometer sequence cool a freely-moving atom cloud from 21 μK to 3 μK. This pulsed analog of continuous-wave Doppler cooling is effective at temperatures down to the recoil limit; with augmentation pulses to increase the interferometer area, it should cool more quickly than conventional methods, and be more suitable for species that lack a closed radiative transition. Journal Article Physical Review Letters 115 7 American Physical Society (APS) 0031-9007 1079-7114 31 8 2015 2015-08-31 10.1103/physrevlett.115.073004 http://dx.doi.org/10.1103/physrevlett.115.073004 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2020-07-28T08:45:25.3127488 2016-10-14T10:35:08.7131822 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Alexander Dunning 1 Rachel Gregory 2 James Bateman 0000-0003-4885-2539 3 Matthew Himsworth 4 Tim Freegarde 5 0030578-30052017170049.pdf Dunning_intcool_resubmission.pdf 2017-05-30T17:00:49.0270000 Output 481174 application/pdf Accepted Manuscript true 2017-05-30T00:00:00.0000000 true eng
title Interferometric Laser Cooling of Atomic Rubidium
spellingShingle Interferometric Laser Cooling of Atomic Rubidium
James Bateman
title_short Interferometric Laser Cooling of Atomic Rubidium
title_full Interferometric Laser Cooling of Atomic Rubidium
title_fullStr Interferometric Laser Cooling of Atomic Rubidium
title_full_unstemmed Interferometric Laser Cooling of Atomic Rubidium
title_sort Interferometric Laser Cooling of Atomic Rubidium
author_id_str_mv 3b46126aa511514414c6c42c9c6f0654
author_id_fullname_str_mv 3b46126aa511514414c6c42c9c6f0654_***_James Bateman
author James Bateman
author2 Alexander Dunning
Rachel Gregory
James Bateman
Matthew Himsworth
Tim Freegarde
format Journal article
container_title Physical Review Letters
container_volume 115
container_issue 7
publishDate 2015
institution Swansea University
issn 0031-9007
1079-7114
doi_str_mv 10.1103/physrevlett.115.073004
publisher American Physical Society (APS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
url http://dx.doi.org/10.1103/physrevlett.115.073004
document_store_str 1
active_str 0
description We report the 1-D cooling of 85Rb atoms using a velocity-dependent optical force based upon Ramsey matter-wave interferometry. Using stimulated Raman transitions between ground hyperfine states, 12 cycles of the interferometer sequence cool a freely-moving atom cloud from 21 μK to 3 μK. This pulsed analog of continuous-wave Doppler cooling is effective at temperatures down to the recoil limit; with augmentation pulses to increase the interferometer area, it should cool more quickly than conventional methods, and be more suitable for species that lack a closed radiative transition.
published_date 2015-08-31T03:37:11Z
_version_ 1763751631342534656
score 11.012924