Journal article 1165 views 189 downloads
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows
Marine Geology, Volume: 380, Pages: 245 - 263
Swansea University Authors: Harshinie Karunarathna , Dominic Reeve
-
PDF | Version of Record
This is an open access article under the CC BY-NC-ND license.
Download (5.11MB)
DOI (Published version): 10.1016/j.margeo.2016.04.011
Abstract
In this paper we describe a numerical modelling study carried out to investigate the prevailing sediment dynamics of two large sandbanks located at a site designated for future development of tidal stream energy extraction, in the Inner Sound Channel of Pentland Firth, Scotland, UK. A calibrated and...
Published in: | Marine Geology |
---|---|
ISSN: | 0025-3227 |
Published: |
Elsevier BV
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa30506 |
first_indexed |
2016-10-10T19:42:02Z |
---|---|
last_indexed |
2020-09-18T02:46:22Z |
id |
cronfa30506 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-09-17T12:50:15.4929038</datestamp><bib-version>v2</bib-version><id>30506</id><entry>2016-10-07</entry><title>Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows</title><swanseaauthors><author><sid>0d3d327a240d49b53c78e02b7c00e625</sid><ORCID>0000-0002-9087-3811</ORCID><firstname>Harshinie</firstname><surname>Karunarathna</surname><name>Harshinie Karunarathna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3e76fcc2bb3cde4ddee2c8edfd2f0082</sid><ORCID>0000-0003-1293-4743</ORCID><firstname>Dominic</firstname><surname>Reeve</surname><name>Dominic Reeve</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-10-07</date><deptcode>ACEM</deptcode><abstract>In this paper we describe a numerical modelling study carried out to investigate the prevailing sediment dynamics of two large sandbanks located at a site designated for future development of tidal stream energy extraction, in the Inner Sound Channel of Pentland Firth, Scotland, UK. A calibrated and validated 3D Delft3D hydrodynamic model covering Pentland Firth channel was combined with a morphodynamic model. The sea bed changes occurring around the sandbanks during a period of two spring-neap tidal cycles are described and discussed in detail. It was found that both sandbanks, which are located in a deep shelf region (depths > 18 m), are morphodynamically active and their existence and integrity are strongly linked with the existing hydrodynamic regime.</abstract><type>Journal Article</type><journal>Marine Geology</journal><volume>380</volume><paginationStart>245</paginationStart><paginationEnd>263</paginationEnd><publisher>Elsevier BV</publisher><issnPrint>0025-3227</issnPrint><keywords>Pentland Firth; Tidal energy extraction; Sandbanks; Delft3D model; Sediment transport modelling; Morphodynamics</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-10-01</publishedDate><doi>10.1016/j.margeo.2016.04.011</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-09-17T12:50:15.4929038</lastEdited><Created>2016-10-07T16:13:10.9051932</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Antonia</firstname><surname>Chatzirodou</surname><order>1</order></author><author><firstname>Harshinie</firstname><surname>Karunarathna</surname><orcid>0000-0002-9087-3811</orcid><order>2</order></author><author><firstname>Dominic</firstname><surname>Reeve</surname><orcid>0000-0003-1293-4743</orcid><order>3</order></author></authors><documents><document><filename>0030506-07112016113109.pdf</filename><originalFilename>chatzirodou2016(3).pdf</originalFilename><uploaded>2016-11-07T11:31:09.8200000</uploaded><type>Output</type><contentLength>5373479</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This is an open access article under the CC BY-NC-ND license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-09-17T12:50:15.4929038 v2 30506 2016-10-07 Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows 0d3d327a240d49b53c78e02b7c00e625 0000-0002-9087-3811 Harshinie Karunarathna Harshinie Karunarathna true false 3e76fcc2bb3cde4ddee2c8edfd2f0082 0000-0003-1293-4743 Dominic Reeve Dominic Reeve true false 2016-10-07 ACEM In this paper we describe a numerical modelling study carried out to investigate the prevailing sediment dynamics of two large sandbanks located at a site designated for future development of tidal stream energy extraction, in the Inner Sound Channel of Pentland Firth, Scotland, UK. A calibrated and validated 3D Delft3D hydrodynamic model covering Pentland Firth channel was combined with a morphodynamic model. The sea bed changes occurring around the sandbanks during a period of two spring-neap tidal cycles are described and discussed in detail. It was found that both sandbanks, which are located in a deep shelf region (depths > 18 m), are morphodynamically active and their existence and integrity are strongly linked with the existing hydrodynamic regime. Journal Article Marine Geology 380 245 263 Elsevier BV 0025-3227 Pentland Firth; Tidal energy extraction; Sandbanks; Delft3D model; Sediment transport modelling; Morphodynamics 1 10 2016 2016-10-01 10.1016/j.margeo.2016.04.011 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2020-09-17T12:50:15.4929038 2016-10-07T16:13:10.9051932 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Antonia Chatzirodou 1 Harshinie Karunarathna 0000-0002-9087-3811 2 Dominic Reeve 0000-0003-1293-4743 3 0030506-07112016113109.pdf chatzirodou2016(3).pdf 2016-11-07T11:31:09.8200000 Output 5373479 application/pdf Version of Record true This is an open access article under the CC BY-NC-ND license. true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows |
spellingShingle |
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows Harshinie Karunarathna Dominic Reeve |
title_short |
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows |
title_full |
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows |
title_fullStr |
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows |
title_full_unstemmed |
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows |
title_sort |
Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows |
author_id_str_mv |
0d3d327a240d49b53c78e02b7c00e625 3e76fcc2bb3cde4ddee2c8edfd2f0082 |
author_id_fullname_str_mv |
0d3d327a240d49b53c78e02b7c00e625_***_Harshinie Karunarathna 3e76fcc2bb3cde4ddee2c8edfd2f0082_***_Dominic Reeve |
author |
Harshinie Karunarathna Dominic Reeve |
author2 |
Antonia Chatzirodou Harshinie Karunarathna Dominic Reeve |
format |
Journal article |
container_title |
Marine Geology |
container_volume |
380 |
container_start_page |
245 |
publishDate |
2016 |
institution |
Swansea University |
issn |
0025-3227 |
doi_str_mv |
10.1016/j.margeo.2016.04.011 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
In this paper we describe a numerical modelling study carried out to investigate the prevailing sediment dynamics of two large sandbanks located at a site designated for future development of tidal stream energy extraction, in the Inner Sound Channel of Pentland Firth, Scotland, UK. A calibrated and validated 3D Delft3D hydrodynamic model covering Pentland Firth channel was combined with a morphodynamic model. The sea bed changes occurring around the sandbanks during a period of two spring-neap tidal cycles are described and discussed in detail. It was found that both sandbanks, which are located in a deep shelf region (depths > 18 m), are morphodynamically active and their existence and integrity are strongly linked with the existing hydrodynamic regime. |
published_date |
2016-10-01T19:00:40Z |
_version_ |
1821342580964589568 |
score |
11.04748 |