No Cover Image

Journal article 1055 views 186 downloads

Deciding logics of linear Kripke frames with scattered end pieces

Arnold Beckmann Orcid Logo, Norbert Preining

Soft Computing, Volume: 21, Issue: 1, Pages: 191 - 197

Swansea University Author: Arnold Beckmann Orcid Logo

Abstract

We show that logics based on linear Kripke frames – with or without constant domains – that have a scattered end piece are not recursively enumerable.This is done by reduction to validity in all finite classical models.

Published in: Soft Computing
ISSN: 1432-7643 1433-7479
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa30489
first_indexed 2016-10-06T19:03:25Z
last_indexed 2018-02-09T05:16:22Z
id cronfa30489
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-01-23T15:42:21.3579951</datestamp><bib-version>v2</bib-version><id>30489</id><entry>2016-10-06</entry><title>Deciding logics of linear Kripke frames with scattered end pieces</title><swanseaauthors><author><sid>1439ebd690110a50a797b7ec78cca600</sid><ORCID>0000-0001-7958-5790</ORCID><firstname>Arnold</firstname><surname>Beckmann</surname><name>Arnold Beckmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-10-06</date><deptcode>MACS</deptcode><abstract>We show that logics based on linear Kripke frames &#x2013; with or without constant domains &#x2013; that have a scattered end piece are not recursively enumerable.This is done by reduction to validity in all finite classical models.</abstract><type>Journal Article</type><journal>Soft Computing</journal><volume>21</volume><journalNumber>1</journalNumber><paginationStart>191</paginationStart><paginationEnd>197</paginationEnd><publisher/><issnPrint>1432-7643</issnPrint><issnElectronic>1433-7479</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-01-31</publishedDate><doi>10.1007/s00500-016-2400-y</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-01-23T15:42:21.3579951</lastEdited><Created>2016-10-06T13:58:46.7170610</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Arnold</firstname><surname>Beckmann</surname><orcid>0000-0001-7958-5790</orcid><order>1</order></author><author><firstname>Norbert</firstname><surname>Preining</surname><order>2</order></author></authors><documents><document><filename>0030489-06102016153815.pdf</filename><originalFilename>beckmann-preining-kripke.pdf</originalFilename><uploaded>2016-10-06T15:38:15.2330000</uploaded><type>Output</type><contentLength>267401</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-10-22T00:00:00.0000000</embargoDate><documentNotes>12 month embargo.</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2017-01-23T15:42:21.3579951 v2 30489 2016-10-06 Deciding logics of linear Kripke frames with scattered end pieces 1439ebd690110a50a797b7ec78cca600 0000-0001-7958-5790 Arnold Beckmann Arnold Beckmann true false 2016-10-06 MACS We show that logics based on linear Kripke frames – with or without constant domains – that have a scattered end piece are not recursively enumerable.This is done by reduction to validity in all finite classical models. Journal Article Soft Computing 21 1 191 197 1432-7643 1433-7479 31 1 2017 2017-01-31 10.1007/s00500-016-2400-y COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2017-01-23T15:42:21.3579951 2016-10-06T13:58:46.7170610 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Arnold Beckmann 0000-0001-7958-5790 1 Norbert Preining 2 0030489-06102016153815.pdf beckmann-preining-kripke.pdf 2016-10-06T15:38:15.2330000 Output 267401 application/pdf Accepted Manuscript true 2017-10-22T00:00:00.0000000 12 month embargo. true
title Deciding logics of linear Kripke frames with scattered end pieces
spellingShingle Deciding logics of linear Kripke frames with scattered end pieces
Arnold Beckmann
title_short Deciding logics of linear Kripke frames with scattered end pieces
title_full Deciding logics of linear Kripke frames with scattered end pieces
title_fullStr Deciding logics of linear Kripke frames with scattered end pieces
title_full_unstemmed Deciding logics of linear Kripke frames with scattered end pieces
title_sort Deciding logics of linear Kripke frames with scattered end pieces
author_id_str_mv 1439ebd690110a50a797b7ec78cca600
author_id_fullname_str_mv 1439ebd690110a50a797b7ec78cca600_***_Arnold Beckmann
author Arnold Beckmann
author2 Arnold Beckmann
Norbert Preining
format Journal article
container_title Soft Computing
container_volume 21
container_issue 1
container_start_page 191
publishDate 2017
institution Swansea University
issn 1432-7643
1433-7479
doi_str_mv 10.1007/s00500-016-2400-y
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description We show that logics based on linear Kripke frames – with or without constant domains – that have a scattered end piece are not recursively enumerable.This is done by reduction to validity in all finite classical models.
published_date 2017-01-31T07:01:33Z
_version_ 1821387934352277504
score 11.047653