No Cover Image

Journal article 986 views 419 downloads

Stochastic Finite Element Analysis using Polynomial Chaos

S. Drakos, G.N. Pande, Gyanendra Pande

Studia Geotechnica et Mechanica, Volume: 38, Issue: 1, Pages: 33 - 43

Swansea University Author: Gyanendra Pande

  • drakos2016.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (827.63KB)

Check full text

DOI (Published version): 10.1515/sgem-2016-0004

Abstract

This paper presents a procedure of conducting Stochastic Finite Element Analysis using Polynomial Chaos. It eliminates the need for a large number of Monte Carlo simulations thus reducing computational time and making stochastic analysis of practical problems feasible. This is achieved by polynomial...

Full description

Published in: Studia Geotechnica et Mechanica
ISSN: 0137-6365 2083-831X
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa30365
first_indexed 2016-10-04T13:07:20Z
last_indexed 2019-08-12T14:29:55Z
id cronfa30365
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-08-12T11:52:40.3771819</datestamp><bib-version>v2</bib-version><id>30365</id><entry>2016-10-04</entry><title>Stochastic Finite Element Analysis using Polynomial Chaos</title><swanseaauthors><author><sid>3a312604a89c3e9a24916145fafa61f1</sid><firstname>Gyanendra</firstname><surname>Pande</surname><name>Gyanendra Pande</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-10-04</date><abstract>This paper presents a procedure of conducting Stochastic Finite Element Analysis using Polynomial Chaos. It eliminates the need for a large number of Monte Carlo simulations thus reducing computational time and making stochastic analysis of practical problems feasible. This is achieved by polynomial chaos expansion of the displacement field. An example of a plane-strain strip load on a semi-infinite elastic foundation is presented and results of settlement are compared to those obtained from Random Finite Element Analysis. A close matching of the two is observed.</abstract><type>Journal Article</type><journal>Studia Geotechnica et Mechanica</journal><volume>38</volume><journalNumber>1</journalNumber><paginationStart>33</paginationStart><paginationEnd>43</paginationEnd><publisher/><issnPrint>0137-6365</issnPrint><issnElectronic>2083-831X</issnElectronic><keywords>foundation settlements; stochastic finite element; polynomial chaos</keywords><publishedDay>18</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-04-18</publishedDate><doi>10.1515/sgem-2016-0004</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-12T11:52:40.3771819</lastEdited><Created>2016-10-04T10:13:22.3651323</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>S.</firstname><surname>Drakos</surname><order>1</order></author><author><firstname>G.N.</firstname><surname>Pande</surname><order>2</order></author><author><firstname>Gyanendra</firstname><surname>Pande</surname><order>3</order></author></authors><documents><document><filename>0030365-28022017162327.pdf</filename><originalFilename>drakos2016.pdf</originalFilename><uploaded>2017-02-28T16:23:27.4830000</uploaded><type>Output</type><contentLength>827060</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-02-28T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-08-12T11:52:40.3771819 v2 30365 2016-10-04 Stochastic Finite Element Analysis using Polynomial Chaos 3a312604a89c3e9a24916145fafa61f1 Gyanendra Pande Gyanendra Pande true false 2016-10-04 This paper presents a procedure of conducting Stochastic Finite Element Analysis using Polynomial Chaos. It eliminates the need for a large number of Monte Carlo simulations thus reducing computational time and making stochastic analysis of practical problems feasible. This is achieved by polynomial chaos expansion of the displacement field. An example of a plane-strain strip load on a semi-infinite elastic foundation is presented and results of settlement are compared to those obtained from Random Finite Element Analysis. A close matching of the two is observed. Journal Article Studia Geotechnica et Mechanica 38 1 33 43 0137-6365 2083-831X foundation settlements; stochastic finite element; polynomial chaos 18 4 2016 2016-04-18 10.1515/sgem-2016-0004 COLLEGE NANME COLLEGE CODE Swansea University 2019-08-12T11:52:40.3771819 2016-10-04T10:13:22.3651323 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised S. Drakos 1 G.N. Pande 2 Gyanendra Pande 3 0030365-28022017162327.pdf drakos2016.pdf 2017-02-28T16:23:27.4830000 Output 827060 application/pdf Version of Record true 2017-02-28T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title Stochastic Finite Element Analysis using Polynomial Chaos
spellingShingle Stochastic Finite Element Analysis using Polynomial Chaos
Gyanendra Pande
title_short Stochastic Finite Element Analysis using Polynomial Chaos
title_full Stochastic Finite Element Analysis using Polynomial Chaos
title_fullStr Stochastic Finite Element Analysis using Polynomial Chaos
title_full_unstemmed Stochastic Finite Element Analysis using Polynomial Chaos
title_sort Stochastic Finite Element Analysis using Polynomial Chaos
author_id_str_mv 3a312604a89c3e9a24916145fafa61f1
author_id_fullname_str_mv 3a312604a89c3e9a24916145fafa61f1_***_Gyanendra Pande
author Gyanendra Pande
author2 S. Drakos
G.N. Pande
Gyanendra Pande
format Journal article
container_title Studia Geotechnica et Mechanica
container_volume 38
container_issue 1
container_start_page 33
publishDate 2016
institution Swansea University
issn 0137-6365
2083-831X
doi_str_mv 10.1515/sgem-2016-0004
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description This paper presents a procedure of conducting Stochastic Finite Element Analysis using Polynomial Chaos. It eliminates the need for a large number of Monte Carlo simulations thus reducing computational time and making stochastic analysis of practical problems feasible. This is achieved by polynomial chaos expansion of the displacement field. An example of a plane-strain strip load on a semi-infinite elastic foundation is presented and results of settlement are compared to those obtained from Random Finite Element Analysis. A close matching of the two is observed.
published_date 2016-04-18T07:01:28Z
_version_ 1821387929454379008
score 11.10197