No Cover Image

Journal article 999 views 214 downloads

In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel

Yadunandan B. Das, Alexander N. Forsey, Thomas Simm Orcid Logo, Karen Perkins Orcid Logo, Michael E. Fitzpatrick, Salih Gungor, Richard J. Moat

Materials & Design, Volume: 112, Pages: 107 - 116

Swansea University Authors: Thomas Simm Orcid Logo, Karen Perkins Orcid Logo

  • das2016.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No-Derivatives License (CC-BY-NC-ND).

    Download (2.23MB)

Abstract

To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron mic...

Full description

Published in: Materials & Design
ISSN: 0264-1275
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa30098
first_indexed 2016-09-20T07:03:53Z
last_indexed 2021-01-15T03:48:08Z
id cronfa30098
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-14T13:04:56.2452728</datestamp><bib-version>v2</bib-version><id>30098</id><entry>2016-09-19</entry><title>In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel</title><swanseaauthors><author><sid>10fa7732a6aee5613ff1364dc8460972</sid><ORCID>0000-0001-6305-9809</ORCID><firstname>Thomas</firstname><surname>Simm</surname><name>Thomas Simm</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f866eaa2d8f163d2b4e99259966427c8</sid><ORCID>0000-0001-5826-9705</ORCID><firstname>Karen</firstname><surname>Perkins</surname><name>Karen Perkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-09-19</date><abstract>To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post the deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation.</abstract><type>Journal Article</type><journal>Materials &amp; Design</journal><volume>112</volume><journalNumber/><paginationStart>107</paginationStart><paginationEnd>116</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0264-1275</issnPrint><issnElectronic/><keywords>TRIP steel, DIC, EBSD, Martensite, SEM, MTEX</keywords><publishedDay>15</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-15</publishedDate><doi>10.1016/j.matdes.2016.09.057</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-14T13:04:56.2452728</lastEdited><Created>2016-09-19T09:00:38.4551064</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Yadunandan B.</firstname><surname>Das</surname><order>1</order></author><author><firstname>Alexander N.</firstname><surname>Forsey</surname><order>2</order></author><author><firstname>Thomas</firstname><surname>Simm</surname><orcid>0000-0001-6305-9809</orcid><order>3</order></author><author><firstname>Karen</firstname><surname>Perkins</surname><orcid>0000-0001-5826-9705</orcid><order>4</order></author><author><firstname>Michael E.</firstname><surname>Fitzpatrick</surname><order>5</order></author><author><firstname>Salih</firstname><surname>Gungor</surname><order>6</order></author><author><firstname>Richard J.</firstname><surname>Moat</surname><order>7</order></author></authors><documents><document><filename>0030098-19092016090103.pdf</filename><originalFilename>das2016.pdf</originalFilename><uploaded>2016-09-19T09:01:03.7430000</uploaded><type>Output</type><contentLength>2308857</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-09-16T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No-Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-14T13:04:56.2452728 v2 30098 2016-09-19 In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel 10fa7732a6aee5613ff1364dc8460972 0000-0001-6305-9809 Thomas Simm Thomas Simm true false f866eaa2d8f163d2b4e99259966427c8 0000-0001-5826-9705 Karen Perkins Karen Perkins true false 2016-09-19 To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post the deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation. Journal Article Materials & Design 112 107 116 0264-1275 TRIP steel, DIC, EBSD, Martensite, SEM, MTEX 15 12 2016 2016-12-15 10.1016/j.matdes.2016.09.057 COLLEGE NANME COLLEGE CODE Swansea University 2021-01-14T13:04:56.2452728 2016-09-19T09:00:38.4551064 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Yadunandan B. Das 1 Alexander N. Forsey 2 Thomas Simm 0000-0001-6305-9809 3 Karen Perkins 0000-0001-5826-9705 4 Michael E. Fitzpatrick 5 Salih Gungor 6 Richard J. Moat 7 0030098-19092016090103.pdf das2016.pdf 2016-09-19T09:01:03.7430000 Output 2308857 application/pdf Accepted Manuscript true 2017-09-16T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No-Derivatives License (CC-BY-NC-ND). true eng
title In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
spellingShingle In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
Thomas Simm
Karen Perkins
title_short In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
title_full In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
title_fullStr In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
title_full_unstemmed In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
title_sort In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
author_id_str_mv 10fa7732a6aee5613ff1364dc8460972
f866eaa2d8f163d2b4e99259966427c8
author_id_fullname_str_mv 10fa7732a6aee5613ff1364dc8460972_***_Thomas Simm
f866eaa2d8f163d2b4e99259966427c8_***_Karen Perkins
author Thomas Simm
Karen Perkins
author2 Yadunandan B. Das
Alexander N. Forsey
Thomas Simm
Karen Perkins
Michael E. Fitzpatrick
Salih Gungor
Richard J. Moat
format Journal article
container_title Materials & Design
container_volume 112
container_start_page 107
publishDate 2016
institution Swansea University
issn 0264-1275
doi_str_mv 10.1016/j.matdes.2016.09.057
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post the deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation.
published_date 2016-12-15T13:05:31Z
_version_ 1821410833547132928
score 11.048042