Journal article 999 views 214 downloads
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
Materials & Design, Volume: 112, Pages: 107 - 116
Swansea University Authors: Thomas Simm , Karen Perkins
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No-Derivatives License (CC-BY-NC-ND).
Download (2.23MB)
DOI (Published version): 10.1016/j.matdes.2016.09.057
Abstract
To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron mic...
Published in: | Materials & Design |
---|---|
ISSN: | 0264-1275 |
Published: |
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa30098 |
first_indexed |
2016-09-20T07:03:53Z |
---|---|
last_indexed |
2021-01-15T03:48:08Z |
id |
cronfa30098 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-14T13:04:56.2452728</datestamp><bib-version>v2</bib-version><id>30098</id><entry>2016-09-19</entry><title>In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel</title><swanseaauthors><author><sid>10fa7732a6aee5613ff1364dc8460972</sid><ORCID>0000-0001-6305-9809</ORCID><firstname>Thomas</firstname><surname>Simm</surname><name>Thomas Simm</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f866eaa2d8f163d2b4e99259966427c8</sid><ORCID>0000-0001-5826-9705</ORCID><firstname>Karen</firstname><surname>Perkins</surname><name>Karen Perkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-09-19</date><abstract>To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post the deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation.</abstract><type>Journal Article</type><journal>Materials & Design</journal><volume>112</volume><journalNumber/><paginationStart>107</paginationStart><paginationEnd>116</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0264-1275</issnPrint><issnElectronic/><keywords>TRIP steel, DIC, EBSD, Martensite, SEM, MTEX</keywords><publishedDay>15</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-15</publishedDate><doi>10.1016/j.matdes.2016.09.057</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-14T13:04:56.2452728</lastEdited><Created>2016-09-19T09:00:38.4551064</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Yadunandan B.</firstname><surname>Das</surname><order>1</order></author><author><firstname>Alexander N.</firstname><surname>Forsey</surname><order>2</order></author><author><firstname>Thomas</firstname><surname>Simm</surname><orcid>0000-0001-6305-9809</orcid><order>3</order></author><author><firstname>Karen</firstname><surname>Perkins</surname><orcid>0000-0001-5826-9705</orcid><order>4</order></author><author><firstname>Michael E.</firstname><surname>Fitzpatrick</surname><order>5</order></author><author><firstname>Salih</firstname><surname>Gungor</surname><order>6</order></author><author><firstname>Richard J.</firstname><surname>Moat</surname><order>7</order></author></authors><documents><document><filename>0030098-19092016090103.pdf</filename><originalFilename>das2016.pdf</originalFilename><uploaded>2016-09-19T09:01:03.7430000</uploaded><type>Output</type><contentLength>2308857</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-09-16T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No-Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-01-14T13:04:56.2452728 v2 30098 2016-09-19 In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel 10fa7732a6aee5613ff1364dc8460972 0000-0001-6305-9809 Thomas Simm Thomas Simm true false f866eaa2d8f163d2b4e99259966427c8 0000-0001-5826-9705 Karen Perkins Karen Perkins true false 2016-09-19 To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post the deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation. Journal Article Materials & Design 112 107 116 0264-1275 TRIP steel, DIC, EBSD, Martensite, SEM, MTEX 15 12 2016 2016-12-15 10.1016/j.matdes.2016.09.057 COLLEGE NANME COLLEGE CODE Swansea University 2021-01-14T13:04:56.2452728 2016-09-19T09:00:38.4551064 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Yadunandan B. Das 1 Alexander N. Forsey 2 Thomas Simm 0000-0001-6305-9809 3 Karen Perkins 0000-0001-5826-9705 4 Michael E. Fitzpatrick 5 Salih Gungor 6 Richard J. Moat 7 0030098-19092016090103.pdf das2016.pdf 2016-09-19T09:01:03.7430000 Output 2308857 application/pdf Accepted Manuscript true 2017-09-16T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No-Derivatives License (CC-BY-NC-ND). true eng |
title |
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel |
spellingShingle |
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel Thomas Simm Karen Perkins |
title_short |
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel |
title_full |
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel |
title_fullStr |
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel |
title_full_unstemmed |
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel |
title_sort |
In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel |
author_id_str_mv |
10fa7732a6aee5613ff1364dc8460972 f866eaa2d8f163d2b4e99259966427c8 |
author_id_fullname_str_mv |
10fa7732a6aee5613ff1364dc8460972_***_Thomas Simm f866eaa2d8f163d2b4e99259966427c8_***_Karen Perkins |
author |
Thomas Simm Karen Perkins |
author2 |
Yadunandan B. Das Alexander N. Forsey Thomas Simm Karen Perkins Michael E. Fitzpatrick Salih Gungor Richard J. Moat |
format |
Journal article |
container_title |
Materials & Design |
container_volume |
112 |
container_start_page |
107 |
publishDate |
2016 |
institution |
Swansea University |
issn |
0264-1275 |
doi_str_mv |
10.1016/j.matdes.2016.09.057 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post the deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation. |
published_date |
2016-12-15T13:05:31Z |
_version_ |
1821410833547132928 |
score |
11.048042 |