Journal article 1810 views 666 downloads
Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes
Journal of Sports Sciences, Volume: 35, Issue: 18, Pages: 1 - 8
Swansea University Author:
Neil Bezodis
-
PDF | Accepted Manuscript
Download (314.8KB)
DOI (Published version): 10.1080/02640414.2016.1239024
Abstract
A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes c...
| Published in: | Journal of Sports Sciences |
|---|---|
| ISSN: | 0264-0414 1466-447X |
| Published: |
2016
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa30086 |
| Abstract: |
A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity. |
|---|---|
| College: |
Faculty of Science and Engineering |
| Issue: |
18 |
| Start Page: |
1 |
| End Page: |
8 |

