No Cover Image

Journal article 1574 views 598 downloads

Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™)

John W. Wills, Nicole Hondow, Adam David Thomas Orcid Logo, Katherine Chapman Orcid Logo, David Fish, Thierry Maffeis Orcid Logo, Mark W. Penny, Richard A. Brown, Gareth Jenkins Orcid Logo, Andy P. Brown, Paul A. White, Shareen Doak Orcid Logo

Particle and Fibre Toxicology, Volume: 13, Issue: 1

Swansea University Authors: Adam David Thomas Orcid Logo, Katherine Chapman Orcid Logo, Thierry Maffeis Orcid Logo, Gareth Jenkins Orcid Logo, Shareen Doak Orcid Logo

  • GeneticToxicityDoak.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).

    Download (3.84MB)

Abstract

BackgroundThe rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observe...

Full description

Published in: Particle and Fibre Toxicology
ISSN: 1743-8977 1743-8977
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa29852
Abstract: BackgroundThe rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing.MethodBASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells.ResultsFor all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model’s 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D monocultured cells meanwhile showed extensive internalisation of both silica particles causing (geno)toxicity.ConclusionsThe results establish the importance of tissue microarchitecture in defining nanomaterial exposure, and suggest 3D in vitro models could play a role in bridging the gap between in vitro and in vivo outcomes in nanotoxicology. Robust exposure characterisation and uptake assessment methods (as demonstrated) are essential to interpret nano(geno)toxicity studies successfully.
Keywords: 3D cell culture, Silica, Genotoxicity, Nanotoxicology, Physico-chemical characterisation, Nanoparticles,Reconstructed skin, RSMN, Micronucleus assay, Air-liquid interface
College: Faculty of Science and Engineering
Issue: 1