Journal article 1233 views 219 downloads
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates
Engineering Computations, Volume: 34, Issue: 2
Swansea University Author: Chenfeng Li
-
PDF | Accepted Manuscript
Download (3.98MB)
DOI (Published version): 10.1108/EC-04-2016-0143
Abstract
PurposeA simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin-Reissner plates. Three distortion-resistant and locking-free eight-node plate elements are proposed by utilizing this method.Design/methodology/approachThis method i...
Published in: | Engineering Computations |
---|---|
ISSN: | 0264-4401 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa29668 |
first_indexed |
2016-08-30T12:53:13Z |
---|---|
last_indexed |
2018-02-09T05:14:55Z |
id |
cronfa29668 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-06-02T14:12:26.1515001</datestamp><bib-version>v2</bib-version><id>29668</id><entry>2016-08-30</entry><title>Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates</title><swanseaauthors><author><sid>82fe170d5ae2c840e538a36209e5a3ac</sid><ORCID>0000-0003-0441-211X</ORCID><firstname>Chenfeng</firstname><surname>Li</surname><name>Chenfeng Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-08-30</date><deptcode>ACEM</deptcode><abstract>PurposeA simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin-Reissner plates. Three distortion-resistant and locking-free eight-node plate elements are proposed by utilizing this method.Design/methodology/approachThis method is based on the principle of minimum complementary energy, in which the trial functions for resultant fields are derived from two displacement functions, F and f, and satisfy all governing equations. Meanwhile, the element boundary displacements are determined by the locking-free arbitrary order Timoshenko’s beam functions. Then, three locking-free 8-node, 24-DOF quadrilateral plate bending elements, HDF-P8-23β for general cases, HDF-P8-SS1 for edge effects along soft simply supported (SS1) boundary, and HDF-P8-FREE for edge effects along free boundary, are formulated.FindingsThe proposed elements can pass all patch tests, exhibit excellent convergence and possess superior precision when compared to all other existing 8-node models, and can still provide good and stable results even when extremely coarse and distorted meshes are used. They can also effectively solve the edge effect by accurately capturing the peak value and the dramatical variations of resultants near the SS1 and Free boundaries. The proposed 8-node models possess the potential in the engineering application and could be easily integrated into the commercial software.Originality/valueThis work presents a new scheme, which can take the advantages of both analytical and discrete methods, to develop high-order mesh-distortion resistant Mindlin-Reissner plate bending elements.</abstract><type>Journal Article</type><journal>Engineering Computations</journal><volume>34</volume><journalNumber>2</journalNumber><publisher/><issnPrint>0264-4401</issnPrint><keywords/><publishedDay>18</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-04-18</publishedDate><doi>10.1108/EC-04-2016-0143</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-06-02T14:12:26.1515001</lastEdited><Created>2016-08-30T08:55:57.9095008</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Chenfeng</firstname><surname>Li</surname><orcid>0000-0003-0441-211X</orcid><order>1</order></author></authors><documents><document><filename>0029668-30082016085623.pdf</filename><originalFilename>li2016v4.pdf</originalFilename><uploaded>2016-08-30T08:56:23.1500000</uploaded><type>Output</type><contentLength>9153973</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-21T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-06-02T14:12:26.1515001 v2 29668 2016-08-30 Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates 82fe170d5ae2c840e538a36209e5a3ac 0000-0003-0441-211X Chenfeng Li Chenfeng Li true false 2016-08-30 ACEM PurposeA simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin-Reissner plates. Three distortion-resistant and locking-free eight-node plate elements are proposed by utilizing this method.Design/methodology/approachThis method is based on the principle of minimum complementary energy, in which the trial functions for resultant fields are derived from two displacement functions, F and f, and satisfy all governing equations. Meanwhile, the element boundary displacements are determined by the locking-free arbitrary order Timoshenko’s beam functions. Then, three locking-free 8-node, 24-DOF quadrilateral plate bending elements, HDF-P8-23β for general cases, HDF-P8-SS1 for edge effects along soft simply supported (SS1) boundary, and HDF-P8-FREE for edge effects along free boundary, are formulated.FindingsThe proposed elements can pass all patch tests, exhibit excellent convergence and possess superior precision when compared to all other existing 8-node models, and can still provide good and stable results even when extremely coarse and distorted meshes are used. They can also effectively solve the edge effect by accurately capturing the peak value and the dramatical variations of resultants near the SS1 and Free boundaries. The proposed 8-node models possess the potential in the engineering application and could be easily integrated into the commercial software.Originality/valueThis work presents a new scheme, which can take the advantages of both analytical and discrete methods, to develop high-order mesh-distortion resistant Mindlin-Reissner plate bending elements. Journal Article Engineering Computations 34 2 0264-4401 18 4 2017 2017-04-18 10.1108/EC-04-2016-0143 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2017-06-02T14:12:26.1515001 2016-08-30T08:55:57.9095008 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Chenfeng Li 0000-0003-0441-211X 1 0029668-30082016085623.pdf li2016v4.pdf 2016-08-30T08:56:23.1500000 Output 9153973 application/pdf Accepted Manuscript true 2018-02-21T00:00:00.0000000 false |
title |
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates |
spellingShingle |
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates Chenfeng Li |
title_short |
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates |
title_full |
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates |
title_fullStr |
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates |
title_full_unstemmed |
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates |
title_sort |
Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin-Reissner plates |
author_id_str_mv |
82fe170d5ae2c840e538a36209e5a3ac |
author_id_fullname_str_mv |
82fe170d5ae2c840e538a36209e5a3ac_***_Chenfeng Li |
author |
Chenfeng Li |
author2 |
Chenfeng Li |
format |
Journal article |
container_title |
Engineering Computations |
container_volume |
34 |
container_issue |
2 |
publishDate |
2017 |
institution |
Swansea University |
issn |
0264-4401 |
doi_str_mv |
10.1108/EC-04-2016-0143 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
PurposeA simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin-Reissner plates. Three distortion-resistant and locking-free eight-node plate elements are proposed by utilizing this method.Design/methodology/approachThis method is based on the principle of minimum complementary energy, in which the trial functions for resultant fields are derived from two displacement functions, F and f, and satisfy all governing equations. Meanwhile, the element boundary displacements are determined by the locking-free arbitrary order Timoshenko’s beam functions. Then, three locking-free 8-node, 24-DOF quadrilateral plate bending elements, HDF-P8-23β for general cases, HDF-P8-SS1 for edge effects along soft simply supported (SS1) boundary, and HDF-P8-FREE for edge effects along free boundary, are formulated.FindingsThe proposed elements can pass all patch tests, exhibit excellent convergence and possess superior precision when compared to all other existing 8-node models, and can still provide good and stable results even when extremely coarse and distorted meshes are used. They can also effectively solve the edge effect by accurately capturing the peak value and the dramatical variations of resultants near the SS1 and Free boundaries. The proposed 8-node models possess the potential in the engineering application and could be easily integrated into the commercial software.Originality/valueThis work presents a new scheme, which can take the advantages of both analytical and discrete methods, to develop high-order mesh-distortion resistant Mindlin-Reissner plate bending elements. |
published_date |
2017-04-18T06:59:47Z |
_version_ |
1821387823991750656 |
score |
10.969525 |