No Cover Image

Journal article 1351 views 130 downloads

Cortisol coregulation in fish

Ines Fürtbauer, Michael Heistermann, Ines Fuertbauer Orcid Logo

Scientific Reports, Volume: 6, Start page: 30334

Swansea University Author: Ines Fuertbauer Orcid Logo

  • Fürtbauer_and_Heistermann_2016.pdf

    PDF | Version of Record

    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

    Download (514.36KB)

DOI (Published version): 10.1038/srep30334

Abstract

Cortisol coregulation, which is the up- or down-regulation of partners’ physiological stress responses, has been described for individuals with strong attachment bonds, e.g. parents and their children, and romantic relationship partners. Research into moderating effects on cortisol coregulation sugg...

Full description

Published in: Scientific Reports
Published: 2016
URI: https://cronfa.swan.ac.uk/Record/cronfa29218
Abstract: Cortisol coregulation, which is the up- or down-regulation of partners’ physiological stress responses, has been described for individuals with strong attachment bonds, e.g. parents and their children, and romantic relationship partners. Research into moderating effects on cortisol coregulation suggests stronger covariation among distressed partners. Whether cortisol coregulation is unique to humans or can also be found in other species that share universal features of the vertebrate stress response remains unexplored. Using a repeated measures approach and non-invasive waterborne hormone analysis, we test the hypothesis that dyads of three-spined stickleback fish (Gasterosteus aculeatus) coregulate their cortisol levels in shared environments. Dyadic cortisol levels were unrelated when cohabiting (home tank), but significantly covaried when sharing a more stressful (as indicated by higher cortisol levels) environment (open field). Time-lag analysis further revealed that open field cortisol levels were predicted by partner’s cortisol levels prior to the shared experience. To our knowledge, this study provides the first evidence for coregulatory processes on cortisol responses in a non-human animal that lacks strong bonds and social attachment relationships, suggesting a shared evolutionary origin of cortisol coregulation in vertebrates. From an adaptive perspective, cortisol coregulation may serve to reduce risk in challenging, potentially threatening situations.
College: Faculty of Science and Engineering
Start Page: 30334