No Cover Image

Journal article 1247 views 319 downloads

Registration and Modeling from Spaced and Misaligned Image Volumes

Adeline Paiement Orcid Logo, Majid Mirmehdi, Xianghua Xie Orcid Logo, Mark C. K. Hamilton

IEEE Transactions on Image Processing, Volume: 25, Issue: 9, Pages: 4379 - 4393

Swansea University Authors: Adeline Paiement Orcid Logo, Xianghua Xie Orcid Logo

Abstract

We present an integrated registration, segmentation, and shape interpolation framework to model objects from 3D and 4D volumes made up of spaced and misaligned slices having arbitrary relative positions. The framework was validated on artificial data and tested on real MRI and CT scans. The complete...

Full description

Published in: IEEE Transactions on Image Processing
ISSN: 1941-0042
Published: (IEEE) Institute of Electrical and Electronics Engineers 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa28997
first_indexed 2016-06-27T18:29:21Z
last_indexed 2021-01-29T03:45:58Z
id cronfa28997
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-28T16:09:02.7030044</datestamp><bib-version>v2</bib-version><id>28997</id><entry>2016-06-27</entry><title>Registration and Modeling from Spaced and Misaligned Image Volumes</title><swanseaauthors><author><sid>f50adf4186d930e3a2a0f9a6d643cf53</sid><ORCID>0000-0001-5114-1514</ORCID><firstname>Adeline</firstname><surname>Paiement</surname><name>Adeline Paiement</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-06-27</date><deptcode>MACS</deptcode><abstract>We present an integrated registration, segmentation, and shape interpolation framework to model objects from 3D and 4D volumes made up of spaced and misaligned slices having arbitrary relative positions. The framework was validated on artificial data and tested on real MRI and CT scans. The complete framework performed significantly better than the sequential approach of registration followed by segmentation and shape interpo- lation.</abstract><type>Journal Article</type><journal>IEEE Transactions on Image Processing</journal><volume>25</volume><journalNumber>9</journalNumber><paginationStart>4379</paginationStart><paginationEnd>4393</paginationEnd><publisher>(IEEE) Institute of Electrical and Electronics Engineers</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1941-0042</issnElectronic><keywords>Modeling methodologies, registration, segmentation, shape interpolation, level set methods, RBF.</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-09-01</publishedDate><doi>10.1109/TIP.2016.2586660</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-28T16:09:02.7030044</lastEdited><Created>2016-06-27T14:12:04.4637156</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Adeline</firstname><surname>Paiement</surname><orcid>0000-0001-5114-1514</orcid><order>1</order></author><author><firstname>Majid</firstname><surname>Mirmehdi</surname><order>2</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>3</order></author><author><firstname>Mark C. K.</firstname><surname>Hamilton</surname><order>4</order></author></authors><documents><document><filename>0028997-27062016141637.pdf</filename><originalFilename>camera_ready.pdf</originalFilename><uploaded>2016-06-27T14:16:37.2170000</uploaded><type>Output</type><contentLength>5026841</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-28T16:09:02.7030044 v2 28997 2016-06-27 Registration and Modeling from Spaced and Misaligned Image Volumes f50adf4186d930e3a2a0f9a6d643cf53 0000-0001-5114-1514 Adeline Paiement Adeline Paiement true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2016-06-27 MACS We present an integrated registration, segmentation, and shape interpolation framework to model objects from 3D and 4D volumes made up of spaced and misaligned slices having arbitrary relative positions. The framework was validated on artificial data and tested on real MRI and CT scans. The complete framework performed significantly better than the sequential approach of registration followed by segmentation and shape interpo- lation. Journal Article IEEE Transactions on Image Processing 25 9 4379 4393 (IEEE) Institute of Electrical and Electronics Engineers 1941-0042 Modeling methodologies, registration, segmentation, shape interpolation, level set methods, RBF. 1 9 2016 2016-09-01 10.1109/TIP.2016.2586660 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-01-28T16:09:02.7030044 2016-06-27T14:12:04.4637156 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Adeline Paiement 0000-0001-5114-1514 1 Majid Mirmehdi 2 Xianghua Xie 0000-0002-2701-8660 3 Mark C. K. Hamilton 4 0028997-27062016141637.pdf camera_ready.pdf 2016-06-27T14:16:37.2170000 Output 5026841 application/pdf Accepted Manuscript true true eng
title Registration and Modeling from Spaced and Misaligned Image Volumes
spellingShingle Registration and Modeling from Spaced and Misaligned Image Volumes
Adeline Paiement
Xianghua Xie
title_short Registration and Modeling from Spaced and Misaligned Image Volumes
title_full Registration and Modeling from Spaced and Misaligned Image Volumes
title_fullStr Registration and Modeling from Spaced and Misaligned Image Volumes
title_full_unstemmed Registration and Modeling from Spaced and Misaligned Image Volumes
title_sort Registration and Modeling from Spaced and Misaligned Image Volumes
author_id_str_mv f50adf4186d930e3a2a0f9a6d643cf53
b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv f50adf4186d930e3a2a0f9a6d643cf53_***_Adeline Paiement
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
author Adeline Paiement
Xianghua Xie
author2 Adeline Paiement
Majid Mirmehdi
Xianghua Xie
Mark C. K. Hamilton
format Journal article
container_title IEEE Transactions on Image Processing
container_volume 25
container_issue 9
container_start_page 4379
publishDate 2016
institution Swansea University
issn 1941-0042
doi_str_mv 10.1109/TIP.2016.2586660
publisher (IEEE) Institute of Electrical and Electronics Engineers
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description We present an integrated registration, segmentation, and shape interpolation framework to model objects from 3D and 4D volumes made up of spaced and misaligned slices having arbitrary relative positions. The framework was validated on artificial data and tested on real MRI and CT scans. The complete framework performed significantly better than the sequential approach of registration followed by segmentation and shape interpo- lation.
published_date 2016-09-01T06:58:35Z
_version_ 1821387748414586880
score 11.04787