No Cover Image

Journal article 864 views

Multi-instantons and Maldacena's conjecture

Valentin V. Khoze, Stefan Vandoren, Nicholas Dorey, Michael P. Mattis, Timothy Hollowood Orcid Logo

Journal of High Energy Physics, Volume: "06", Issue: 06, Pages: 023 - 023

Swansea University Author: Timothy Hollowood Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton...

Full description

Published in: Journal of High Energy Physics
ISSN: 1029-8479
Published: 1998
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa28565
first_indexed 2016-06-03T19:16:24Z
last_indexed 2018-02-09T05:12:50Z
id cronfa28565
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2016-06-03T14:36:44.3846445</datestamp><bib-version>v2</bib-version><id>28565</id><entry>2016-06-03</entry><title>Multi-instantons and Maldacena's conjecture</title><swanseaauthors><author><sid>ea9ca59fc948276ff2ab547e91bdf0c2</sid><ORCID>0000-0002-3258-320X</ORCID><firstname>Timothy</firstname><surname>Hollowood</surname><name>Timothy Hollowood</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-06-03</date><deptcode>BGPS</deptcode><abstract>We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) In exact agreement with type IIB superstring calculations, at the k-instanton level, $G_n = \sqrt{N} g^8 k^{n-7/2} e^{-8\pi^2 k/g^2}\sum_{d|k} d^{-2} \times F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA</abstract><type>Journal Article</type><journal>Journal of High Energy Physics</journal><volume>"06"</volume><journalNumber>06</journalNumber><paginationStart>023</paginationStart><paginationEnd>023</paginationEnd><publisher/><issnElectronic>1029-8479</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>10</publishedMonth><publishedYear>1998</publishedYear><publishedDate>1998-10-31</publishedDate><doi>10.1088/1126-6708/1999/06/023</doi><url>http://inspirehep.net/record/478620</url><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-06-03T14:36:44.3846445</lastEdited><Created>2016-06-03T14:36:44.1506430</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Valentin V.</firstname><surname>Khoze</surname><order>1</order></author><author><firstname>Stefan</firstname><surname>Vandoren</surname><order>2</order></author><author><firstname>Nicholas</firstname><surname>Dorey</surname><order>3</order></author><author><firstname>Michael P.</firstname><surname>Mattis</surname><order>4</order></author><author><firstname>Timothy</firstname><surname>Hollowood</surname><orcid>0000-0002-3258-320X</orcid><order>5</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2016-06-03T14:36:44.3846445 v2 28565 2016-06-03 Multi-instantons and Maldacena's conjecture ea9ca59fc948276ff2ab547e91bdf0c2 0000-0002-3258-320X Timothy Hollowood Timothy Hollowood true false 2016-06-03 BGPS We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) In exact agreement with type IIB superstring calculations, at the k-instanton level, $G_n = \sqrt{N} g^8 k^{n-7/2} e^{-8\pi^2 k/g^2}\sum_{d|k} d^{-2} \times F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA Journal Article Journal of High Energy Physics "06" 06 023 023 1029-8479 31 10 1998 1998-10-31 10.1088/1126-6708/1999/06/023 http://inspirehep.net/record/478620 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2016-06-03T14:36:44.3846445 2016-06-03T14:36:44.1506430 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Valentin V. Khoze 1 Stefan Vandoren 2 Nicholas Dorey 3 Michael P. Mattis 4 Timothy Hollowood 0000-0002-3258-320X 5
title Multi-instantons and Maldacena's conjecture
spellingShingle Multi-instantons and Maldacena's conjecture
Timothy Hollowood
title_short Multi-instantons and Maldacena's conjecture
title_full Multi-instantons and Maldacena's conjecture
title_fullStr Multi-instantons and Maldacena's conjecture
title_full_unstemmed Multi-instantons and Maldacena's conjecture
title_sort Multi-instantons and Maldacena's conjecture
author_id_str_mv ea9ca59fc948276ff2ab547e91bdf0c2
author_id_fullname_str_mv ea9ca59fc948276ff2ab547e91bdf0c2_***_Timothy Hollowood
author Timothy Hollowood
author2 Valentin V. Khoze
Stefan Vandoren
Nicholas Dorey
Michael P. Mattis
Timothy Hollowood
format Journal article
container_title Journal of High Energy Physics
container_volume "06"
container_issue 06
container_start_page 023
publishDate 1998
institution Swansea University
issn 1029-8479
doi_str_mv 10.1088/1126-6708/1999/06/023
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
url http://inspirehep.net/record/478620
document_store_str 0
active_str 0
description We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) In exact agreement with type IIB superstring calculations, at the k-instanton level, $G_n = \sqrt{N} g^8 k^{n-7/2} e^{-8\pi^2 k/g^2}\sum_{d|k} d^{-2} \times F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA
published_date 1998-10-31T01:06:39Z
_version_ 1821365606265389056
score 11.04748