Journal article 1265 views
Multi-instantons and Maldacena's conjecture
Journal of High Energy Physics, Volume: "06", Issue: 06, Pages: 023 - 023
Swansea University Author:
Timothy Hollowood
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1088/1126-6708/1999/06/023
Abstract
We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton...
| Published in: | Journal of High Energy Physics |
|---|---|
| ISSN: | 1029-8479 |
| Published: |
1998
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa28565 |
| first_indexed |
2016-06-03T19:16:24Z |
|---|---|
| last_indexed |
2018-02-09T05:12:50Z |
| id |
cronfa28565 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2016-06-03T14:36:44.3846445</datestamp><bib-version>v2</bib-version><id>28565</id><entry>2016-06-03</entry><title>Multi-instantons and Maldacena's conjecture</title><swanseaauthors><author><sid>ea9ca59fc948276ff2ab547e91bdf0c2</sid><ORCID>0000-0002-3258-320X</ORCID><firstname>Timothy</firstname><surname>Hollowood</surname><name>Timothy Hollowood</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-06-03</date><deptcode>BGPS</deptcode><abstract>We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) In exact agreement with type IIB superstring calculations, at the k-instanton level, $G_n = \sqrt{N} g^8 k^{n-7/2} e^{-8\pi^2 k/g^2}\sum_{d|k} d^{-2} \times F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA</abstract><type>Journal Article</type><journal>Journal of High Energy Physics</journal><volume>"06"</volume><journalNumber>06</journalNumber><paginationStart>023</paginationStart><paginationEnd>023</paginationEnd><publisher/><issnElectronic>1029-8479</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>10</publishedMonth><publishedYear>1998</publishedYear><publishedDate>1998-10-31</publishedDate><doi>10.1088/1126-6708/1999/06/023</doi><url>http://inspirehep.net/record/478620</url><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-06-03T14:36:44.3846445</lastEdited><Created>2016-06-03T14:36:44.1506430</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Valentin V.</firstname><surname>Khoze</surname><order>1</order></author><author><firstname>Stefan</firstname><surname>Vandoren</surname><order>2</order></author><author><firstname>Nicholas</firstname><surname>Dorey</surname><order>3</order></author><author><firstname>Michael P.</firstname><surname>Mattis</surname><order>4</order></author><author><firstname>Timothy</firstname><surname>Hollowood</surname><orcid>0000-0002-3258-320X</orcid><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2016-06-03T14:36:44.3846445 v2 28565 2016-06-03 Multi-instantons and Maldacena's conjecture ea9ca59fc948276ff2ab547e91bdf0c2 0000-0002-3258-320X Timothy Hollowood Timothy Hollowood true false 2016-06-03 BGPS We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) In exact agreement with type IIB superstring calculations, at the k-instanton level, $G_n = \sqrt{N} g^8 k^{n-7/2} e^{-8\pi^2 k/g^2}\sum_{d|k} d^{-2} \times F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA Journal Article Journal of High Energy Physics "06" 06 023 023 1029-8479 31 10 1998 1998-10-31 10.1088/1126-6708/1999/06/023 http://inspirehep.net/record/478620 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2016-06-03T14:36:44.3846445 2016-06-03T14:36:44.1506430 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Valentin V. Khoze 1 Stefan Vandoren 2 Nicholas Dorey 3 Michael P. Mattis 4 Timothy Hollowood 0000-0002-3258-320X 5 |
| title |
Multi-instantons and Maldacena's conjecture |
| spellingShingle |
Multi-instantons and Maldacena's conjecture Timothy Hollowood |
| title_short |
Multi-instantons and Maldacena's conjecture |
| title_full |
Multi-instantons and Maldacena's conjecture |
| title_fullStr |
Multi-instantons and Maldacena's conjecture |
| title_full_unstemmed |
Multi-instantons and Maldacena's conjecture |
| title_sort |
Multi-instantons and Maldacena's conjecture |
| author_id_str_mv |
ea9ca59fc948276ff2ab547e91bdf0c2 |
| author_id_fullname_str_mv |
ea9ca59fc948276ff2ab547e91bdf0c2_***_Timothy Hollowood |
| author |
Timothy Hollowood |
| author2 |
Valentin V. Khoze Stefan Vandoren Nicholas Dorey Michael P. Mattis Timothy Hollowood |
| format |
Journal article |
| container_title |
Journal of High Energy Physics |
| container_volume |
"06" |
| container_issue |
06 |
| container_start_page |
023 |
| publishDate |
1998 |
| institution |
Swansea University |
| issn |
1029-8479 |
| doi_str_mv |
10.1088/1126-6708/1999/06/023 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
| url |
http://inspirehep.net/record/478620 |
| document_store_str |
0 |
| active_str |
0 |
| description |
We examine certain n-point functions G_n in {\cal N}=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to sum all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) In exact agreement with type IIB superstring calculations, at the k-instanton level, $G_n = \sqrt{N} g^8 k^{n-7/2} e^{-8\pi^2 k/g^2}\sum_{d|k} d^{-2} \times F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA |
| published_date |
1998-10-31T03:55:45Z |
| _version_ |
1851092049851318272 |
| score |
11.089407 |

