No Cover Image

Journal article 905 views

Gluino condensate and magnetic monopoles in supersymmetric gluodynamics

Valentin V. Khoze, N.Michael Davies, Michael P. Mattis, Timothy Hollowood Orcid Logo

Nuclear Physics B, Volume: "B559", Issue: 1-2, Pages: 123 - 142

Swansea University Author: Timothy Hollowood Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

We examine supersymmetric SU(N) gauge theories on R^3*S^1 with a circle of circumference beta. These theories interpolate between four-dimensional N=1 pure gauge theory for beta=infinity and three-dimensional N=2 gauge theory for beta=0. The dominant field configurations of the R^3*S^1 SU(N) theorie...

Full description

Published in: Nuclear Physics B
ISSN: 05503213
Published: 1999
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa28561
Abstract: We examine supersymmetric SU(N) gauge theories on R^3*S^1 with a circle of circumference beta. These theories interpolate between four-dimensional N=1 pure gauge theory for beta=infinity and three-dimensional N=2 gauge theory for beta=0. The dominant field configurations of the R^3*S^1 SU(N) theories in the semi-classical regime arise from N varieties of monopole. Periodic instanton configurations correspond to mixed configurations of N single monopoles of the N different types. We semi-classically evaluate the non-perturbatively generated superpotential of the R^3*S^1 theory and hence determine its vacuum structure. We then calculate monopole contributions to the gluino condensate in these theories and take the decompactification limit beta=infinity. In this way we obtain a value for the gluino condensate in the four-dimensional N=1 supersymmetric SU(N) Yang-Mills theory, which agrees with the previously known `weak coupling' expression but not with the `strong coupling' expression derived in the early literature solely from instanton considerations. Moreover, we discover that the superpotential gives a mass to the dual (magnetic) photon, which implies confinement of the original electric photon and disappearance of all the massless
College: Faculty of Science and Engineering
Issue: 1-2
Start Page: 123
End Page: 142