Journal article 992 views
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations
Journal of Statistical Physics, Volume: 163, Issue: 5, Pages: 1211 - 1234
Swansea University Author: Feng-yu Wang
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/s10955-016-1513-0
Abstract
Using the dimension-free Harnack inequality and the integration by parts formulafor the associated diffusion semigroup, we prove the central limit theorem, the moderatedeviation principle, and the logarithmic iteration law for the sample entropy production rateof a family of stochastic differential...
Published in: | Journal of Statistical Physics |
---|---|
ISSN: | 0022-4715 1572-9613 |
Published: |
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa28389 |
first_indexed |
2016-05-30T12:15:48Z |
---|---|
last_indexed |
2018-02-09T05:12:27Z |
id |
cronfa28389 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2016-12-23T12:52:43.7934518</datestamp><bib-version>v2</bib-version><id>28389</id><entry>2016-05-30</entry><title>Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-30</date><abstract>Using the dimension-free Harnack inequality and the integration by parts formulafor the associated diffusion semigroup, we prove the central limit theorem, the moderatedeviation principle, and the logarithmic iteration law for the sample entropy production rateof a family of stochastic differential equations.</abstract><type>Journal Article</type><journal>Journal of Statistical Physics</journal><volume>163</volume><journalNumber>5</journalNumber><paginationStart>1211</paginationStart><paginationEnd>1234</paginationEnd><publisher/><issnPrint>0022-4715</issnPrint><issnElectronic>1572-9613</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-31</publishedDate><doi>10.1007/s10955-016-1513-0</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-12-23T12:52:43.7934518</lastEdited><Created>2016-05-30T04:40:06.0266640</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Jie</firstname><surname>Xiong</surname><order>2</order></author><author><firstname>Lihu</firstname><surname>Xu</surname><order>3</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2016-12-23T12:52:43.7934518 v2 28389 2016-05-30 Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2016-05-30 Using the dimension-free Harnack inequality and the integration by parts formulafor the associated diffusion semigroup, we prove the central limit theorem, the moderatedeviation principle, and the logarithmic iteration law for the sample entropy production rateof a family of stochastic differential equations. Journal Article Journal of Statistical Physics 163 5 1211 1234 0022-4715 1572-9613 31 12 2016 2016-12-31 10.1007/s10955-016-1513-0 COLLEGE NANME COLLEGE CODE Swansea University 2016-12-23T12:52:43.7934518 2016-05-30T04:40:06.0266640 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 1 Jie Xiong 2 Lihu Xu 3 |
title |
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations |
spellingShingle |
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations Feng-yu Wang |
title_short |
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations |
title_full |
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations |
title_fullStr |
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations |
title_full_unstemmed |
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations |
title_sort |
Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations |
author_id_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de |
author_id_fullname_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang |
author |
Feng-yu Wang |
author2 |
Feng-yu Wang Jie Xiong Lihu Xu |
format |
Journal article |
container_title |
Journal of Statistical Physics |
container_volume |
163 |
container_issue |
5 |
container_start_page |
1211 |
publishDate |
2016 |
institution |
Swansea University |
issn |
0022-4715 1572-9613 |
doi_str_mv |
10.1007/s10955-016-1513-0 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
0 |
active_str |
0 |
description |
Using the dimension-free Harnack inequality and the integration by parts formulafor the associated diffusion semigroup, we prove the central limit theorem, the moderatedeviation principle, and the logarithmic iteration law for the sample entropy production rateof a family of stochastic differential equations. |
published_date |
2016-12-31T18:56:31Z |
_version_ |
1821342319494823936 |
score |
11.1586075 |