No Cover Image

Journal article 1112 views

Why the leopard got its spots: relating pattern development to ecology in felids

W. L. Allen, I. C. Cuthill, N. E. Scott-Samuel, R. Baddeley, William Allen Orcid Logo

Proceedings of the Royal Society B: Biological Sciences, Volume: 278, Issue: 1710, Pages: 1373 - 1380

Swansea University Author: William Allen Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1098/rspb.2010.1734

Abstract

A complete explanation of the diversity of animal colour patterns requires an understanding of both the developmental mechanisms generating them and their adaptive value. However, only two previous studies, which involved computer-generated evolving prey, have attempted to make this link. This study...

Full description

Published in: Proceedings of the Royal Society B: Biological Sciences
Published: The Royal Society 2011
URI: https://cronfa.swan.ac.uk/Record/cronfa28001
Abstract: A complete explanation of the diversity of animal colour patterns requires an understanding of both the developmental mechanisms generating them and their adaptive value. However, only two previous studies, which involved computer-generated evolving prey, have attempted to make this link. This study examines variation in the camouflage patterns displayed on the flanks of many felids. After controlling for the effects of shared ancestry using a fully resolved molecular phylogeny, this study shows how phenotypes from plausible felid coat pattern generation mechanisms relate to ecology. We found that likelihood of patterning and pattern attributes, such as complexity and irregularity, were related to felids' habitats, arboreality and nocturnality. Our analysis also indicates that disruptive selection is a likely explanation for the prevalence of melanistic forms in Felidae. Furthermore, we show that there is little phylogenetic signal in the visual appearance of felid patterning, indicating that camouflage adapts to ecology over relatively short time scales. Our method could be applied to any taxon with colour patterns that can reasonably be matched to reaction–diffusion and similar models, where the kinetics of the reaction between two or more initially randomly dispersed morphogens determines the outcome of pattern development.
College: Faculty of Science and Engineering
Issue: 1710
Start Page: 1373
End Page: 1380