No Cover Image

Conference Paper/Proceeding/Abstract 1108 views

Vortices versus monopoles in color confinement

L. Del Debbio, A. Di Giacomo, Biagio Lucini Orcid Logo

Nuclear Physics B - Proceedings Supplements, Volume: "94", Issue: 1-3, Pages: 502 - 505

Swansea University Author: Biagio Lucini Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

We construct the creation operator of a vortex for SU(2) pure gauge theory using the methods developed for monopoles. We interpret its vacuum expectation value as a disorder parameter for the deconfinement phase transition and find that it behaves in the vacuum in a similar way to monopoles. Results...

Full description

Published in: Nuclear Physics B - Proceedings Supplements
ISSN: 09205632
Published: 2000
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa27965
first_indexed 2016-05-15T01:22:55Z
last_indexed 2018-02-09T05:11:35Z
id cronfa27965
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2016-05-14T16:42:30.9328129</datestamp><bib-version>v2</bib-version><id>27965</id><entry>2016-05-14</entry><title>Vortices versus monopoles in color confinement</title><swanseaauthors><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-14</date><deptcode>MACS</deptcode><abstract>We construct the creation operator of a vortex for SU(2) pure gauge theory using the methods developed for monopoles. We interpret its vacuum expectation value as a disorder parameter for the deconfinement phase transition and find that it behaves in the vacuum in a similar way to monopoles. Results are extrapolated to the thermodynamical limit using finite-size scaling.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Nuclear Physics B - Proceedings Supplements</journal><volume>"94"</volume><journalNumber>1-3</journalNumber><paginationStart>502</paginationStart><paginationEnd>505</paginationEnd><publisher/><issnPrint>09205632</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2000</publishedYear><publishedDate>2000-08-31</publishedDate><doi>10.1016/S0920-5632(01)00894-5</doi><url>http://inspirehep.net/record/535699</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-05-14T16:42:30.9328129</lastEdited><Created>2016-05-14T16:42:30.7300116</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>L.</firstname><surname>Del Debbio</surname><order>1</order></author><author><firstname>A.</firstname><surname>Di Giacomo</surname><order>2</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2016-05-14T16:42:30.9328129 v2 27965 2016-05-14 Vortices versus monopoles in color confinement 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 2016-05-14 MACS We construct the creation operator of a vortex for SU(2) pure gauge theory using the methods developed for monopoles. We interpret its vacuum expectation value as a disorder parameter for the deconfinement phase transition and find that it behaves in the vacuum in a similar way to monopoles. Results are extrapolated to the thermodynamical limit using finite-size scaling. Conference Paper/Proceeding/Abstract Nuclear Physics B - Proceedings Supplements "94" 1-3 502 505 09205632 31 8 2000 2000-08-31 10.1016/S0920-5632(01)00894-5 http://inspirehep.net/record/535699 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2016-05-14T16:42:30.9328129 2016-05-14T16:42:30.7300116 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics L. Del Debbio 1 A. Di Giacomo 2 Biagio Lucini 0000-0001-8974-8266 3
title Vortices versus monopoles in color confinement
spellingShingle Vortices versus monopoles in color confinement
Biagio Lucini
title_short Vortices versus monopoles in color confinement
title_full Vortices versus monopoles in color confinement
title_fullStr Vortices versus monopoles in color confinement
title_full_unstemmed Vortices versus monopoles in color confinement
title_sort Vortices versus monopoles in color confinement
author_id_str_mv 7e6fcfe060e07a351090e2a8aba363cf
author_id_fullname_str_mv 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini
author Biagio Lucini
author2 L. Del Debbio
A. Di Giacomo
Biagio Lucini
format Conference Paper/Proceeding/Abstract
container_title Nuclear Physics B - Proceedings Supplements
container_volume "94"
container_issue 1-3
container_start_page 502
publishDate 2000
institution Swansea University
issn 09205632
doi_str_mv 10.1016/S0920-5632(01)00894-5
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
url http://inspirehep.net/record/535699
document_store_str 0
active_str 0
description We construct the creation operator of a vortex for SU(2) pure gauge theory using the methods developed for monopoles. We interpret its vacuum expectation value as a disorder parameter for the deconfinement phase transition and find that it behaves in the vacuum in a similar way to monopoles. Results are extrapolated to the thermodynamical limit using finite-size scaling.
published_date 2000-08-31T06:58:13Z
_version_ 1822384291664887808
score 10.96012