No Cover Image

Journal article 897 views

Monopoles, vortices and confinement in SU(3) gauge theory

L. Del Debbio, A. Di Giacomo, Biagio Lucini Orcid Logo

Physics Letters B, Volume: "B500", Issue: 3-4, Pages: 326 - 329

Swansea University Author: Biagio Lucini Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

We compute, in SU(3) pure gauge theory, the vacuum expectation value (vev) of the operator which creates a $Z_3$ vortex wrapping the lattice through periodic boundary conditions (dual Polyakov line). The technique used is the same already tested in the SU(2) case. The dual Polyakov line proves to be...

Full description

Published in: Physics Letters B
ISSN: 03702693
Published: 2000
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa27963
first_indexed 2016-05-15T01:22:54Z
last_indexed 2018-02-09T05:11:35Z
id cronfa27963
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2016-05-14T16:42:29.3416027</datestamp><bib-version>v2</bib-version><id>27963</id><entry>2016-05-14</entry><title>Monopoles, vortices and confinement in SU(3) gauge theory</title><swanseaauthors><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-14</date><deptcode>MACS</deptcode><abstract>We compute, in SU(3) pure gauge theory, the vacuum expectation value (vev) of the operator which creates a $Z_3$ vortex wrapping the lattice through periodic boundary conditions (dual Polyakov line). The technique used is the same already tested in the SU(2) case. The dual Polyakov line proves to be a good disorder parameter for confinement, and has a similar behaviour to the monopole condensate. The new features which characterise the construction of the disorder operator in SU(3) are emphasised.</abstract><type>Journal Article</type><journal>Physics Letters B</journal><volume>"B500"</volume><journalNumber>3-4</journalNumber><paginationStart>326</paginationStart><paginationEnd>329</paginationEnd><publisher/><issnPrint>03702693</issnPrint><keywords/><publishedDay>30</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2000</publishedYear><publishedDate>2000-11-30</publishedDate><doi>10.1016/S0370-2693(01)00091-0</doi><url>http://inspirehep.net/record/536631</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-05-14T16:42:29.3416027</lastEdited><Created>2016-05-14T16:42:29.1232013</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>L.</firstname><surname>Del Debbio</surname><order>1</order></author><author><firstname>A.</firstname><surname>Di Giacomo</surname><order>2</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2016-05-14T16:42:29.3416027 v2 27963 2016-05-14 Monopoles, vortices and confinement in SU(3) gauge theory 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 2016-05-14 MACS We compute, in SU(3) pure gauge theory, the vacuum expectation value (vev) of the operator which creates a $Z_3$ vortex wrapping the lattice through periodic boundary conditions (dual Polyakov line). The technique used is the same already tested in the SU(2) case. The dual Polyakov line proves to be a good disorder parameter for confinement, and has a similar behaviour to the monopole condensate. The new features which characterise the construction of the disorder operator in SU(3) are emphasised. Journal Article Physics Letters B "B500" 3-4 326 329 03702693 30 11 2000 2000-11-30 10.1016/S0370-2693(01)00091-0 http://inspirehep.net/record/536631 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2016-05-14T16:42:29.3416027 2016-05-14T16:42:29.1232013 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics L. Del Debbio 1 A. Di Giacomo 2 Biagio Lucini 0000-0001-8974-8266 3
title Monopoles, vortices and confinement in SU(3) gauge theory
spellingShingle Monopoles, vortices and confinement in SU(3) gauge theory
Biagio Lucini
title_short Monopoles, vortices and confinement in SU(3) gauge theory
title_full Monopoles, vortices and confinement in SU(3) gauge theory
title_fullStr Monopoles, vortices and confinement in SU(3) gauge theory
title_full_unstemmed Monopoles, vortices and confinement in SU(3) gauge theory
title_sort Monopoles, vortices and confinement in SU(3) gauge theory
author_id_str_mv 7e6fcfe060e07a351090e2a8aba363cf
author_id_fullname_str_mv 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini
author Biagio Lucini
author2 L. Del Debbio
A. Di Giacomo
Biagio Lucini
format Journal article
container_title Physics Letters B
container_volume "B500"
container_issue 3-4
container_start_page 326
publishDate 2000
institution Swansea University
issn 03702693
doi_str_mv 10.1016/S0370-2693(01)00091-0
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
url http://inspirehep.net/record/536631
document_store_str 0
active_str 0
description We compute, in SU(3) pure gauge theory, the vacuum expectation value (vev) of the operator which creates a $Z_3$ vortex wrapping the lattice through periodic boundary conditions (dual Polyakov line). The technique used is the same already tested in the SU(2) case. The dual Polyakov line proves to be a good disorder parameter for confinement, and has a similar behaviour to the monopole condensate. The new features which characterise the construction of the disorder operator in SU(3) are emphasised.
published_date 2000-11-30T18:55:39Z
_version_ 1821342264902811648
score 11.04748