No Cover Image

Journal article 1696 views 257 downloads

Solution processing of TiO2 compact layers for 3rd generation photovoltaics

Cecile Charbonneau Orcid Logo, Petra J. Cameron, Adam Pockett, Anthony Lewis, Joel R. Troughton, Eifion Jewell Orcid Logo, David Worsley Orcid Logo, Trystan Watson Orcid Logo

Ceramics International, Volume: 42, Issue: 10, Pages: 11989 - 11997

Swansea University Authors: Cecile Charbonneau Orcid Logo, Eifion Jewell Orcid Logo, David Worsley Orcid Logo, Trystan Watson Orcid Logo

  • 1-s2.0-S0272884216305338-main.pdf

    PDF | Accepted Manuscript

    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

    Download (1.32MB)

Abstract

In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provid...

Full description

Published in: Ceramics International
ISSN: 0272-8842
Published: Elsevier 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa27850
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-05-14T01:16:49Z
last_indexed 2020-07-20T12:43:54Z
id cronfa27850
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-20T11:35:35.3353520</datestamp><bib-version>v2</bib-version><id>27850</id><entry>2016-05-13</entry><title>Solution processing of TiO2 compact layers for 3rd generation photovoltaics</title><swanseaauthors><author><sid>4dc059714847cb22ed922ab058950560</sid><ORCID>0000-0001-9887-2007</ORCID><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>13dc152c178d51abfe0634445b0acf07</sid><ORCID>0000-0002-6894-2251</ORCID><firstname>Eifion</firstname><surname>Jewell</surname><name>Eifion Jewell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><ORCID>0000-0002-9956-6228</ORCID><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-13</date><deptcode>MTLS</deptcode><abstract>In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provide a scalable alternative to methods conventionally employed in laboratories for the fabrication of 3rd generation photovoltaic devices, such as high temperature pyrolysis or spin coating of organic titanium (IV) precursors. Optimization of our solution process is presented in detail. Structural features and crystalline properties of solution processed compact layers are characterized by FEG-SEM imaging and x-ray diffraction analyses and compared to compact layers produced by conventional laboratory techniques. Minimization of electron recombination is evaluated in standard liquid I-/I3- dye-sensitized solar cells (DSC). The results show that a compact, homogenous, high coverage yield crystalline TiO2 anatase layer can be produced by sequential deposition of 2&#x2013;3 solution processed titanium oxide layers, each in under 30 s. In standard liquid I-/I3- DSC the solution processed compact layers strongly increased the electron lifetime, &#x3C4;n, when compared to cells prepared on a bare FTO substrate.</abstract><type>Journal Article</type><journal>Ceramics International</journal><volume>42</volume><journalNumber>10</journalNumber><paginationStart>11989</paginationStart><paginationEnd>11997</paginationEnd><publisher>Elsevier</publisher><issnPrint>0272-8842</issnPrint><keywords>TiO2 Thin Film; Fast Processing; Near Infrared; Low-cost; Aqueous Precursor</keywords><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-08-01</publishedDate><doi>10.1016/j.ceramint.2016.04.125</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-20T11:35:35.3353520</lastEdited><Created>2016-05-13T08:47:26.8046075</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Cecile</firstname><surname>Charbonneau</surname><orcid>0000-0001-9887-2007</orcid><order>1</order></author><author><firstname>Petra J.</firstname><surname>Cameron</surname><order>2</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>3</order></author><author><firstname>Anthony</firstname><surname>Lewis</surname><order>4</order></author><author><firstname>Joel R.</firstname><surname>Troughton</surname><order>5</order></author><author><firstname>Eifion</firstname><surname>Jewell</surname><orcid>0000-0002-6894-2251</orcid><order>6</order></author><author><firstname>David</firstname><surname>Worsley</surname><orcid>0000-0002-9956-6228</orcid><order>7</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>8</order></author></authors><documents><document><filename>0027850-13052016084739.pdf</filename><originalFilename>1-s2.0-S0272884216305338-main.pdf</originalFilename><uploaded>2016-05-13T08:47:39.5970000</uploaded><type>Output</type><contentLength>1363826</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-04-23T00:00:00.0000000</embargoDate><documentNotes>&#xA9; 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-20T11:35:35.3353520 v2 27850 2016-05-13 Solution processing of TiO2 compact layers for 3rd generation photovoltaics 4dc059714847cb22ed922ab058950560 0000-0001-9887-2007 Cecile Charbonneau Cecile Charbonneau true false 13dc152c178d51abfe0634445b0acf07 0000-0002-6894-2251 Eifion Jewell Eifion Jewell true false c426b1c1b0123d7057c1b969083cea69 0000-0002-9956-6228 David Worsley David Worsley true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2016-05-13 MTLS In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provide a scalable alternative to methods conventionally employed in laboratories for the fabrication of 3rd generation photovoltaic devices, such as high temperature pyrolysis or spin coating of organic titanium (IV) precursors. Optimization of our solution process is presented in detail. Structural features and crystalline properties of solution processed compact layers are characterized by FEG-SEM imaging and x-ray diffraction analyses and compared to compact layers produced by conventional laboratory techniques. Minimization of electron recombination is evaluated in standard liquid I-/I3- dye-sensitized solar cells (DSC). The results show that a compact, homogenous, high coverage yield crystalline TiO2 anatase layer can be produced by sequential deposition of 2–3 solution processed titanium oxide layers, each in under 30 s. In standard liquid I-/I3- DSC the solution processed compact layers strongly increased the electron lifetime, τn, when compared to cells prepared on a bare FTO substrate. Journal Article Ceramics International 42 10 11989 11997 Elsevier 0272-8842 TiO2 Thin Film; Fast Processing; Near Infrared; Low-cost; Aqueous Precursor 1 8 2016 2016-08-01 10.1016/j.ceramint.2016.04.125 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2020-07-20T11:35:35.3353520 2016-05-13T08:47:26.8046075 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Cecile Charbonneau 0000-0001-9887-2007 1 Petra J. Cameron 2 Adam Pockett 3 Anthony Lewis 4 Joel R. Troughton 5 Eifion Jewell 0000-0002-6894-2251 6 David Worsley 0000-0002-9956-6228 7 Trystan Watson 0000-0002-8015-1436 8 0027850-13052016084739.pdf 1-s2.0-S0272884216305338-main.pdf 2016-05-13T08:47:39.5970000 Output 1363826 application/pdf Accepted Manuscript true 2017-04-23T00:00:00.0000000 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ true
title Solution processing of TiO2 compact layers for 3rd generation photovoltaics
spellingShingle Solution processing of TiO2 compact layers for 3rd generation photovoltaics
Cecile Charbonneau
Eifion Jewell
David Worsley
Trystan Watson
title_short Solution processing of TiO2 compact layers for 3rd generation photovoltaics
title_full Solution processing of TiO2 compact layers for 3rd generation photovoltaics
title_fullStr Solution processing of TiO2 compact layers for 3rd generation photovoltaics
title_full_unstemmed Solution processing of TiO2 compact layers for 3rd generation photovoltaics
title_sort Solution processing of TiO2 compact layers for 3rd generation photovoltaics
author_id_str_mv 4dc059714847cb22ed922ab058950560
13dc152c178d51abfe0634445b0acf07
c426b1c1b0123d7057c1b969083cea69
a210327b52472cfe8df9b8108d661457
author_id_fullname_str_mv 4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau
13dc152c178d51abfe0634445b0acf07_***_Eifion Jewell
c426b1c1b0123d7057c1b969083cea69_***_David Worsley
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
author Cecile Charbonneau
Eifion Jewell
David Worsley
Trystan Watson
author2 Cecile Charbonneau
Petra J. Cameron
Adam Pockett
Anthony Lewis
Joel R. Troughton
Eifion Jewell
David Worsley
Trystan Watson
format Journal article
container_title Ceramics International
container_volume 42
container_issue 10
container_start_page 11989
publishDate 2016
institution Swansea University
issn 0272-8842
doi_str_mv 10.1016/j.ceramint.2016.04.125
publisher Elsevier
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering
document_store_str 1
active_str 0
description In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provide a scalable alternative to methods conventionally employed in laboratories for the fabrication of 3rd generation photovoltaic devices, such as high temperature pyrolysis or spin coating of organic titanium (IV) precursors. Optimization of our solution process is presented in detail. Structural features and crystalline properties of solution processed compact layers are characterized by FEG-SEM imaging and x-ray diffraction analyses and compared to compact layers produced by conventional laboratory techniques. Minimization of electron recombination is evaluated in standard liquid I-/I3- dye-sensitized solar cells (DSC). The results show that a compact, homogenous, high coverage yield crystalline TiO2 anatase layer can be produced by sequential deposition of 2–3 solution processed titanium oxide layers, each in under 30 s. In standard liquid I-/I3- DSC the solution processed compact layers strongly increased the electron lifetime, τn, when compared to cells prepared on a bare FTO substrate.
published_date 2016-08-01T03:33:49Z
_version_ 1763751419640283136
score 11.036378