Journal article 1696 views 257 downloads
Solution processing of TiO2 compact layers for 3rd generation photovoltaics
Ceramics International, Volume: 42, Issue: 10, Pages: 11989 - 11997
Swansea University Authors: Cecile Charbonneau , Eifion Jewell , David Worsley , Trystan Watson
-
PDF | Accepted Manuscript
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Download (1.32MB)
DOI (Published version): 10.1016/j.ceramint.2016.04.125
Abstract
In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provid...
Published in: | Ceramics International |
---|---|
ISSN: | 0272-8842 |
Published: |
Elsevier
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa27850 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2016-05-14T01:16:49Z |
---|---|
last_indexed |
2020-07-20T12:43:54Z |
id |
cronfa27850 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-20T11:35:35.3353520</datestamp><bib-version>v2</bib-version><id>27850</id><entry>2016-05-13</entry><title>Solution processing of TiO2 compact layers for 3rd generation photovoltaics</title><swanseaauthors><author><sid>4dc059714847cb22ed922ab058950560</sid><ORCID>0000-0001-9887-2007</ORCID><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>13dc152c178d51abfe0634445b0acf07</sid><ORCID>0000-0002-6894-2251</ORCID><firstname>Eifion</firstname><surname>Jewell</surname><name>Eifion Jewell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><ORCID>0000-0002-9956-6228</ORCID><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-13</date><deptcode>MTLS</deptcode><abstract>In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provide a scalable alternative to methods conventionally employed in laboratories for the fabrication of 3rd generation photovoltaic devices, such as high temperature pyrolysis or spin coating of organic titanium (IV) precursors. Optimization of our solution process is presented in detail. Structural features and crystalline properties of solution processed compact layers are characterized by FEG-SEM imaging and x-ray diffraction analyses and compared to compact layers produced by conventional laboratory techniques. Minimization of electron recombination is evaluated in standard liquid I-/I3- dye-sensitized solar cells (DSC). The results show that a compact, homogenous, high coverage yield crystalline TiO2 anatase layer can be produced by sequential deposition of 2–3 solution processed titanium oxide layers, each in under 30 s. In standard liquid I-/I3- DSC the solution processed compact layers strongly increased the electron lifetime, τn, when compared to cells prepared on a bare FTO substrate.</abstract><type>Journal Article</type><journal>Ceramics International</journal><volume>42</volume><journalNumber>10</journalNumber><paginationStart>11989</paginationStart><paginationEnd>11997</paginationEnd><publisher>Elsevier</publisher><issnPrint>0272-8842</issnPrint><keywords>TiO2 Thin Film; Fast Processing; Near Infrared; Low-cost; Aqueous Precursor</keywords><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-08-01</publishedDate><doi>10.1016/j.ceramint.2016.04.125</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-20T11:35:35.3353520</lastEdited><Created>2016-05-13T08:47:26.8046075</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Cecile</firstname><surname>Charbonneau</surname><orcid>0000-0001-9887-2007</orcid><order>1</order></author><author><firstname>Petra J.</firstname><surname>Cameron</surname><order>2</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>3</order></author><author><firstname>Anthony</firstname><surname>Lewis</surname><order>4</order></author><author><firstname>Joel R.</firstname><surname>Troughton</surname><order>5</order></author><author><firstname>Eifion</firstname><surname>Jewell</surname><orcid>0000-0002-6894-2251</orcid><order>6</order></author><author><firstname>David</firstname><surname>Worsley</surname><orcid>0000-0002-9956-6228</orcid><order>7</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>8</order></author></authors><documents><document><filename>0027850-13052016084739.pdf</filename><originalFilename>1-s2.0-S0272884216305338-main.pdf</originalFilename><uploaded>2016-05-13T08:47:39.5970000</uploaded><type>Output</type><contentLength>1363826</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-04-23T00:00:00.0000000</embargoDate><documentNotes>© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-20T11:35:35.3353520 v2 27850 2016-05-13 Solution processing of TiO2 compact layers for 3rd generation photovoltaics 4dc059714847cb22ed922ab058950560 0000-0001-9887-2007 Cecile Charbonneau Cecile Charbonneau true false 13dc152c178d51abfe0634445b0acf07 0000-0002-6894-2251 Eifion Jewell Eifion Jewell true false c426b1c1b0123d7057c1b969083cea69 0000-0002-9956-6228 David Worsley David Worsley true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2016-05-13 MTLS In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provide a scalable alternative to methods conventionally employed in laboratories for the fabrication of 3rd generation photovoltaic devices, such as high temperature pyrolysis or spin coating of organic titanium (IV) precursors. Optimization of our solution process is presented in detail. Structural features and crystalline properties of solution processed compact layers are characterized by FEG-SEM imaging and x-ray diffraction analyses and compared to compact layers produced by conventional laboratory techniques. Minimization of electron recombination is evaluated in standard liquid I-/I3- dye-sensitized solar cells (DSC). The results show that a compact, homogenous, high coverage yield crystalline TiO2 anatase layer can be produced by sequential deposition of 2–3 solution processed titanium oxide layers, each in under 30 s. In standard liquid I-/I3- DSC the solution processed compact layers strongly increased the electron lifetime, τn, when compared to cells prepared on a bare FTO substrate. Journal Article Ceramics International 42 10 11989 11997 Elsevier 0272-8842 TiO2 Thin Film; Fast Processing; Near Infrared; Low-cost; Aqueous Precursor 1 8 2016 2016-08-01 10.1016/j.ceramint.2016.04.125 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2020-07-20T11:35:35.3353520 2016-05-13T08:47:26.8046075 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Cecile Charbonneau 0000-0001-9887-2007 1 Petra J. Cameron 2 Adam Pockett 3 Anthony Lewis 4 Joel R. Troughton 5 Eifion Jewell 0000-0002-6894-2251 6 David Worsley 0000-0002-9956-6228 7 Trystan Watson 0000-0002-8015-1436 8 0027850-13052016084739.pdf 1-s2.0-S0272884216305338-main.pdf 2016-05-13T08:47:39.5970000 Output 1363826 application/pdf Accepted Manuscript true 2017-04-23T00:00:00.0000000 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ true |
title |
Solution processing of TiO2 compact layers for 3rd generation photovoltaics |
spellingShingle |
Solution processing of TiO2 compact layers for 3rd generation photovoltaics Cecile Charbonneau Eifion Jewell David Worsley Trystan Watson |
title_short |
Solution processing of TiO2 compact layers for 3rd generation photovoltaics |
title_full |
Solution processing of TiO2 compact layers for 3rd generation photovoltaics |
title_fullStr |
Solution processing of TiO2 compact layers for 3rd generation photovoltaics |
title_full_unstemmed |
Solution processing of TiO2 compact layers for 3rd generation photovoltaics |
title_sort |
Solution processing of TiO2 compact layers for 3rd generation photovoltaics |
author_id_str_mv |
4dc059714847cb22ed922ab058950560 13dc152c178d51abfe0634445b0acf07 c426b1c1b0123d7057c1b969083cea69 a210327b52472cfe8df9b8108d661457 |
author_id_fullname_str_mv |
4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau 13dc152c178d51abfe0634445b0acf07_***_Eifion Jewell c426b1c1b0123d7057c1b969083cea69_***_David Worsley a210327b52472cfe8df9b8108d661457_***_Trystan Watson |
author |
Cecile Charbonneau Eifion Jewell David Worsley Trystan Watson |
author2 |
Cecile Charbonneau Petra J. Cameron Adam Pockett Anthony Lewis Joel R. Troughton Eifion Jewell David Worsley Trystan Watson |
format |
Journal article |
container_title |
Ceramics International |
container_volume |
42 |
container_issue |
10 |
container_start_page |
11989 |
publishDate |
2016 |
institution |
Swansea University |
issn |
0272-8842 |
doi_str_mv |
10.1016/j.ceramint.2016.04.125 |
publisher |
Elsevier |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
In this study, we introduce a new method for the deposition of TiO2 compact layers which involves the deposition of a wet film of an inorganic titanium (IV) precursor followed by fast hydrolytic conversion to crystalline TiO2 under near infrared radiative (NIR) treatment. With this, we aim to provide a scalable alternative to methods conventionally employed in laboratories for the fabrication of 3rd generation photovoltaic devices, such as high temperature pyrolysis or spin coating of organic titanium (IV) precursors. Optimization of our solution process is presented in detail. Structural features and crystalline properties of solution processed compact layers are characterized by FEG-SEM imaging and x-ray diffraction analyses and compared to compact layers produced by conventional laboratory techniques. Minimization of electron recombination is evaluated in standard liquid I-/I3- dye-sensitized solar cells (DSC). The results show that a compact, homogenous, high coverage yield crystalline TiO2 anatase layer can be produced by sequential deposition of 2–3 solution processed titanium oxide layers, each in under 30 s. In standard liquid I-/I3- DSC the solution processed compact layers strongly increased the electron lifetime, τn, when compared to cells prepared on a bare FTO substrate. |
published_date |
2016-08-01T03:33:49Z |
_version_ |
1763751419640283136 |
score |
11.036378 |