No Cover Image

Journal article 1881 views 377 downloads

Formation and Disruption of W-Phase in High-Entropy Alloys

Sephira Riva, Chung Fung, Justin Searle, Ronald Clark, Nicholas Lavery Orcid Logo, Stephen Brown, Kirill Yusenko, Steve Brown

Metals, Volume: 6, Issue: 5, Start page: 106

Swansea University Authors: Nicholas Lavery Orcid Logo, Kirill Yusenko, Steve Brown

  • metals-06-00106.pdf

    PDF | Version of Record

    © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license

    Download (6.93MB)

Check full text

DOI (Published version): 10.3390/met6050106

Abstract

High-entropy alloys (HEAs) are single-phase systems prepared from equimolar or near-equimolar concentrations of at least five principal elements. The combination of high mixing entropy, severe lattice distortion, sluggish diffusion and cocktail effect favours the formation of simple phases—usually a...

Full description

Published in: Metals
ISSN: 2075-4701
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa27735
Abstract: High-entropy alloys (HEAs) are single-phase systems prepared from equimolar or near-equimolar concentrations of at least five principal elements. The combination of high mixing entropy, severe lattice distortion, sluggish diffusion and cocktail effect favours the formation of simple phases—usually a bcc or fcc matrix with minor inclusions of ordered binary intermetallics. HEAs have been proposed for applications in which high temperature stability (including mechanical and chemical stability under high temperature and high mechanical impact) is required. On the other hand, the major challenge to overcome for HEAs to become commercially attractive is the achievement of lightweight alloys of extreme hardness and low brittleness. The multicomponent AlCrCuScTi alloy was prepared and characterized using powder X-ray diffraction (PXRD), scanning-electron microscope (SEM) and atomic-force microscope equipped with scanning Kelvin probe (AFM/SKP) techniques. Results show that the formation of complex multicomponent ternary intermetallic compounds upon heating plays a key role in phase evolution. The formation and degradation of W-phase, Al2Cu3Sc, in the AlCrCuScTi alloy plays a crucial role in its properties and stability. Analysis of as-melted and annealed alloy suggests that the W-phase is favoured kinetically, but thermodynamically unstable. The disruption of the W-phase in the alloy matrix has a positive effect on hardness (890 HV), density (4.83 g·cm−3) and crack propagation. The hardness/density ratio obtained for this alloy shows a record value in comparison with ordinary heavy refractory HEAs.
Keywords: metals and alloys; phase transformations; high-entropy alloys; scandium; W-phase; Al2Cu3Sc
College: Faculty of Science and Engineering
Issue: 5
Start Page: 106