No Cover Image

Journal article 1254 views

A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets

Beckmann Arnold, Arnold Beckmann Orcid Logo

Archive for Mathematical Logic, Volume: 41, Issue: 3, Pages: 251 - 257

Swansea University Author: Arnold Beckmann Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1007/s001530100107

Published in: Archive for Mathematical Logic
ISSN: 0933-5846 1432-0665
Published: Springer Science $mathplus$ Business Media 2002
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa24554
first_indexed 2015-11-20T01:58:30Z
last_indexed 2018-02-09T05:04:27Z
id cronfa24554
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2015-11-19T20:31:23.8702117</datestamp><bib-version>v2</bib-version><id>24554</id><entry>2015-11-19</entry><title>A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets</title><swanseaauthors><author><sid>1439ebd690110a50a797b7ec78cca600</sid><ORCID>0000-0001-7958-5790</ORCID><firstname>Arnold</firstname><surname>Beckmann</surname><name>Arnold Beckmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-11-19</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>Archive for Mathematical Logic</journal><volume>41</volume><journalNumber>3</journalNumber><paginationStart>251</paginationStart><paginationEnd>257</paginationEnd><publisher>Springer Science $mathplus$ Business Media</publisher><issnPrint>0933-5846</issnPrint><issnElectronic>1432-0665</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2002</publishedYear><publishedDate>2002-04-01</publishedDate><doi>10.1007/s001530100107</doi><url/><notes>@articleBeckmann_2002,doi = 10.1007/s001530100107,url = http://dx.doi.org/10.1007/s001530100107,year = 2002,month = apr,publisher = Springer Science $\mathplus$ Business Media,volume = 41,number = 3,pages = 251--257,author = Arnold Beckmann,title = A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets,journal = Archive for Mathematical Logic</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2015-11-19T20:31:23.8702117</lastEdited><Created>2015-11-19T20:31:23.6362102</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Beckmann</firstname><surname>Arnold</surname><order>1</order></author><author><firstname>Arnold</firstname><surname>Beckmann</surname><orcid>0000-0001-7958-5790</orcid><order>2</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2015-11-19T20:31:23.8702117 v2 24554 2015-11-19 A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets 1439ebd690110a50a797b7ec78cca600 0000-0001-7958-5790 Arnold Beckmann Arnold Beckmann true false 2015-11-19 MACS Journal Article Archive for Mathematical Logic 41 3 251 257 Springer Science $mathplus$ Business Media 0933-5846 1432-0665 1 4 2002 2002-04-01 10.1007/s001530100107 @articleBeckmann_2002,doi = 10.1007/s001530100107,url = http://dx.doi.org/10.1007/s001530100107,year = 2002,month = apr,publisher = Springer Science $\mathplus$ Business Media,volume = 41,number = 3,pages = 251--257,author = Arnold Beckmann,title = A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets,journal = Archive for Mathematical Logic COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2015-11-19T20:31:23.8702117 2015-11-19T20:31:23.6362102 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Beckmann Arnold 1 Arnold Beckmann 0000-0001-7958-5790 2
title A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets
spellingShingle A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets
Arnold Beckmann
title_short A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets
title_full A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets
title_fullStr A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets
title_full_unstemmed A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets
title_sort A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets
author_id_str_mv 1439ebd690110a50a797b7ec78cca600
author_id_fullname_str_mv 1439ebd690110a50a797b7ec78cca600_***_Arnold Beckmann
author Arnold Beckmann
author2 Beckmann Arnold
Arnold Beckmann
format Journal article
container_title Archive for Mathematical Logic
container_volume 41
container_issue 3
container_start_page 251
publishDate 2002
institution Swansea University
issn 0933-5846
1432-0665
doi_str_mv 10.1007/s001530100107
publisher Springer Science $mathplus$ Business Media
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 0
active_str 0
published_date 2002-04-01T03:49:13Z
_version_ 1821375834231930880
score 11.04748