Journal article 1677 views
Antiproton cloud compression in the ALPHA apparatus at CERN
Hyperfine Interactions, Volume: 235, Issue: 1-3, Pages: 21 - 28
Swansea University Authors:
Michael Charlton, Stefan Eriksson , Aled Isaac
, Niels Madsen
, Dirk van der Werf
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/s10751-015-1202-4
Abstract
We have observed a new mechanism for compression of a non-neutral plasma, where antiprotons embedded in an electron plasma are compressed by a rotating wall drive at a frequency close to the sum of the axial bounce and rotation frequencies. The radius of the antiproton cloud is reduced by up to a fa...
Published in: | Hyperfine Interactions |
---|---|
ISSN: | 0304-3843 1572-9540 |
Published: |
Springer Science and Business Media LLC
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa24055 |
first_indexed |
2015-10-31T01:56:46Z |
---|---|
last_indexed |
2023-01-11T13:55:23Z |
id |
cronfa24055 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-11-09T15:46:46.3824848</datestamp><bib-version>v2</bib-version><id>24055</id><entry>2015-10-30</entry><title>Antiproton cloud compression in the ALPHA apparatus at CERN</title><swanseaauthors><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>785cbd474febb1bfa9c0e14abaf9c4a8</sid><ORCID>0000-0002-5390-1879</ORCID><firstname>Stefan</firstname><surname>Eriksson</surname><name>Stefan Eriksson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06d7ed42719ef7bb697cf780c63e26f0</sid><ORCID>0000-0002-7813-1903</ORCID><firstname>Aled</firstname><surname>Isaac</surname><name>Aled Isaac</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-10-30</date><deptcode>BGPS</deptcode><abstract>We have observed a new mechanism for compression of a non-neutral plasma, where antiprotons embedded in an electron plasma are compressed by a rotating wall drive at a frequency close to the sum of the axial bounce and rotation frequencies. The radius of the antiproton cloud is reduced by up to a factor of 20 and the smallest radius measured is ∼ 0.2 mm. When the rotating wall drive is applied to either a pure electron or pure antipro- ton plasma, no compression is observed in the frequency range of interest. The frequency range over which compression is evident is compared to the sum of the antiproton bounce frequency and the system’s rotation frequency. It is suggested that bounce resonant transport is a likely explanation for the compression of antiproton clouds in this regime.</abstract><type>Journal Article</type><journal>Hyperfine Interactions</journal><volume>235</volume><journalNumber>1-3</journalNumber><paginationStart>21</paginationStart><paginationEnd>28</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0304-3843</issnPrint><issnElectronic>1572-9540</issnElectronic><keywords>Antiprotons; Rotating wall; Compression; Electrons; Penning-Malmberg trap; Non-neutral plasma; Antihydrogen</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-11-01</publishedDate><doi>10.1007/s10751-015-1202-4</doi><url/><notes>Proceedings of the 6th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2014), Takamatsu, Japan, 1–5 December 2014</notes><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-11-09T15:46:46.3824848</lastEdited><Created>2015-10-30T09:35:04.7755484</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>A.</firstname><surname>Gutierrez</surname><order>1</order></author><author><firstname>M. D.</firstname><surname>Ashkezari</surname><order>2</order></author><author><firstname>M.</firstname><surname>Baquero-Ruiz</surname><order>3</order></author><author><firstname>W.</firstname><surname>Bertsche</surname><order>4</order></author><author><firstname>C.</firstname><surname>Burrows</surname><order>5</order></author><author><firstname>E.</firstname><surname>Butler</surname><order>6</order></author><author><firstname>A.</firstname><surname>Capra</surname><order>7</order></author><author><firstname>C. L.</firstname><surname>Cesar</surname><order>8</order></author><author><firstname>Michael</firstname><surname>Charlton</surname><order>9</order></author><author><firstname>R.</firstname><surname>Dunlop</surname><order>10</order></author><author><firstname>Stefan</firstname><surname>Eriksson</surname><orcid>0000-0002-5390-1879</orcid><order>11</order></author><author><firstname>N.</firstname><surname>Evetts</surname><order>12</order></author><author><firstname>J.</firstname><surname>Fajans</surname><order>13</order></author><author><firstname>T.</firstname><surname>Friesen</surname><order>14</order></author><author><firstname>M. C.</firstname><surname>Fujiwara</surname><order>15</order></author><author><firstname>D. R.</firstname><surname>Gill</surname><order>16</order></author><author><firstname>J. S.</firstname><surname>Hangst</surname><order>17</order></author><author><firstname>W. N.</firstname><surname>Hardy</surname><order>18</order></author><author><firstname>M. E.</firstname><surname>Hayden</surname><order>19</order></author><author><firstname>Aled</firstname><surname>Isaac</surname><orcid>0000-0002-7813-1903</orcid><order>20</order></author><author><firstname>S.</firstname><surname>Jonsell</surname><order>21</order></author><author><firstname>L.</firstname><surname>Kurchaninov</surname><order>22</order></author><author><firstname>A.</firstname><surname>Little</surname><order>23</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>24</order></author><author><firstname>J. T. K.</firstname><surname>McKenna</surname><order>25</order></author><author><firstname>S.</firstname><surname>Menary</surname><order>26</order></author><author><firstname>S. C.</firstname><surname>Napoli</surname><order>27</order></author><author><firstname>P.</firstname><surname>Nolan</surname><order>28</order></author><author><firstname>K.</firstname><surname>Olchanski</surname><order>29</order></author><author><firstname>A.</firstname><surname>Olin</surname><order>30</order></author><author><firstname>P.</firstname><surname>Pusa</surname><order>31</order></author><author><firstname>C. Ø.</firstname><surname>Rasmussen</surname><order>32</order></author><author><firstname>F.</firstname><surname>Robicheaux</surname><order>33</order></author><author><firstname>R. L.</firstname><surname>Sacramento</surname><order>34</order></author><author><firstname>E.</firstname><surname>Sarid</surname><order>35</order></author><author><firstname>D. M.</firstname><surname>Silveira</surname><order>36</order></author><author><firstname>C.</firstname><surname>So</surname><order>37</order></author><author><firstname>S.</firstname><surname>Stracka</surname><order>38</order></author><author><firstname>J.</firstname><surname>Tarlton</surname><order>39</order></author><author><firstname>T. D.</firstname><surname>Tharp</surname><order>40</order></author><author><firstname>R. I.</firstname><surname>Thompson</surname><order>41</order></author><author><firstname>P.</firstname><surname>Tooley</surname><order>42</order></author><author><firstname>M.</firstname><surname>Turner</surname><order>43</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>44</order></author><author><firstname>J. S.</firstname><surname>Wurtele</surname><order>45</order></author><author><firstname>A. I.</firstname><surname>Zhmoginov</surname><order>46</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2022-11-09T15:46:46.3824848 v2 24055 2015-10-30 Antiproton cloud compression in the ALPHA apparatus at CERN d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false 785cbd474febb1bfa9c0e14abaf9c4a8 0000-0002-5390-1879 Stefan Eriksson Stefan Eriksson true false 06d7ed42719ef7bb697cf780c63e26f0 0000-0002-7813-1903 Aled Isaac Aled Isaac true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false 2015-10-30 BGPS We have observed a new mechanism for compression of a non-neutral plasma, where antiprotons embedded in an electron plasma are compressed by a rotating wall drive at a frequency close to the sum of the axial bounce and rotation frequencies. The radius of the antiproton cloud is reduced by up to a factor of 20 and the smallest radius measured is ∼ 0.2 mm. When the rotating wall drive is applied to either a pure electron or pure antipro- ton plasma, no compression is observed in the frequency range of interest. The frequency range over which compression is evident is compared to the sum of the antiproton bounce frequency and the system’s rotation frequency. It is suggested that bounce resonant transport is a likely explanation for the compression of antiproton clouds in this regime. Journal Article Hyperfine Interactions 235 1-3 21 28 Springer Science and Business Media LLC 0304-3843 1572-9540 Antiprotons; Rotating wall; Compression; Electrons; Penning-Malmberg trap; Non-neutral plasma; Antihydrogen 1 11 2015 2015-11-01 10.1007/s10751-015-1202-4 Proceedings of the 6th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2014), Takamatsu, Japan, 1–5 December 2014 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2022-11-09T15:46:46.3824848 2015-10-30T09:35:04.7755484 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics A. Gutierrez 1 M. D. Ashkezari 2 M. Baquero-Ruiz 3 W. Bertsche 4 C. Burrows 5 E. Butler 6 A. Capra 7 C. L. Cesar 8 Michael Charlton 9 R. Dunlop 10 Stefan Eriksson 0000-0002-5390-1879 11 N. Evetts 12 J. Fajans 13 T. Friesen 14 M. C. Fujiwara 15 D. R. Gill 16 J. S. Hangst 17 W. N. Hardy 18 M. E. Hayden 19 Aled Isaac 0000-0002-7813-1903 20 S. Jonsell 21 L. Kurchaninov 22 A. Little 23 Niels Madsen 0000-0002-7372-0784 24 J. T. K. McKenna 25 S. Menary 26 S. C. Napoli 27 P. Nolan 28 K. Olchanski 29 A. Olin 30 P. Pusa 31 C. Ø. Rasmussen 32 F. Robicheaux 33 R. L. Sacramento 34 E. Sarid 35 D. M. Silveira 36 C. So 37 S. Stracka 38 J. Tarlton 39 T. D. Tharp 40 R. I. Thompson 41 P. Tooley 42 M. Turner 43 Dirk van der Werf 0000-0001-5436-5214 44 J. S. Wurtele 45 A. I. Zhmoginov 46 |
title |
Antiproton cloud compression in the ALPHA apparatus at CERN |
spellingShingle |
Antiproton cloud compression in the ALPHA apparatus at CERN Michael Charlton Stefan Eriksson Aled Isaac Niels Madsen Dirk van der Werf |
title_short |
Antiproton cloud compression in the ALPHA apparatus at CERN |
title_full |
Antiproton cloud compression in the ALPHA apparatus at CERN |
title_fullStr |
Antiproton cloud compression in the ALPHA apparatus at CERN |
title_full_unstemmed |
Antiproton cloud compression in the ALPHA apparatus at CERN |
title_sort |
Antiproton cloud compression in the ALPHA apparatus at CERN |
author_id_str_mv |
d9099cdd0f182eb9a1c8fc36ed94f53f 785cbd474febb1bfa9c0e14abaf9c4a8 06d7ed42719ef7bb697cf780c63e26f0 e348e4d768ee19c1d0c68ce3a66d6303 4a4149ebce588e432f310f4ab44dd82a |
author_id_fullname_str_mv |
d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton 785cbd474febb1bfa9c0e14abaf9c4a8_***_Stefan Eriksson 06d7ed42719ef7bb697cf780c63e26f0_***_Aled Isaac e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen 4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf |
author |
Michael Charlton Stefan Eriksson Aled Isaac Niels Madsen Dirk van der Werf |
author2 |
A. Gutierrez M. D. Ashkezari M. Baquero-Ruiz W. Bertsche C. Burrows E. Butler A. Capra C. L. Cesar Michael Charlton R. Dunlop Stefan Eriksson N. Evetts J. Fajans T. Friesen M. C. Fujiwara D. R. Gill J. S. Hangst W. N. Hardy M. E. Hayden Aled Isaac S. Jonsell L. Kurchaninov A. Little Niels Madsen J. T. K. McKenna S. Menary S. C. Napoli P. Nolan K. Olchanski A. Olin P. Pusa C. Ø. Rasmussen F. Robicheaux R. L. Sacramento E. Sarid D. M. Silveira C. So S. Stracka J. Tarlton T. D. Tharp R. I. Thompson P. Tooley M. Turner Dirk van der Werf J. S. Wurtele A. I. Zhmoginov |
format |
Journal article |
container_title |
Hyperfine Interactions |
container_volume |
235 |
container_issue |
1-3 |
container_start_page |
21 |
publishDate |
2015 |
institution |
Swansea University |
issn |
0304-3843 1572-9540 |
doi_str_mv |
10.1007/s10751-015-1202-4 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
0 |
active_str |
0 |
description |
We have observed a new mechanism for compression of a non-neutral plasma, where antiprotons embedded in an electron plasma are compressed by a rotating wall drive at a frequency close to the sum of the axial bounce and rotation frequencies. The radius of the antiproton cloud is reduced by up to a factor of 20 and the smallest radius measured is ∼ 0.2 mm. When the rotating wall drive is applied to either a pure electron or pure antipro- ton plasma, no compression is observed in the frequency range of interest. The frequency range over which compression is evident is compared to the sum of the antiproton bounce frequency and the system’s rotation frequency. It is suggested that bounce resonant transport is a likely explanation for the compression of antiproton clouds in this regime. |
published_date |
2015-11-01T08:00:21Z |
_version_ |
1830266361724534784 |
score |
11.060726 |