No Cover Image

Journal article 1459 views

Equilibrium Diffusion on the Cone of Discrete Radon Measures

Diana Conache, Yuri G. Kondratiev, Eugene Lytvynov Orcid Logo

Potential Analysis, Volume: 44, Issue: 1, Pages: 71 - 90

Swansea University Author: Eugene Lytvynov Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

Let $K(R^d)$ denote the cone of discrete Radon measures on $R^d$.There is a natural differentiation on $K(R^d)$: for a differentiable function $F:K(R^d)\to R$, one defines its gradient $\nabla^K F $ as a vector field which assigns to each $\eta\in K(R^d)$ an element of a tangent space $T_\eta(K(R^d)...

Full description

Published in: Potential Analysis
ISSN: 0926-2601 1572-929X
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa23989
first_indexed 2015-10-27T01:55:22Z
last_indexed 2019-08-12T14:08:57Z
id cronfa23989
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-08-12T13:02:22.9468799</datestamp><bib-version>v2</bib-version><id>23989</id><entry>2015-10-26</entry><title>Equilibrium Diffusion on the Cone of Discrete Radon Measures</title><swanseaauthors><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-10-26</date><deptcode>MACS</deptcode><abstract>Let $K(R^d)$ denote the cone of discrete Radon measures on $R^d$.There is a natural differentiation on $K(R^d)$: for a differentiable function $F:K(R^d)\to R$, one defines its gradient $\nabla^K F $ as a vector field which assigns to each $\eta\in K(R^d)$ an element of a tangent space $T_\eta(K(R^d))$ to $K(R^d)$ at point $\eta$. Let $\phi:R^d\times R^d\to\R$ be a potential of pair interaction, and let $\mu$ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on $R^d$. In particular, $\mu$ is a probability measure on $K(\R^d)$ such that the set of atoms of a discrete measure $\eta\in K(R^d)$ is $\mu$-a.s. dense in $R^d$. We consider the corresponding Dirichlet form$$\mathcal E^K(F,G)=\int_{K\R^d)}\langle\nabla^K F(\eta), \nabla^K G(\eta)\rangle_{T_\eta(K)}\,d\mu(\eta).$$Integrating by parts with respect to the measure $\mu$, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If $d\ge2$, there exists a conservative diffusion process on $K(R^d)$ which is properly associated with the Dirichlet form $\mathcal E^K$.</abstract><type>Journal Article</type><journal>Potential Analysis</journal><volume>44</volume><journalNumber>1</journalNumber><paginationStart>71</paginationStart><paginationEnd>90</paginationEnd><publisher/><issnPrint>0926-2601</issnPrint><issnElectronic>1572-929X</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-31</publishedDate><doi>10.1007/s11118-015-9499-9</doi><url/><notes></notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-12T13:02:22.9468799</lastEdited><Created>2015-10-26T17:45:38.0789468</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Diana</firstname><surname>Conache</surname><order>1</order></author><author><firstname>Yuri G.</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2019-08-12T13:02:22.9468799 v2 23989 2015-10-26 Equilibrium Diffusion on the Cone of Discrete Radon Measures e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2015-10-26 MACS Let $K(R^d)$ denote the cone of discrete Radon measures on $R^d$.There is a natural differentiation on $K(R^d)$: for a differentiable function $F:K(R^d)\to R$, one defines its gradient $\nabla^K F $ as a vector field which assigns to each $\eta\in K(R^d)$ an element of a tangent space $T_\eta(K(R^d))$ to $K(R^d)$ at point $\eta$. Let $\phi:R^d\times R^d\to\R$ be a potential of pair interaction, and let $\mu$ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on $R^d$. In particular, $\mu$ is a probability measure on $K(\R^d)$ such that the set of atoms of a discrete measure $\eta\in K(R^d)$ is $\mu$-a.s. dense in $R^d$. We consider the corresponding Dirichlet form$$\mathcal E^K(F,G)=\int_{K\R^d)}\langle\nabla^K F(\eta), \nabla^K G(\eta)\rangle_{T_\eta(K)}\,d\mu(\eta).$$Integrating by parts with respect to the measure $\mu$, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If $d\ge2$, there exists a conservative diffusion process on $K(R^d)$ which is properly associated with the Dirichlet form $\mathcal E^K$. Journal Article Potential Analysis 44 1 71 90 0926-2601 1572-929X 31 12 2016 2016-12-31 10.1007/s11118-015-9499-9 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2019-08-12T13:02:22.9468799 2015-10-26T17:45:38.0789468 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Diana Conache 1 Yuri G. Kondratiev 2 Eugene Lytvynov 0000-0001-9685-7727 3
title Equilibrium Diffusion on the Cone of Discrete Radon Measures
spellingShingle Equilibrium Diffusion on the Cone of Discrete Radon Measures
Eugene Lytvynov
title_short Equilibrium Diffusion on the Cone of Discrete Radon Measures
title_full Equilibrium Diffusion on the Cone of Discrete Radon Measures
title_fullStr Equilibrium Diffusion on the Cone of Discrete Radon Measures
title_full_unstemmed Equilibrium Diffusion on the Cone of Discrete Radon Measures
title_sort Equilibrium Diffusion on the Cone of Discrete Radon Measures
author_id_str_mv e5b4fef159d90a480b1961cef89a17b7
author_id_fullname_str_mv e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov
author Eugene Lytvynov
author2 Diana Conache
Yuri G. Kondratiev
Eugene Lytvynov
format Journal article
container_title Potential Analysis
container_volume 44
container_issue 1
container_start_page 71
publishDate 2016
institution Swansea University
issn 0926-2601
1572-929X
doi_str_mv 10.1007/s11118-015-9499-9
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 0
active_str 0
description Let $K(R^d)$ denote the cone of discrete Radon measures on $R^d$.There is a natural differentiation on $K(R^d)$: for a differentiable function $F:K(R^d)\to R$, one defines its gradient $\nabla^K F $ as a vector field which assigns to each $\eta\in K(R^d)$ an element of a tangent space $T_\eta(K(R^d))$ to $K(R^d)$ at point $\eta$. Let $\phi:R^d\times R^d\to\R$ be a potential of pair interaction, and let $\mu$ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on $R^d$. In particular, $\mu$ is a probability measure on $K(\R^d)$ such that the set of atoms of a discrete measure $\eta\in K(R^d)$ is $\mu$-a.s. dense in $R^d$. We consider the corresponding Dirichlet form$$\mathcal E^K(F,G)=\int_{K\R^d)}\langle\nabla^K F(\eta), \nabla^K G(\eta)\rangle_{T_\eta(K)}\,d\mu(\eta).$$Integrating by parts with respect to the measure $\mu$, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If $d\ge2$, there exists a conservative diffusion process on $K(R^d)$ which is properly associated with the Dirichlet form $\mathcal E^K$.
published_date 2016-12-31T18:50:20Z
_version_ 1821523124698480640
score 11.047674