Journal article 1392 views 190 downloads
Physics with antihydrogen
Journal of Physics B: Atomic, Molecular and Optical Physics, Volume: 48, Issue: 23, Start page: 232001
Swansea University Authors: Michael Charlton, Niels Madsen
-
PDF | Version of Record
Download (4.6MB)
DOI (Published version): 10.1088/0953-4075/48/23/232001
Abstract
Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in th...
Published in: | Journal of Physics B: Atomic, Molecular and Optical Physics |
---|---|
ISSN: | 0953-4075 1361-6455 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa23608 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2015-10-07T18:49:17Z |
---|---|
last_indexed |
2018-02-09T05:02:35Z |
id |
cronfa23608 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-08-14T13:05:04.7128899</datestamp><bib-version>v2</bib-version><id>23608</id><entry>2015-10-07</entry><title>Physics with antihydrogen</title><swanseaauthors><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-10-07</date><deptcode>FGSEN</deptcode><abstract>Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in this direction in recent years, and antihydrogen is now routinely created and trapped and a range of exciting measurements probing the foundations of modern physics are planned or underway. In this contribution we review the techniques developed to facilitate the capture and manipulation of positrons and antiprotons, along with procedures to bring them together to create antihydrogen. Once formed, the antihydrogen has been detected by its destruction via annihilation or field ionization, and aspects of the methodologies involved are summarized. Magnetic minimum neutral atom traps have been employed to allow some of the antihydrogen created to be held for considerable periods. We describe such devices, and their implementation, along with the cusp magnetic trap used to produce the first evidence for a low-energy beam of antihydrogen. The experiments performed to date on antihydrogen are discussed, including the first observation of a resonant quantum transition and the analyses that have yielded a limit on the electrical neutrality of the anti-atom and placed crude bounds on its gravitational behaviour. Our review concludes with an outlook, including the new ELENA extension to the antiproton decelerator facility at CERN, together with summaries of how we envisage the major threads of antihydrogen physics will progress in the coming years.</abstract><type>Journal Article</type><journal>Journal of Physics B: Atomic, Molecular and Optical Physics</journal><volume>48</volume><journalNumber>23</journalNumber><paginationStart>232001</paginationStart><publisher/><issnPrint>0953-4075</issnPrint><issnElectronic>1361-6455</issnElectronic><keywords>Antihydrogen, CPT, Fundamental Symmetries</keywords><publishedDay>6</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-10-06</publishedDate><doi>10.1088/0953-4075/48/23/232001</doi><url>http://iopscience.iop.org/article/10.1088/0953-4075/48/23/232001/meta</url><notes></notes><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-08-14T13:05:04.7128899</lastEdited><Created>2015-10-07T06:46:46.5865067</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>W A</firstname><surname>Bertsche</surname><order>1</order></author><author><firstname>E</firstname><surname>Butler</surname><order>2</order></author><author><firstname>M</firstname><surname>Charlton</surname><order>3</order></author><author><firstname>N</firstname><surname>Madsen</surname><order>4</order></author><author><firstname>Michael</firstname><surname>Charlton</surname><order>5</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>6</order></author></authors><documents><document><filename>0023608-16062017115603.pdf</filename><originalFilename>2015.pdf</originalFilename><uploaded>2017-06-16T11:56:03.6570000</uploaded><type>Output</type><contentLength>4919225</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-06-16T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-08-14T13:05:04.7128899 v2 23608 2015-10-07 Physics with antihydrogen d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false 2015-10-07 FGSEN Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in this direction in recent years, and antihydrogen is now routinely created and trapped and a range of exciting measurements probing the foundations of modern physics are planned or underway. In this contribution we review the techniques developed to facilitate the capture and manipulation of positrons and antiprotons, along with procedures to bring them together to create antihydrogen. Once formed, the antihydrogen has been detected by its destruction via annihilation or field ionization, and aspects of the methodologies involved are summarized. Magnetic minimum neutral atom traps have been employed to allow some of the antihydrogen created to be held for considerable periods. We describe such devices, and their implementation, along with the cusp magnetic trap used to produce the first evidence for a low-energy beam of antihydrogen. The experiments performed to date on antihydrogen are discussed, including the first observation of a resonant quantum transition and the analyses that have yielded a limit on the electrical neutrality of the anti-atom and placed crude bounds on its gravitational behaviour. Our review concludes with an outlook, including the new ELENA extension to the antiproton decelerator facility at CERN, together with summaries of how we envisage the major threads of antihydrogen physics will progress in the coming years. Journal Article Journal of Physics B: Atomic, Molecular and Optical Physics 48 23 232001 0953-4075 1361-6455 Antihydrogen, CPT, Fundamental Symmetries 6 10 2015 2015-10-06 10.1088/0953-4075/48/23/232001 http://iopscience.iop.org/article/10.1088/0953-4075/48/23/232001/meta COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2017-08-14T13:05:04.7128899 2015-10-07T06:46:46.5865067 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics W A Bertsche 1 E Butler 2 M Charlton 3 N Madsen 4 Michael Charlton 5 Niels Madsen 0000-0002-7372-0784 6 0023608-16062017115603.pdf 2015.pdf 2017-06-16T11:56:03.6570000 Output 4919225 application/pdf Version of Record true 2017-06-16T00:00:00.0000000 true eng |
title |
Physics with antihydrogen |
spellingShingle |
Physics with antihydrogen Michael Charlton Niels Madsen |
title_short |
Physics with antihydrogen |
title_full |
Physics with antihydrogen |
title_fullStr |
Physics with antihydrogen |
title_full_unstemmed |
Physics with antihydrogen |
title_sort |
Physics with antihydrogen |
author_id_str_mv |
d9099cdd0f182eb9a1c8fc36ed94f53f e348e4d768ee19c1d0c68ce3a66d6303 |
author_id_fullname_str_mv |
d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen |
author |
Michael Charlton Niels Madsen |
author2 |
W A Bertsche E Butler M Charlton N Madsen Michael Charlton Niels Madsen |
format |
Journal article |
container_title |
Journal of Physics B: Atomic, Molecular and Optical Physics |
container_volume |
48 |
container_issue |
23 |
container_start_page |
232001 |
publishDate |
2015 |
institution |
Swansea University |
issn |
0953-4075 1361-6455 |
doi_str_mv |
10.1088/0953-4075/48/23/232001 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
url |
http://iopscience.iop.org/article/10.1088/0953-4075/48/23/232001/meta |
document_store_str |
1 |
active_str |
0 |
description |
Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in this direction in recent years, and antihydrogen is now routinely created and trapped and a range of exciting measurements probing the foundations of modern physics are planned or underway. In this contribution we review the techniques developed to facilitate the capture and manipulation of positrons and antiprotons, along with procedures to bring them together to create antihydrogen. Once formed, the antihydrogen has been detected by its destruction via annihilation or field ionization, and aspects of the methodologies involved are summarized. Magnetic minimum neutral atom traps have been employed to allow some of the antihydrogen created to be held for considerable periods. We describe such devices, and their implementation, along with the cusp magnetic trap used to produce the first evidence for a low-energy beam of antihydrogen. The experiments performed to date on antihydrogen are discussed, including the first observation of a resonant quantum transition and the analyses that have yielded a limit on the electrical neutrality of the anti-atom and placed crude bounds on its gravitational behaviour. Our review concludes with an outlook, including the new ELENA extension to the antiproton decelerator facility at CERN, together with summaries of how we envisage the major threads of antihydrogen physics will progress in the coming years. |
published_date |
2015-10-06T03:27:52Z |
_version_ |
1763751045799870464 |
score |
11.037056 |