No Cover Image

Journal article 1591 views 207 downloads

3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections

Daniel Nagy, Muhammad A. Elmessary, Manuel Aldegunde, Raul Valin, Antonio Martinez, Jari Lindberg, Wulf Dettmer Orcid Logo, Djordje Peric Orcid Logo, Antonio J. Garcia-Loureiro, Karol Kalna Orcid Logo, Antonio Martinez Muniz Orcid Logo

IEEE Transactions on Nanotechnology, Volume: 14, Issue: 1, Pages: 93 - 100

Swansea University Authors: Wulf Dettmer Orcid Logo, Djordje Peric Orcid Logo, Karol Kalna Orcid Logo, Antonio Martinez Muniz Orcid Logo

Abstract

Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orie...

Full description

Published in: IEEE Transactions on Nanotechnology
ISSN: 1941-0085
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa21854
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2015-05-31T02:08:59Z
last_indexed 2020-08-19T02:37:20Z
id cronfa21854
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-08-18T16:04:23.4308500</datestamp><bib-version>v2</bib-version><id>21854</id><entry>2015-05-30</entry><title>3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections</title><swanseaauthors><author><sid>30bb53ad906e7160e947fa01c16abf55</sid><ORCID>0000-0003-0799-4645</ORCID><firstname>Wulf</firstname><surname>Dettmer</surname><name>Wulf Dettmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9d35cb799b2542ad39140943a9a9da65</sid><ORCID>0000-0002-1112-301X</ORCID><firstname>Djordje</firstname><surname>Peric</surname><name>Djordje Peric</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cd433784251add853672979313f838ec</sid><ORCID>0000-0001-8131-7242</ORCID><firstname>Antonio</firstname><surname>Martinez Muniz</surname><name>Antonio Martinez Muniz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-30</date><deptcode>AERO</deptcode><abstract>Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orientations: h100i and h110i. The 10.7 nm gate length rectangular-like FinFET is also simulated using the 3D Non-Equilibrium Green&#x2019;s Functions (NEGF) technique and the results are compared with MC simulations. The 12.8 nm and 10.7 nm gate length rectangular-like FinFETs give larger drive currents per perimeter by about 25&#x2212;27% than the triangular-like shaped but are outperformed by the triangular-like ones when normalised by channel area. The devices with a &amp;#60;100&amp;#62; channel orientation deliver a larger drive current by about 11% than their counterparts with a h110i channel when scaled to 12.8 nm and to 10.7 nm gate lengths. ID&#x2013;VG characteristics at low and high drain biases obtained from the 3D NEGF simulations show a remarkable agreement with the MC results and overestimate the drain current from a gate bias of 0.5 V only due to exclusion of the interface roughness and ionized impurity scatterings.</abstract><type>Journal Article</type><journal>IEEE Transactions on Nanotechnology</journal><volume>14</volume><journalNumber>1</journalNumber><paginationStart>93</paginationStart><paginationEnd>100</paginationEnd><publisher/><issnElectronic>1941-0085</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi>10.1109/TNANO.2014.2367095</doi><url/><notes>This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/</notes><college>COLLEGE NANME</college><department>Aerospace Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>AERO</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>RCUK</degreesponsorsfunders><apcterm/><lastEdited>2020-08-18T16:04:23.4308500</lastEdited><Created>2015-05-30T21:19:48.2579594</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Daniel</firstname><surname>Nagy</surname><order>1</order></author><author><firstname>Muhammad A.</firstname><surname>Elmessary</surname><order>2</order></author><author><firstname>Manuel</firstname><surname>Aldegunde</surname><order>3</order></author><author><firstname>Raul</firstname><surname>Valin</surname><order>4</order></author><author><firstname>Antonio</firstname><surname>Martinez</surname><order>5</order></author><author><firstname>Jari</firstname><surname>Lindberg</surname><order>6</order></author><author><firstname>Wulf</firstname><surname>Dettmer</surname><orcid>0000-0003-0799-4645</orcid><order>7</order></author><author><firstname>Djordje</firstname><surname>Peric</surname><orcid>0000-0002-1112-301X</orcid><order>8</order></author><author><firstname>Antonio J.</firstname><surname>Garcia-Loureiro</surname><order>9</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>10</order></author><author><firstname>Antonio</firstname><surname>Martinez Muniz</surname><orcid>0000-0001-8131-7242</orcid><order>11</order></author></authors><documents><document><filename>0021854-19042016124622.pdf</filename><originalFilename>nagy_elmessary_aldegunde_valin_martinez_lindberg_dettmer_peric_loureiro_kalnaTN14.pdf</originalFilename><uploaded>2016-04-19T12:46:22.8270000</uploaded><type>Output</type><contentLength>835426</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-05-10T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2020-08-18T16:04:23.4308500 v2 21854 2015-05-30 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections 30bb53ad906e7160e947fa01c16abf55 0000-0003-0799-4645 Wulf Dettmer Wulf Dettmer true false 9d35cb799b2542ad39140943a9a9da65 0000-0002-1112-301X Djordje Peric Djordje Peric true false 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false cd433784251add853672979313f838ec 0000-0001-8131-7242 Antonio Martinez Muniz Antonio Martinez Muniz true false 2015-05-30 AERO Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orientations: h100i and h110i. The 10.7 nm gate length rectangular-like FinFET is also simulated using the 3D Non-Equilibrium Green’s Functions (NEGF) technique and the results are compared with MC simulations. The 12.8 nm and 10.7 nm gate length rectangular-like FinFETs give larger drive currents per perimeter by about 25−27% than the triangular-like shaped but are outperformed by the triangular-like ones when normalised by channel area. The devices with a &#60;100&#62; channel orientation deliver a larger drive current by about 11% than their counterparts with a h110i channel when scaled to 12.8 nm and to 10.7 nm gate lengths. ID–VG characteristics at low and high drain biases obtained from the 3D NEGF simulations show a remarkable agreement with the MC results and overestimate the drain current from a gate bias of 0.5 V only due to exclusion of the interface roughness and ionized impurity scatterings. Journal Article IEEE Transactions on Nanotechnology 14 1 93 100 1941-0085 31 12 2015 2015-12-31 10.1109/TNANO.2014.2367095 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ COLLEGE NANME Aerospace Engineering COLLEGE CODE AERO Swansea University RCUK 2020-08-18T16:04:23.4308500 2015-05-30T21:19:48.2579594 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Daniel Nagy 1 Muhammad A. Elmessary 2 Manuel Aldegunde 3 Raul Valin 4 Antonio Martinez 5 Jari Lindberg 6 Wulf Dettmer 0000-0003-0799-4645 7 Djordje Peric 0000-0002-1112-301X 8 Antonio J. Garcia-Loureiro 9 Karol Kalna 0000-0002-6333-9189 10 Antonio Martinez Muniz 0000-0001-8131-7242 11 0021854-19042016124622.pdf nagy_elmessary_aldegunde_valin_martinez_lindberg_dettmer_peric_loureiro_kalnaTN14.pdf 2016-04-19T12:46:22.8270000 Output 835426 application/pdf Version of Record true 2016-05-10T00:00:00.0000000 true
title 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
spellingShingle 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
Wulf Dettmer
Djordje Peric
Karol Kalna
Antonio Martinez Muniz
title_short 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
title_full 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
title_fullStr 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
title_full_unstemmed 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
title_sort 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
author_id_str_mv 30bb53ad906e7160e947fa01c16abf55
9d35cb799b2542ad39140943a9a9da65
1329a42020e44fdd13de2f20d5143253
cd433784251add853672979313f838ec
author_id_fullname_str_mv 30bb53ad906e7160e947fa01c16abf55_***_Wulf Dettmer
9d35cb799b2542ad39140943a9a9da65_***_Djordje Peric
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
cd433784251add853672979313f838ec_***_Antonio Martinez Muniz
author Wulf Dettmer
Djordje Peric
Karol Kalna
Antonio Martinez Muniz
author2 Daniel Nagy
Muhammad A. Elmessary
Manuel Aldegunde
Raul Valin
Antonio Martinez
Jari Lindberg
Wulf Dettmer
Djordje Peric
Antonio J. Garcia-Loureiro
Karol Kalna
Antonio Martinez Muniz
format Journal article
container_title IEEE Transactions on Nanotechnology
container_volume 14
container_issue 1
container_start_page 93
publishDate 2015
institution Swansea University
issn 1941-0085
doi_str_mv 10.1109/TNANO.2014.2367095
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 1
active_str 0
description Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orientations: h100i and h110i. The 10.7 nm gate length rectangular-like FinFET is also simulated using the 3D Non-Equilibrium Green’s Functions (NEGF) technique and the results are compared with MC simulations. The 12.8 nm and 10.7 nm gate length rectangular-like FinFETs give larger drive currents per perimeter by about 25−27% than the triangular-like shaped but are outperformed by the triangular-like ones when normalised by channel area. The devices with a &#60;100&#62; channel orientation deliver a larger drive current by about 11% than their counterparts with a h110i channel when scaled to 12.8 nm and to 10.7 nm gate lengths. ID–VG characteristics at low and high drain biases obtained from the 3D NEGF simulations show a remarkable agreement with the MC results and overestimate the drain current from a gate bias of 0.5 V only due to exclusion of the interface roughness and ionized impurity scatterings.
published_date 2015-12-31T03:25:58Z
_version_ 1763750925694926848
score 11.013126