Conference Paper/Proceeding/Abstract 1393 views
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
Computer Graphics and Visual Computing
Swansea University Author: Benjamin Mora
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.2312/cgvc.20141201
Abstract
Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.
Published in: | Computer Graphics and Visual Computing |
---|---|
ISBN: | 9783905674705 |
Published: |
The Eurographics Association
2014
|
Online Access: |
https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa21545 |
first_indexed |
2016-06-09T12:08:03Z |
---|---|
last_indexed |
2023-01-31T03:27:50Z |
id |
cronfa21545 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-01-30T14:55:46.0724266</datestamp><bib-version>v2</bib-version><id>21545</id><entry>2015-05-19</entry><title>Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization</title><swanseaauthors><author><sid>557f93dfae240600e5bd4398bf203821</sid><ORCID>0000-0002-2945-3519</ORCID><firstname>Benjamin</firstname><surname>Mora</surname><name>Benjamin Mora</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-19</date><deptcode>MACS</deptcode><abstract>Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Computer Graphics and Visual Computing</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>The Eurographics Association</publisher><placeOfPublication/><isbnPrint>9783905674705</isbnPrint><isbnElectronic/><issnPrint/><issnElectronic/><keywords>Expectation maximization, filtered backprojection</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-09-01</publishedDate><doi>10.2312/cgvc.20141201</doi><url>https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-01-30T14:55:46.0724266</lastEdited><Created>2015-05-19T14:07:41.2268323</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Andrew</firstname><surname>Ryan</surname><order>1</order></author><author><firstname>Benjamin</firstname><surname>Mora</surname><orcid>0000-0002-2945-3519</orcid><order>2</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2023-01-30T14:55:46.0724266 v2 21545 2015-05-19 Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization 557f93dfae240600e5bd4398bf203821 0000-0002-2945-3519 Benjamin Mora Benjamin Mora true false 2015-05-19 MACS Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem. Conference Paper/Proceeding/Abstract Computer Graphics and Visual Computing The Eurographics Association 9783905674705 Expectation maximization, filtered backprojection 1 9 2014 2014-09-01 10.2312/cgvc.20141201 https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2023-01-30T14:55:46.0724266 2015-05-19T14:07:41.2268323 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Andrew Ryan 1 Benjamin Mora 0000-0002-2945-3519 2 |
title |
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization |
spellingShingle |
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization Benjamin Mora |
title_short |
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization |
title_full |
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization |
title_fullStr |
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization |
title_full_unstemmed |
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization |
title_sort |
Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization |
author_id_str_mv |
557f93dfae240600e5bd4398bf203821 |
author_id_fullname_str_mv |
557f93dfae240600e5bd4398bf203821_***_Benjamin Mora |
author |
Benjamin Mora |
author2 |
Andrew Ryan Benjamin Mora |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Computer Graphics and Visual Computing |
publishDate |
2014 |
institution |
Swansea University |
isbn |
9783905674705 |
doi_str_mv |
10.2312/cgvc.20141201 |
publisher |
The Eurographics Association |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016 |
document_store_str |
0 |
active_str |
0 |
description |
Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem. |
published_date |
2014-09-01T00:52:49Z |
_version_ |
1821455333039538176 |
score |
11.064692 |