Journal article 1465 views
Facile self-assembly and stabilization of metal oxide nanoparticles
Journal of Colloid and Interface Science, Volume: 442, Pages: 110 - 119
Swansea University Authors:
Cecile Charbonneau, Peter Holliman , Matthew Davies
, Trystan Watson
, David Worsley
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.jcis.2014.11.042
Abstract
This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming co...
Published in: | Journal of Colloid and Interface Science |
---|---|
ISSN: | 0021-9797 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa21103 |
first_indexed |
2015-05-07T02:10:08Z |
---|---|
last_indexed |
2020-12-19T03:34:47Z |
id |
cronfa21103 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-12-18T09:34:41.7806592</datestamp><bib-version>v2</bib-version><id>21103</id><entry>2015-05-06</entry><title>Facile self-assembly and stabilization of metal oxide nanoparticles</title><swanseaauthors><author><sid>4dc059714847cb22ed922ab058950560</sid><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c8f52394d776279c9c690dc26066ddf9</sid><ORCID>0000-0002-9911-8513</ORCID><firstname>Peter</firstname><surname>Holliman</surname><name>Peter Holliman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-06</date><abstract>This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3–5 nm anatase nanocrystals and Degussa P25 titania particles (mean 21 nm particle size). Our data show that the application of a high temperature heat treatment (450 °C for 30 min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300 °C for 30 min or by flash near infrared radiation sintering for 12 s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area.</abstract><type>Journal Article</type><journal>Journal of Colloid and Interface Science</journal><volume>442</volume><journalNumber/><paginationStart>110</paginationStart><paginationEnd>119</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0021-9797</issnPrint><issnElectronic/><keywords>Self-assembly, Nanoparticles, Titanium dioxide, Oxalate, Near infrared</keywords><publishedDay>15</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-03-15</publishedDate><doi>10.1016/j.jcis.2014.11.042</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-18T09:34:41.7806592</lastEdited><Created>2015-05-06T13:05:22.6373820</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Cecile</firstname><surname>Charbonneau</surname><order>1</order></author><author><firstname>Peter</firstname><surname>Holliman</surname><orcid>0000-0002-9911-8513</orcid><order>2</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>3</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>4</order></author><author><firstname>David</firstname><surname>Worsley</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2020-12-18T09:34:41.7806592 v2 21103 2015-05-06 Facile self-assembly and stabilization of metal oxide nanoparticles 4dc059714847cb22ed922ab058950560 Cecile Charbonneau Cecile Charbonneau true false c8f52394d776279c9c690dc26066ddf9 0000-0002-9911-8513 Peter Holliman Peter Holliman true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false c426b1c1b0123d7057c1b969083cea69 David Worsley David Worsley true false 2015-05-06 This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3–5 nm anatase nanocrystals and Degussa P25 titania particles (mean 21 nm particle size). Our data show that the application of a high temperature heat treatment (450 °C for 30 min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300 °C for 30 min or by flash near infrared radiation sintering for 12 s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area. Journal Article Journal of Colloid and Interface Science 442 110 119 0021-9797 Self-assembly, Nanoparticles, Titanium dioxide, Oxalate, Near infrared 15 3 2015 2015-03-15 10.1016/j.jcis.2014.11.042 COLLEGE NANME COLLEGE CODE Swansea University 2020-12-18T09:34:41.7806592 2015-05-06T13:05:22.6373820 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Cecile Charbonneau 1 Peter Holliman 0000-0002-9911-8513 2 Matthew Davies 0000-0003-2595-5121 3 Trystan Watson 0000-0002-8015-1436 4 David Worsley 5 |
title |
Facile self-assembly and stabilization of metal oxide nanoparticles |
spellingShingle |
Facile self-assembly and stabilization of metal oxide nanoparticles Cecile Charbonneau Peter Holliman Matthew Davies Trystan Watson David Worsley |
title_short |
Facile self-assembly and stabilization of metal oxide nanoparticles |
title_full |
Facile self-assembly and stabilization of metal oxide nanoparticles |
title_fullStr |
Facile self-assembly and stabilization of metal oxide nanoparticles |
title_full_unstemmed |
Facile self-assembly and stabilization of metal oxide nanoparticles |
title_sort |
Facile self-assembly and stabilization of metal oxide nanoparticles |
author_id_str_mv |
4dc059714847cb22ed922ab058950560 c8f52394d776279c9c690dc26066ddf9 4ad478e342120ca3434657eb13527636 a210327b52472cfe8df9b8108d661457 c426b1c1b0123d7057c1b969083cea69 |
author_id_fullname_str_mv |
4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau c8f52394d776279c9c690dc26066ddf9_***_Peter Holliman 4ad478e342120ca3434657eb13527636_***_Matthew Davies a210327b52472cfe8df9b8108d661457_***_Trystan Watson c426b1c1b0123d7057c1b969083cea69_***_David Worsley |
author |
Cecile Charbonneau Peter Holliman Matthew Davies Trystan Watson David Worsley |
author2 |
Cecile Charbonneau Peter Holliman Matthew Davies Trystan Watson David Worsley |
format |
Journal article |
container_title |
Journal of Colloid and Interface Science |
container_volume |
442 |
container_start_page |
110 |
publishDate |
2015 |
institution |
Swansea University |
issn |
0021-9797 |
doi_str_mv |
10.1016/j.jcis.2014.11.042 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
0 |
active_str |
0 |
description |
This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3–5 nm anatase nanocrystals and Degussa P25 titania particles (mean 21 nm particle size). Our data show that the application of a high temperature heat treatment (450 °C for 30 min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300 °C for 30 min or by flash near infrared radiation sintering for 12 s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area. |
published_date |
2015-03-15T06:36:44Z |
_version_ |
1829536325253988352 |
score |
11.058395 |