No Cover Image

Journal article 1320 views 203 downloads

Bimodal crystallization at polymer–fullerene interfaces

Dyfrig Môn, Anthony Higgins Orcid Logo, David James, Mark Hampton, J. Emyr Macdonald, Michael B. Ward, Philipp Gutfreund, Samuele Lilliu, Jonathan Rawle

Phys. Chem. Chem. Phys., Volume: 17, Issue: 3, Pages: 2216 - 2227

Swansea University Author: Anthony Higgins Orcid Logo

Check full text

DOI (Published version): 10.1039/c4cp04253k

Abstract

The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM–polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and g...

Full description

Published in: Phys. Chem. Chem. Phys.
ISSN: 1463-9076 1463-9084
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa20765
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2015-04-18T02:07:37Z
last_indexed 2021-01-21T03:35:25Z
id cronfa20765
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-20T14:07:47.8743209</datestamp><bib-version>v2</bib-version><id>20765</id><entry>2015-04-17</entry><title>Bimodal crystallization at polymer&#x2013;fullerene interfaces</title><swanseaauthors><author><sid>4db715667aa7bdc04e87b3ab696d206a</sid><ORCID>0000-0003-2804-8164</ORCID><firstname>Anthony</firstname><surname>Higgins</surname><name>Anthony Higgins</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-04-17</date><deptcode>MEDE</deptcode><abstract>The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM&#x2013;polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals impedes the growth of micron-sized, needle-like PCBM crystals. A combination of neutron reflectivity and GIXD measurements, also allows us to observe the establishment of a liquid&#x2013;liquid equilibrium composition-profile between the PCBM layer and a polymer-rich layer, before crystallization occurs. While the interfacial composition-profile is independent of polymer-film-thickness, the growth-rate of nanoscale PCBM crystals is significantly larger for thinner polymer films. A similar thickness-dependent behavior is observed for different molecular weights of entangled polymer. We suggest that the behavior may be related to enhanced local-polymer-chain-mobility in nanocomposite thin-films.</abstract><type>Journal Article</type><journal>Phys. Chem. Chem. Phys.</journal><volume>17</volume><journalNumber>3</journalNumber><paginationStart>2216</paginationStart><paginationEnd>2227</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1463-9076</issnPrint><issnElectronic>1463-9084</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi>10.1039/c4cp04253k</doi><url/><notes/><college>COLLEGE NANME</college><department>Biomedical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDE</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-20T14:07:47.8743209</lastEdited><Created>2015-04-17T11:44:08.6593342</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Biomedical Engineering</level></path><authors><author><firstname>Dyfrig</firstname><surname>M&#xF4;n</surname><order>1</order></author><author><firstname>Anthony</firstname><surname>Higgins</surname><orcid>0000-0003-2804-8164</orcid><order>2</order></author><author><firstname>David</firstname><surname>James</surname><order>3</order></author><author><firstname>Mark</firstname><surname>Hampton</surname><order>4</order></author><author><firstname>J. Emyr</firstname><surname>Macdonald</surname><order>5</order></author><author><firstname>Michael B.</firstname><surname>Ward</surname><order>6</order></author><author><firstname>Philipp</firstname><surname>Gutfreund</surname><order>7</order></author><author><firstname>Samuele</firstname><surname>Lilliu</surname><order>8</order></author><author><firstname>Jonathan</firstname><surname>Rawle</surname><order>9</order></author></authors><documents><document><filename>0020765-18072016151056.pdf</filename><originalFilename>Mon2014.pdf</originalFilename><uploaded>2016-07-18T15:10:56.6400000</uploaded><type>Output</type><contentLength>4633946</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-07-18T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-20T14:07:47.8743209 v2 20765 2015-04-17 Bimodal crystallization at polymer–fullerene interfaces 4db715667aa7bdc04e87b3ab696d206a 0000-0003-2804-8164 Anthony Higgins Anthony Higgins true false 2015-04-17 MEDE The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM–polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals impedes the growth of micron-sized, needle-like PCBM crystals. A combination of neutron reflectivity and GIXD measurements, also allows us to observe the establishment of a liquid–liquid equilibrium composition-profile between the PCBM layer and a polymer-rich layer, before crystallization occurs. While the interfacial composition-profile is independent of polymer-film-thickness, the growth-rate of nanoscale PCBM crystals is significantly larger for thinner polymer films. A similar thickness-dependent behavior is observed for different molecular weights of entangled polymer. We suggest that the behavior may be related to enhanced local-polymer-chain-mobility in nanocomposite thin-films. Journal Article Phys. Chem. Chem. Phys. 17 3 2216 2227 1463-9076 1463-9084 31 12 2015 2015-12-31 10.1039/c4cp04253k COLLEGE NANME Biomedical Engineering COLLEGE CODE MEDE Swansea University 2021-01-20T14:07:47.8743209 2015-04-17T11:44:08.6593342 Faculty of Science and Engineering School of Engineering and Applied Sciences - Biomedical Engineering Dyfrig Môn 1 Anthony Higgins 0000-0003-2804-8164 2 David James 3 Mark Hampton 4 J. Emyr Macdonald 5 Michael B. Ward 6 Philipp Gutfreund 7 Samuele Lilliu 8 Jonathan Rawle 9 0020765-18072016151056.pdf Mon2014.pdf 2016-07-18T15:10:56.6400000 Output 4633946 application/pdf Version of Record true 2016-07-18T00:00:00.0000000 false
title Bimodal crystallization at polymer–fullerene interfaces
spellingShingle Bimodal crystallization at polymer–fullerene interfaces
Anthony Higgins
title_short Bimodal crystallization at polymer–fullerene interfaces
title_full Bimodal crystallization at polymer–fullerene interfaces
title_fullStr Bimodal crystallization at polymer–fullerene interfaces
title_full_unstemmed Bimodal crystallization at polymer–fullerene interfaces
title_sort Bimodal crystallization at polymer–fullerene interfaces
author_id_str_mv 4db715667aa7bdc04e87b3ab696d206a
author_id_fullname_str_mv 4db715667aa7bdc04e87b3ab696d206a_***_Anthony Higgins
author Anthony Higgins
author2 Dyfrig Môn
Anthony Higgins
David James
Mark Hampton
J. Emyr Macdonald
Michael B. Ward
Philipp Gutfreund
Samuele Lilliu
Jonathan Rawle
format Journal article
container_title Phys. Chem. Chem. Phys.
container_volume 17
container_issue 3
container_start_page 2216
publishDate 2015
institution Swansea University
issn 1463-9076
1463-9084
doi_str_mv 10.1039/c4cp04253k
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Biomedical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Biomedical Engineering
document_store_str 1
active_str 0
description The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM–polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals impedes the growth of micron-sized, needle-like PCBM crystals. A combination of neutron reflectivity and GIXD measurements, also allows us to observe the establishment of a liquid–liquid equilibrium composition-profile between the PCBM layer and a polymer-rich layer, before crystallization occurs. While the interfacial composition-profile is independent of polymer-film-thickness, the growth-rate of nanoscale PCBM crystals is significantly larger for thinner polymer films. A similar thickness-dependent behavior is observed for different molecular weights of entangled polymer. We suggest that the behavior may be related to enhanced local-polymer-chain-mobility in nanocomposite thin-films.
published_date 2015-12-31T03:24:34Z
_version_ 1763750838110519296
score 11.013148