Journal article 1317 views 187 downloads
Segmentation of biomedical images using active contour model with robust image feature and shape prior
International Journal for Numerical Methods in Biomedical Engineering, Volume: 30, Issue: 2, Pages: 232 - 248
Swansea University Authors: Xianghua Xie , Igor Sazonov , Perumal Nithiarasu
-
PDF | Version of Record
Download (5.25MB)
DOI (Published version): 10.1002/cnm.2600
Abstract
In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing...
Published in: | International Journal for Numerical Methods in Biomedical Engineering |
---|---|
ISSN: | 2040-7939 |
Published: |
2014
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa20249 |
first_indexed |
2015-03-03T02:59:53Z |
---|---|
last_indexed |
2020-09-22T02:34:02Z |
id |
cronfa20249 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-09-21T11:36:24.3334917</datestamp><bib-version>v2</bib-version><id>20249</id><entry>2015-03-02</entry><title>Segmentation of biomedical images using active contour model with robust image feature and shape prior</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>05a507952e26462561085fb6f62c8897</sid><ORCID>0000-0001-6685-2351</ORCID><firstname>Igor</firstname><surname>Sazonov</surname><name>Igor Sazonov</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3b28bf59358fc2b9bd9a46897dbfc92d</sid><ORCID>0000-0002-4901-2980</ORCID><firstname>Perumal</firstname><surname>Nithiarasu</surname><name>Perumal Nithiarasu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-03-02</date><deptcode>MACS</deptcode><abstract>In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing with image noise, weak edges, and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the shape model to handle relatively large shape variations. The segmentation of various shapes from both synthetic and real images depict the robustness and efficiency of the proposed method.</abstract><type>Journal Article</type><journal>International Journal for Numerical Methods in Biomedical Engineering</journal><volume>30</volume><journalNumber>2</journalNumber><paginationStart>232</paginationStart><paginationEnd>248</paginationEnd><publisher/><issnPrint>2040-7939</issnPrint><keywords/><publishedDay>3</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-02-03</publishedDate><doi>10.1002/cnm.2600</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-09-21T11:36:24.3334917</lastEdited><Created>2015-03-02T16:16:05.0489051</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Si Yong</firstname><surname>Yeo</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Igor</firstname><surname>Sazonov</surname><orcid>0000-0001-6685-2351</orcid><order>3</order></author><author><firstname>Perumal</firstname><surname>Nithiarasu</surname><orcid>0000-0002-4901-2980</orcid><order>4</order></author></authors><documents><document><filename>0020249-21062015153903.pdf</filename><originalFilename>yeo14.pdf</originalFilename><uploaded>2015-06-21T16:21:35.3930000</uploaded><type>Output</type><contentLength>5475638</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2015-06-21T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-09-21T11:36:24.3334917 v2 20249 2015-03-02 Segmentation of biomedical images using active contour model with robust image feature and shape prior b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 05a507952e26462561085fb6f62c8897 0000-0001-6685-2351 Igor Sazonov Igor Sazonov true false 3b28bf59358fc2b9bd9a46897dbfc92d 0000-0002-4901-2980 Perumal Nithiarasu Perumal Nithiarasu true false 2015-03-02 MACS In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing with image noise, weak edges, and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the shape model to handle relatively large shape variations. The segmentation of various shapes from both synthetic and real images depict the robustness and efficiency of the proposed method. Journal Article International Journal for Numerical Methods in Biomedical Engineering 30 2 232 248 2040-7939 3 2 2014 2014-02-03 10.1002/cnm.2600 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-09-21T11:36:24.3334917 2015-03-02T16:16:05.0489051 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Si Yong Yeo 1 Xianghua Xie 0000-0002-2701-8660 2 Igor Sazonov 0000-0001-6685-2351 3 Perumal Nithiarasu 0000-0002-4901-2980 4 0020249-21062015153903.pdf yeo14.pdf 2015-06-21T16:21:35.3930000 Output 5475638 application/pdf Version of Record true 2015-06-21T00:00:00.0000000 true |
title |
Segmentation of biomedical images using active contour model with robust image feature and shape prior |
spellingShingle |
Segmentation of biomedical images using active contour model with robust image feature and shape prior Xianghua Xie Igor Sazonov Perumal Nithiarasu |
title_short |
Segmentation of biomedical images using active contour model with robust image feature and shape prior |
title_full |
Segmentation of biomedical images using active contour model with robust image feature and shape prior |
title_fullStr |
Segmentation of biomedical images using active contour model with robust image feature and shape prior |
title_full_unstemmed |
Segmentation of biomedical images using active contour model with robust image feature and shape prior |
title_sort |
Segmentation of biomedical images using active contour model with robust image feature and shape prior |
author_id_str_mv |
b334d40963c7a2f435f06d2c26c74e11 05a507952e26462561085fb6f62c8897 3b28bf59358fc2b9bd9a46897dbfc92d |
author_id_fullname_str_mv |
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie 05a507952e26462561085fb6f62c8897_***_Igor Sazonov 3b28bf59358fc2b9bd9a46897dbfc92d_***_Perumal Nithiarasu |
author |
Xianghua Xie Igor Sazonov Perumal Nithiarasu |
author2 |
Si Yong Yeo Xianghua Xie Igor Sazonov Perumal Nithiarasu |
format |
Journal article |
container_title |
International Journal for Numerical Methods in Biomedical Engineering |
container_volume |
30 |
container_issue |
2 |
container_start_page |
232 |
publishDate |
2014 |
institution |
Swansea University |
issn |
2040-7939 |
doi_str_mv |
10.1002/cnm.2600 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing with image noise, weak edges, and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the shape model to handle relatively large shape variations. The segmentation of various shapes from both synthetic and real images depict the robustness and efficiency of the proposed method. |
published_date |
2014-02-03T18:38:49Z |
_version_ |
1821341205823225856 |
score |
11.04748 |