Journal article 1455 views 258 downloads
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method
Materials Science & Engineering A, Volume: 626, Pages: 330 - 337
Swansea University Authors: Robert Lancaster , Spencer Jeffs
-
PDF | Accepted Manuscript
Download (1007.67KB)
DOI (Published version): 10.1016/j.msea.2014.12.085
Abstract
Small punch testing is now a widely recognised approach for obtaining useful mechanical property information of critical structural components, particularly in the nuclear industry. However, to date the utilisation of this method has been limited to isotropic materials such as aluminium alloys and s...
Published in: | Materials Science & Engineering A |
---|---|
ISSN: | 0921-5093 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa20139 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2015-02-10T02:58:08Z |
---|---|
last_indexed |
2020-09-22T02:33:55Z |
id |
cronfa20139 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-09-21T15:44:40.7382510</datestamp><bib-version>v2</bib-version><id>20139</id><entry>2015-02-09</entry><title>Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method</title><swanseaauthors><author><sid>e1a1b126acd3e4ff734691ec34967f29</sid><ORCID>0000-0002-1365-6944</ORCID><firstname>Robert</firstname><surname>Lancaster</surname><name>Robert Lancaster</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6ff76d567df079d8bf299990849c3d8f</sid><ORCID>0000-0002-2819-9651</ORCID><firstname>Spencer</firstname><surname>Jeffs</surname><name>Spencer Jeffs</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-02-09</date><deptcode>MTLS</deptcode><abstract>Small punch testing is now a widely recognised approach for obtaining useful mechanical property information of critical structural components, particularly in the nuclear industry. However, to date the utilisation of this method has been limited to isotropic materials such as aluminium alloys and steels. This paper will look to utilise the small punch (SP) test to assess the creep response of 〈001〉-orientated CMSX-41 at temperatures above 950 °C. An orthogonal rafting regime of the γ′ structure is observed in the post-test microstructure due to the biaxial tension state typically produced in a SP test. Interpretation of the SP results to correlate with uniaxial creep data is carried out by employing the ksp approach in order to provide a platform for future material assessment.</abstract><type>Journal Article</type><journal>Materials Science & Engineering A</journal><volume>626</volume><paginationStart>330</paginationStart><paginationEnd>337</paginationEnd><publisher/><issnPrint>0921-5093</issnPrint><keywords/><publishedDay>25</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-02-25</publishedDate><doi>10.1016/j.msea.2014.12.085</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-09-21T15:44:40.7382510</lastEdited><Created>2015-02-09T10:02:01.5610633</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Robert</firstname><surname>Lancaster</surname><orcid>0000-0002-1365-6944</orcid><order>1</order></author><author><firstname>Spencer</firstname><surname>Jeffs</surname><orcid>0000-0002-2819-9651</orcid><order>2</order></author></authors><documents><document><filename>0020139-21122017110403.pdf</filename><originalFilename>20139.pdf</originalFilename><uploaded>2017-12-21T11:04:03.5570000</uploaded><type>Output</type><contentLength>1048536</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2015-09-21T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-09-21T15:44:40.7382510 v2 20139 2015-02-09 Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method e1a1b126acd3e4ff734691ec34967f29 0000-0002-1365-6944 Robert Lancaster Robert Lancaster true false 6ff76d567df079d8bf299990849c3d8f 0000-0002-2819-9651 Spencer Jeffs Spencer Jeffs true false 2015-02-09 MTLS Small punch testing is now a widely recognised approach for obtaining useful mechanical property information of critical structural components, particularly in the nuclear industry. However, to date the utilisation of this method has been limited to isotropic materials such as aluminium alloys and steels. This paper will look to utilise the small punch (SP) test to assess the creep response of 〈001〉-orientated CMSX-41 at temperatures above 950 °C. An orthogonal rafting regime of the γ′ structure is observed in the post-test microstructure due to the biaxial tension state typically produced in a SP test. Interpretation of the SP results to correlate with uniaxial creep data is carried out by employing the ksp approach in order to provide a platform for future material assessment. Journal Article Materials Science & Engineering A 626 330 337 0921-5093 25 2 2015 2015-02-25 10.1016/j.msea.2014.12.085 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2020-09-21T15:44:40.7382510 2015-02-09T10:02:01.5610633 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Robert Lancaster 0000-0002-1365-6944 1 Spencer Jeffs 0000-0002-2819-9651 2 0020139-21122017110403.pdf 20139.pdf 2017-12-21T11:04:03.5570000 Output 1048536 application/pdf Accepted Manuscript true 2015-09-21T00:00:00.0000000 true eng |
title |
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method |
spellingShingle |
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method Robert Lancaster Spencer Jeffs |
title_short |
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method |
title_full |
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method |
title_fullStr |
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method |
title_full_unstemmed |
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method |
title_sort |
Elevated Temperature Creep Deformation of a Single Crystal Superalloy through the Small Punch Creep Method |
author_id_str_mv |
e1a1b126acd3e4ff734691ec34967f29 6ff76d567df079d8bf299990849c3d8f |
author_id_fullname_str_mv |
e1a1b126acd3e4ff734691ec34967f29_***_Robert Lancaster 6ff76d567df079d8bf299990849c3d8f_***_Spencer Jeffs |
author |
Robert Lancaster Spencer Jeffs |
author2 |
Robert Lancaster Spencer Jeffs |
format |
Journal article |
container_title |
Materials Science & Engineering A |
container_volume |
626 |
container_start_page |
330 |
publishDate |
2015 |
institution |
Swansea University |
issn |
0921-5093 |
doi_str_mv |
10.1016/j.msea.2014.12.085 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Small punch testing is now a widely recognised approach for obtaining useful mechanical property information of critical structural components, particularly in the nuclear industry. However, to date the utilisation of this method has been limited to isotropic materials such as aluminium alloys and steels. This paper will look to utilise the small punch (SP) test to assess the creep response of 〈001〉-orientated CMSX-41 at temperatures above 950 °C. An orthogonal rafting regime of the γ′ structure is observed in the post-test microstructure due to the biaxial tension state typically produced in a SP test. Interpretation of the SP results to correlate with uniaxial creep data is carried out by employing the ksp approach in order to provide a platform for future material assessment. |
published_date |
2015-02-25T03:23:44Z |
_version_ |
1763750785831665664 |
score |
11.037603 |