Journal article 1474 views
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population
Knee, Volume: 21, Pages: 435 - 438
Swansea University Author: Zhidao Xia
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.knee.2013.06.006
Abstract
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population
Published in: | Knee |
---|---|
Published: |
2014
|
Online Access: |
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=23890472 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa19125 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2014-11-08T02:56:06Z |
---|---|
last_indexed |
2018-02-09T04:54:22Z |
id |
cronfa19125 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2014-11-07T17:29:58.1557797</datestamp><bib-version>v2</bib-version><id>19125</id><entry>2014-11-07</entry><title>Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population</title><swanseaauthors><author><sid>c9307abfed1b43987a19da0c0e30d7a4</sid><ORCID>0000-0002-2047-7282</ORCID><firstname>Zhidao</firstname><surname>Xia</surname><name>Zhidao Xia</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-11-07</date><deptcode>BMS</deptcode><abstract></abstract><type>Journal Article</type><journal>Knee</journal><volume>21</volume><paginationStart>435</paginationStart><paginationEnd>438</paginationEnd><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-03-31</publishedDate><doi>10.1016/j.knee.2013.06.006</doi><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=23890472</url><notes></notes><college>COLLEGE NANME</college><department>Biomedical Sciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BMS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2014-11-07T17:29:58.1557797</lastEdited><Created>2014-11-07T17:14:54.4749655</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Zhidao</firstname><surname>Xia</surname><orcid>0000-0002-2047-7282</orcid><order>1</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2014-11-07T17:29:58.1557797 v2 19125 2014-11-07 Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population c9307abfed1b43987a19da0c0e30d7a4 0000-0002-2047-7282 Zhidao Xia Zhidao Xia true false 2014-11-07 BMS Journal Article Knee 21 435 438 31 3 2014 2014-03-31 10.1016/j.knee.2013.06.006 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=23890472 COLLEGE NANME Biomedical Sciences COLLEGE CODE BMS Swansea University 2014-11-07T17:29:58.1557797 2014-11-07T17:14:54.4749655 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Zhidao Xia 0000-0002-2047-7282 1 |
title |
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population |
spellingShingle |
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population Zhidao Xia |
title_short |
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population |
title_full |
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population |
title_fullStr |
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population |
title_full_unstemmed |
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population |
title_sort |
Improvement of femoral component size prediction using a C-arm intensifier guide and our established algorithm in unicompartmental knee arthroplasty: a report from a Chinese population |
author_id_str_mv |
c9307abfed1b43987a19da0c0e30d7a4 |
author_id_fullname_str_mv |
c9307abfed1b43987a19da0c0e30d7a4_***_Zhidao Xia |
author |
Zhidao Xia |
author2 |
Zhidao Xia |
format |
Journal article |
container_title |
Knee |
container_volume |
21 |
container_start_page |
435 |
publishDate |
2014 |
institution |
Swansea University |
doi_str_mv |
10.1016/j.knee.2013.06.006 |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
url |
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=23890472 |
document_store_str |
0 |
active_str |
0 |
published_date |
2014-03-31T03:22:26Z |
_version_ |
1763750703101116416 |
score |
11.037603 |