Journal article 1767 views
Equilibrium Kawasaki dynamics and determinantal point process
Journal of Mathematical Sciences, Volume: 190, Issue: 3, Pages: 451 - 458
Swansea University Author:
Eugene Lytvynov
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/s10958-013-1260-6
Abstract
Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence...
| Published in: | Journal of Mathematical Sciences |
|---|---|
| Published: |
2013
|
| Online Access: |
http://link.springer.com/article/10.1007/s10958-013-1260-6 |
| URI: | https://cronfa.swan.ac.uk/Record/cronfa19098 |
| first_indexed |
2014-11-13T02:55:51Z |
|---|---|
| last_indexed |
2018-02-09T04:54:18Z |
| id |
cronfa19098 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2014-11-12T14:38:18.8384864</datestamp><bib-version>v2</bib-version><id>19098</id><entry>2014-11-06</entry><title>Equilibrium Kawasaki dynamics and determinantal point process</title><swanseaauthors><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-11-06</date><deptcode>MACS</deptcode><abstract>Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence invariant) measure. We also exhibit a two-parameterfamily of point processes $\mu$ possessing the needed quasi-invarianceproperty. Each process of this family is determinantal, and its correlationkernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$.</abstract><type>Journal Article</type><journal>Journal of Mathematical Sciences</journal><volume>190</volume><journalNumber>3</journalNumber><paginationStart>451</paginationStart><paginationEnd>458</paginationEnd><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2013</publishedYear><publishedDate>2013-12-31</publishedDate><doi>10.1007/s10958-013-1260-6</doi><url>http://link.springer.com/article/10.1007/s10958-013-1260-6</url><notes></notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2014-11-12T14:38:18.8384864</lastEdited><Created>2014-11-06T12:08:28.8498061</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>E.</firstname><surname>Lytvynov</surname><order>1</order></author><author><firstname>G.</firstname><surname>Olshanski</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2014-11-12T14:38:18.8384864 v2 19098 2014-11-06 Equilibrium Kawasaki dynamics and determinantal point process e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2014-11-06 MACS Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence invariant) measure. We also exhibit a two-parameterfamily of point processes $\mu$ possessing the needed quasi-invarianceproperty. Each process of this family is determinantal, and its correlationkernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$. Journal Article Journal of Mathematical Sciences 190 3 451 458 31 12 2013 2013-12-31 10.1007/s10958-013-1260-6 http://link.springer.com/article/10.1007/s10958-013-1260-6 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2014-11-12T14:38:18.8384864 2014-11-06T12:08:28.8498061 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics E. Lytvynov 1 G. Olshanski 2 Eugene Lytvynov 0000-0001-9685-7727 3 |
| title |
Equilibrium Kawasaki dynamics and determinantal point process |
| spellingShingle |
Equilibrium Kawasaki dynamics and determinantal point process Eugene Lytvynov |
| title_short |
Equilibrium Kawasaki dynamics and determinantal point process |
| title_full |
Equilibrium Kawasaki dynamics and determinantal point process |
| title_fullStr |
Equilibrium Kawasaki dynamics and determinantal point process |
| title_full_unstemmed |
Equilibrium Kawasaki dynamics and determinantal point process |
| title_sort |
Equilibrium Kawasaki dynamics and determinantal point process |
| author_id_str_mv |
e5b4fef159d90a480b1961cef89a17b7 |
| author_id_fullname_str_mv |
e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov |
| author |
Eugene Lytvynov |
| author2 |
E. Lytvynov G. Olshanski Eugene Lytvynov |
| format |
Journal article |
| container_title |
Journal of Mathematical Sciences |
| container_volume |
190 |
| container_issue |
3 |
| container_start_page |
451 |
| publishDate |
2013 |
| institution |
Swansea University |
| doi_str_mv |
10.1007/s10958-013-1260-6 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| url |
http://link.springer.com/article/10.1007/s10958-013-1260-6 |
| document_store_str |
0 |
| active_str |
0 |
| description |
Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence invariant) measure. We also exhibit a two-parameterfamily of point processes $\mu$ possessing the needed quasi-invarianceproperty. Each process of this family is determinantal, and its correlationkernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$. |
| published_date |
2013-12-31T03:33:49Z |
| _version_ |
1851362461175775232 |
| score |
11.089572 |

