Journal article 1383 views
Equilibrium Kawasaki dynamics and determinantal point process
Journal of Mathematical Sciences, Volume: 190, Issue: 3, Pages: 451 - 458
Swansea University Author: Eugene Lytvynov
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/s10958-013-1260-6
Abstract
Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence...
Published in: | Journal of Mathematical Sciences |
---|---|
Published: |
2013
|
Online Access: |
http://link.springer.com/article/10.1007/s10958-013-1260-6 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa19098 |
first_indexed |
2014-11-13T02:55:51Z |
---|---|
last_indexed |
2018-02-09T04:54:18Z |
id |
cronfa19098 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2014-11-12T14:38:18.8384864</datestamp><bib-version>v2</bib-version><id>19098</id><entry>2014-11-06</entry><title>Equilibrium Kawasaki dynamics and determinantal point process</title><swanseaauthors><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-11-06</date><deptcode>MACS</deptcode><abstract>Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence invariant) measure. We also exhibit a two-parameterfamily of point processes $\mu$ possessing the needed quasi-invarianceproperty. Each process of this family is determinantal, and its correlationkernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$.</abstract><type>Journal Article</type><journal>Journal of Mathematical Sciences</journal><volume>190</volume><journalNumber>3</journalNumber><paginationStart>451</paginationStart><paginationEnd>458</paginationEnd><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2013</publishedYear><publishedDate>2013-12-31</publishedDate><doi>10.1007/s10958-013-1260-6</doi><url>http://link.springer.com/article/10.1007/s10958-013-1260-6</url><notes></notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2014-11-12T14:38:18.8384864</lastEdited><Created>2014-11-06T12:08:28.8498061</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>E.</firstname><surname>Lytvynov</surname><order>1</order></author><author><firstname>G.</firstname><surname>Olshanski</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2014-11-12T14:38:18.8384864 v2 19098 2014-11-06 Equilibrium Kawasaki dynamics and determinantal point process e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2014-11-06 MACS Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence invariant) measure. We also exhibit a two-parameterfamily of point processes $\mu$ possessing the needed quasi-invarianceproperty. Each process of this family is determinantal, and its correlationkernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$. Journal Article Journal of Mathematical Sciences 190 3 451 458 31 12 2013 2013-12-31 10.1007/s10958-013-1260-6 http://link.springer.com/article/10.1007/s10958-013-1260-6 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2014-11-12T14:38:18.8384864 2014-11-06T12:08:28.8498061 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics E. Lytvynov 1 G. Olshanski 2 Eugene Lytvynov 0000-0001-9685-7727 3 |
title |
Equilibrium Kawasaki dynamics and determinantal point process |
spellingShingle |
Equilibrium Kawasaki dynamics and determinantal point process Eugene Lytvynov |
title_short |
Equilibrium Kawasaki dynamics and determinantal point process |
title_full |
Equilibrium Kawasaki dynamics and determinantal point process |
title_fullStr |
Equilibrium Kawasaki dynamics and determinantal point process |
title_full_unstemmed |
Equilibrium Kawasaki dynamics and determinantal point process |
title_sort |
Equilibrium Kawasaki dynamics and determinantal point process |
author_id_str_mv |
e5b4fef159d90a480b1961cef89a17b7 |
author_id_fullname_str_mv |
e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov |
author |
Eugene Lytvynov |
author2 |
E. Lytvynov G. Olshanski Eugene Lytvynov |
format |
Journal article |
container_title |
Journal of Mathematical Sciences |
container_volume |
190 |
container_issue |
3 |
container_start_page |
451 |
publishDate |
2013 |
institution |
Swansea University |
doi_str_mv |
10.1007/s10958-013-1260-6 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://link.springer.com/article/10.1007/s10958-013-1260-6 |
document_store_str |
0 |
active_str |
0 |
description |
Let $\mu$ be a point process on a countable discrete space$\mathfrak X$. Under assumption that $\mu$ is quasi-invariant with respect toany finitary permutation of $\mathfrak X$, we describe a general scheme forconstructing an equilibrium Kawasaki dynamics for which $\mu$ is asymmetrizing (and hence invariant) measure. We also exhibit a two-parameterfamily of point processes $\mu$ possessing the needed quasi-invarianceproperty. Each process of this family is determinantal, and its correlationkernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$. |
published_date |
2013-12-31T06:40:09Z |
_version_ |
1821477184991133696 |
score |
11.047653 |