Conference Paper/Proceeding/Abstract 1095 views
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts
IEEE Joint International Conference on Neural Networks, Pages: 3621 - 3627
Swansea University Authors: Shang-ming Zhou , Sinead Brophy
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/IJCNN.2014.6889494
Abstract
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts
Published in: | IEEE Joint International Conference on Neural Networks |
---|---|
Published: |
Beijing, China
IEEE
2014
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa18975 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2015-11-20T01:47:43Z |
---|---|
last_indexed |
2018-02-09T04:54:04Z |
id |
cronfa18975 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2016-11-17T16:25:21.5503290</datestamp><bib-version>v2</bib-version><id>18975</id><entry>2014-10-29</entry><title>Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts</title><swanseaauthors><author><sid>118578a62021ba8ef61398da0a8750da</sid><ORCID>0000-0002-0719-9353</ORCID><firstname>Shang-ming</firstname><surname>Zhou</surname><name>Shang-ming Zhou</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>84f5661b35a729f55047f9e793d8798b</sid><ORCID>0000-0001-7417-2858</ORCID><firstname>Sinead</firstname><surname>Brophy</surname><name>Sinead Brophy</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-10-29</date><deptcode>BMS</deptcode><abstract></abstract><type>Conference Paper/Proceeding/Abstract</type><journal>IEEE Joint International Conference on Neural Networks</journal><paginationStart>3621</paginationStart><paginationEnd>3627</paginationEnd><publisher>IEEE</publisher><placeOfPublication>Beijing, China</placeOfPublication><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-12-31</publishedDate><doi>10.1109/IJCNN.2014.6889494</doi><url/><notes></notes><college>COLLEGE NANME</college><department>Biomedical Sciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BMS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-11-17T16:25:21.5503290</lastEdited><Created>2014-10-29T16:13:54.7776623</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Shang-ming</firstname><surname>Zhou</surname><orcid>0000-0002-0719-9353</orcid><order>1</order></author><author><firstname>Muhammad A</firstname><surname>Rahman</surname><order>2</order></author><author><firstname>Mark</firstname><surname>Atkinson</surname><order>3</order></author><author><firstname>Sinead</firstname><surname>Brophy</surname><orcid>0000-0001-7417-2858</orcid><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2016-11-17T16:25:21.5503290 v2 18975 2014-10-29 Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts 118578a62021ba8ef61398da0a8750da 0000-0002-0719-9353 Shang-ming Zhou Shang-ming Zhou true false 84f5661b35a729f55047f9e793d8798b 0000-0001-7417-2858 Sinead Brophy Sinead Brophy true false 2014-10-29 BMS Conference Paper/Proceeding/Abstract IEEE Joint International Conference on Neural Networks 3621 3627 IEEE Beijing, China 31 12 2014 2014-12-31 10.1109/IJCNN.2014.6889494 COLLEGE NANME Biomedical Sciences COLLEGE CODE BMS Swansea University 2016-11-17T16:25:21.5503290 2014-10-29T16:13:54.7776623 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Shang-ming Zhou 0000-0002-0719-9353 1 Muhammad A Rahman 2 Mark Atkinson 3 Sinead Brophy 0000-0001-7417-2858 4 |
title |
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts |
spellingShingle |
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts Shang-ming Zhou Sinead Brophy |
title_short |
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts |
title_full |
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts |
title_fullStr |
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts |
title_full_unstemmed |
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts |
title_sort |
Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts |
author_id_str_mv |
118578a62021ba8ef61398da0a8750da 84f5661b35a729f55047f9e793d8798b |
author_id_fullname_str_mv |
118578a62021ba8ef61398da0a8750da_***_Shang-ming Zhou 84f5661b35a729f55047f9e793d8798b_***_Sinead Brophy |
author |
Shang-ming Zhou Sinead Brophy |
author2 |
Shang-ming Zhou Muhammad A Rahman Mark Atkinson Sinead Brophy |
format |
Conference Paper/Proceeding/Abstract |
container_title |
IEEE Joint International Conference on Neural Networks |
container_start_page |
3621 |
publishDate |
2014 |
institution |
Swansea University |
doi_str_mv |
10.1109/IJCNN.2014.6889494 |
publisher |
IEEE |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
document_store_str |
0 |
active_str |
0 |
published_date |
2014-12-31T03:22:15Z |
_version_ |
1763750692198023168 |
score |
11.037166 |