No Cover Image

Journal article 1129 views

Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation

, William Griffiths Orcid Logo, Yuqin Wang Orcid Logo

Biochemical and Biophysical Research Communications

Swansea University Authors: William Griffiths Orcid Logo, Yuqin Wang Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1016/j.bbrc.2014.01.088

Abstract

The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D3 and 25-hydroxyvitamin D2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantificatio...

Full description

Published in: Biochemical and Biophysical Research Communications
Published: 2014
URI: https://cronfa.swan.ac.uk/Record/cronfa17818
first_indexed 2014-04-15T01:30:04Z
last_indexed 2018-02-09T04:51:50Z
id cronfa17818
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2014-04-14T16:45:06.4453563</datestamp><bib-version>v2</bib-version><id>17818</id><entry>2014-04-14</entry><title>Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography&#x2013;tandem mass spectrometry using enzyme-assisted derivatisation</title><swanseaauthors><author><sid>3316b1d1b524be1831790933eed1c26e</sid><ORCID>0000-0002-4129-6616</ORCID><firstname>William</firstname><surname>Griffiths</surname><name>William Griffiths</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c92729b58622f9fdf6a0e7d8f4ce5081</sid><ORCID>0000-0002-3063-3066</ORCID><firstname>Yuqin</firstname><surname>Wang</surname><name>Yuqin Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-04-14</date><deptcode>MEDS</deptcode><abstract>The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D3 and 25-hydroxyvitamin D2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-2H6]hydroxyvitamin D3 as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3&#x3B2;-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17&#x3B2;-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3&#x3B1;-hydroxy group in the 3&#x3B1;-hydroxy epimer of 25-hydroxyvitamin D3. Quantification is achieved by isotope-dilution liquid chromatography-tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D3 performed on adult human serum give recovery of 102-106%. Furthermore in addition to 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 and other uncharacterised dihydroxy metabolites, were detected in adult human serum</abstract><type>Journal Article</type><journal>Biochemical and Biophysical Research Communications</journal><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-12-31</publishedDate><doi>10.1016/j.bbrc.2014.01.088</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2014-04-14T16:45:06.4453563</lastEdited><Created>2014-04-14T16:45:06.4453563</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><order>1</order></author><author><firstname>William</firstname><surname>Griffiths</surname><orcid>0000-0002-4129-6616</orcid><order>2</order></author><author><firstname>Yuqin</firstname><surname>Wang</surname><orcid>0000-0002-3063-3066</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2014-04-14T16:45:06.4453563 v2 17818 2014-04-14 Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation 3316b1d1b524be1831790933eed1c26e 0000-0002-4129-6616 William Griffiths William Griffiths true false c92729b58622f9fdf6a0e7d8f4ce5081 0000-0002-3063-3066 Yuqin Wang Yuqin Wang true false 2014-04-14 MEDS The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D3 and 25-hydroxyvitamin D2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-2H6]hydroxyvitamin D3 as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α-hydroxy group in the 3α-hydroxy epimer of 25-hydroxyvitamin D3. Quantification is achieved by isotope-dilution liquid chromatography-tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D3 performed on adult human serum give recovery of 102-106%. Furthermore in addition to 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 and other uncharacterised dihydroxy metabolites, were detected in adult human serum Journal Article Biochemical and Biophysical Research Communications 31 12 2014 2014-12-31 10.1016/j.bbrc.2014.01.088 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2014-04-14T16:45:06.4453563 2014-04-14T16:45:06.4453563 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine 1 William Griffiths 0000-0002-4129-6616 2 Yuqin Wang 0000-0002-3063-3066 3
title Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation
spellingShingle Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation
William Griffiths
Yuqin Wang
title_short Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation
title_full Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation
title_fullStr Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation
title_full_unstemmed Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation
title_sort Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation
author_id_str_mv 3316b1d1b524be1831790933eed1c26e
c92729b58622f9fdf6a0e7d8f4ce5081
author_id_fullname_str_mv 3316b1d1b524be1831790933eed1c26e_***_William Griffiths
c92729b58622f9fdf6a0e7d8f4ce5081_***_Yuqin Wang
author William Griffiths
Yuqin Wang
author2
William Griffiths
Yuqin Wang
format Journal article
container_title Biochemical and Biophysical Research Communications
publishDate 2014
institution Swansea University
doi_str_mv 10.1016/j.bbrc.2014.01.088
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
document_store_str 0
active_str 0
description The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D3 and 25-hydroxyvitamin D2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-2H6]hydroxyvitamin D3 as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α-hydroxy group in the 3α-hydroxy epimer of 25-hydroxyvitamin D3. Quantification is achieved by isotope-dilution liquid chromatography-tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D3 performed on adult human serum give recovery of 102-106%. Furthermore in addition to 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 and other uncharacterised dihydroxy metabolites, were detected in adult human serum
published_date 2014-12-31T18:33:38Z
_version_ 1821340880033808384
score 11.04748