Journal article 1229 views
A magnetic trap for antihydrogen confinement
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume: 566, Issue: 2, Pages: 746 - 756
Swansea University Author: Dirk van der Werf
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.nima.2006.07.012
Abstract
The goal of the ALPHA collaboration at CERN is to test CPT conservation by comparing the 1S–2S transitions of hydrogen and antihydrogen. To reach the ultimate accuracy of 1 part in 1018, the (anti)atoms must be trapped. Using current technology, only magnetic minimum traps can confine (anti)hydrogen...
Published in: | Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
---|---|
ISSN: | 0168-9002 |
Published: |
2006
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa1557 |
first_indexed |
2013-07-23T11:47:41Z |
---|---|
last_indexed |
2018-02-09T04:28:54Z |
id |
cronfa1557 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2011-10-01T00:00:00.0000000</datestamp><bib-version>v2</bib-version><id>1557</id><entry>2011-10-01</entry><title>A magnetic trap for antihydrogen confinement</title><swanseaauthors><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2011-10-01</date><deptcode>BGPS</deptcode><abstract>The goal of the ALPHA collaboration at CERN is to test CPT conservation by comparing the 1S–2S transitions of hydrogen and antihydrogen. To reach the ultimate accuracy of 1 part in 1018, the (anti)atoms must be trapped. Using current technology, only magnetic minimum traps can confine (anti)hydrogen. In this paper, the design of the ALPHA antihydrogen trap and the results of measurements on a prototype system will be presented. The trap depth of the final system will be 1.16 T, corresponding to a temperature of 0.78K for ground state antihydrogen.</abstract><type>Journal Article</type><journal>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</journal><volume>566</volume><journalNumber>2</journalNumber><paginationStart>746</paginationStart><paginationEnd>756</paginationEnd><publisher/><placeOfPublication/><issnPrint>0168-9002</issnPrint><issnElectronic/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2006</publishedYear><publishedDate>2006-12-31</publishedDate><doi>10.1016/j.nima.2006.07.012</doi><url/><notes>This paper describes the design of the superconducting magnet system, comprising an octupole, two mirror coils and a solenoid to be used in the ALPHA experiment and reports on the testing of a prototype magnet system. Van der Werf played the leading role in the design and prepared the manuscript.</notes><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2011-10-01T00:00:00.0000000</lastEdited><Created>2011-10-01T00:00:00.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>W</firstname><surname>Bertsche</surname><order>1</order></author><author><firstname>A</firstname><surname>Boston</surname><order>2</order></author><author><firstname>P.D</firstname><surname>Bowe</surname><order>3</order></author><author><firstname>C.L</firstname><surname>Cesar</surname><order>4</order></author><author><firstname>S</firstname><surname>Chapman</surname><order>5</order></author><author><firstname>M</firstname><surname>Charlton</surname><order>6</order></author><author><firstname>M</firstname><surname>Chartier</surname><order>7</order></author><author><firstname>A</firstname><surname>Deutsch</surname><order>8</order></author><author><firstname>J</firstname><surname>Fajans</surname><order>9</order></author><author><firstname>M.C</firstname><surname>Fujiwara</surname><order>10</order></author><author><firstname>R</firstname><surname>Funakoshi</surname><order>11</order></author><author><firstname>K</firstname><surname>Gomberoff</surname><order>12</order></author><author><firstname>J.S</firstname><surname>Hangst</surname><order>13</order></author><author><firstname>R.S</firstname><surname>Hayano</surname><order>14</order></author><author><firstname>M.J</firstname><surname>Jenkins</surname><order>15</order></author><author><firstname>L.V</firstname><surname>Jørgensen</surname><order>16</order></author><author><firstname>P</firstname><surname>Ko</surname><order>17</order></author><author><firstname>N</firstname><surname>Madsen</surname><order>18</order></author><author><firstname>P</firstname><surname>Nolan</surname><order>19</order></author><author><firstname>R.D</firstname><surname>Page</surname><order>20</order></author><author><firstname>L.G.C</firstname><surname>Posada</surname><order>21</order></author><author><firstname>A</firstname><surname>Povilus</surname><order>22</order></author><author><firstname>E</firstname><surname>Sarid</surname><order>23</order></author><author><firstname>D.M</firstname><surname>Silveira</surname><order>24</order></author><author><firstname>D.P. van der</firstname><surname>Werf</surname><order>25</order></author><author><firstname>Y</firstname><surname>Yamazaki</surname><order>26</order></author><author><firstname>B</firstname><surname>Parker</surname><order>27</order></author><author><firstname>J</firstname><surname>Escallier</surname><order>28</order></author><author><firstname>A</firstname><surname>Ghosh</surname><order>29</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>30</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2011-10-01T00:00:00.0000000 v2 1557 2011-10-01 A magnetic trap for antihydrogen confinement 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false 2011-10-01 BGPS The goal of the ALPHA collaboration at CERN is to test CPT conservation by comparing the 1S–2S transitions of hydrogen and antihydrogen. To reach the ultimate accuracy of 1 part in 1018, the (anti)atoms must be trapped. Using current technology, only magnetic minimum traps can confine (anti)hydrogen. In this paper, the design of the ALPHA antihydrogen trap and the results of measurements on a prototype system will be presented. The trap depth of the final system will be 1.16 T, corresponding to a temperature of 0.78K for ground state antihydrogen. Journal Article Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 566 2 746 756 0168-9002 31 12 2006 2006-12-31 10.1016/j.nima.2006.07.012 This paper describes the design of the superconducting magnet system, comprising an octupole, two mirror coils and a solenoid to be used in the ALPHA experiment and reports on the testing of a prototype magnet system. Van der Werf played the leading role in the design and prepared the manuscript. COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2011-10-01T00:00:00.0000000 2011-10-01T00:00:00.0000000 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics W Bertsche 1 A Boston 2 P.D Bowe 3 C.L Cesar 4 S Chapman 5 M Charlton 6 M Chartier 7 A Deutsch 8 J Fajans 9 M.C Fujiwara 10 R Funakoshi 11 K Gomberoff 12 J.S Hangst 13 R.S Hayano 14 M.J Jenkins 15 L.V Jørgensen 16 P Ko 17 N Madsen 18 P Nolan 19 R.D Page 20 L.G.C Posada 21 A Povilus 22 E Sarid 23 D.M Silveira 24 D.P. van der Werf 25 Y Yamazaki 26 B Parker 27 J Escallier 28 A Ghosh 29 Dirk van der Werf 0000-0001-5436-5214 30 |
title |
A magnetic trap for antihydrogen confinement |
spellingShingle |
A magnetic trap for antihydrogen confinement Dirk van der Werf |
title_short |
A magnetic trap for antihydrogen confinement |
title_full |
A magnetic trap for antihydrogen confinement |
title_fullStr |
A magnetic trap for antihydrogen confinement |
title_full_unstemmed |
A magnetic trap for antihydrogen confinement |
title_sort |
A magnetic trap for antihydrogen confinement |
author_id_str_mv |
4a4149ebce588e432f310f4ab44dd82a |
author_id_fullname_str_mv |
4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf |
author |
Dirk van der Werf |
author2 |
W Bertsche A Boston P.D Bowe C.L Cesar S Chapman M Charlton M Chartier A Deutsch J Fajans M.C Fujiwara R Funakoshi K Gomberoff J.S Hangst R.S Hayano M.J Jenkins L.V Jørgensen P Ko N Madsen P Nolan R.D Page L.G.C Posada A Povilus E Sarid D.M Silveira D.P. van der Werf Y Yamazaki B Parker J Escallier A Ghosh Dirk van der Werf |
format |
Journal article |
container_title |
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
container_volume |
566 |
container_issue |
2 |
container_start_page |
746 |
publishDate |
2006 |
institution |
Swansea University |
issn |
0168-9002 |
doi_str_mv |
10.1016/j.nima.2006.07.012 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
0 |
active_str |
0 |
description |
The goal of the ALPHA collaboration at CERN is to test CPT conservation by comparing the 1S–2S transitions of hydrogen and antihydrogen. To reach the ultimate accuracy of 1 part in 1018, the (anti)atoms must be trapped. Using current technology, only magnetic minimum traps can confine (anti)hydrogen. In this paper, the design of the ALPHA antihydrogen trap and the results of measurements on a prototype system will be presented. The trap depth of the final system will be 1.16 T, corresponding to a temperature of 0.78K for ground state antihydrogen. |
published_date |
2006-12-31T12:07:01Z |
_version_ |
1821407153420763136 |
score |
11.048171 |