No Cover Image

Journal article 1244 views

Production and detection of cold antihydrogen atoms

M Amoretti, C Amsler, G Bonomi, A Bouchta, P Bowe, C Carraro, C. L Cesar, M Charlton, M. J. T Collier, M Doser, V Filippini, K. S Fine, A Fontana, M. C Fujiwara, R Funakoshi, P Genova, J. S Hangst, R. S Hayano, M. H Holzscheiter, L. V Jørgensen, V Lagomarsino, R Landua, D Lindelöf, E. Lodi Rizzini, M Macrì, N Madsen, G Manuzio, M Marchesotti, P Montagna, H Pruys, C Regenfus, P Riedler, J Rochet, A Rotondi, G Rouleau, G Testera, A Variola, T. L Watson, D. P. van der Werf, Dirk van der Werf Orcid Logo, Niels Madsen Orcid Logo

Nature, Volume: 419, Issue: 6906, Pages: 456 - 459

Swansea University Authors: Dirk van der Werf Orcid Logo, Niels Madsen Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1038/nature01096

Abstract

A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted...

Full description

Published in: Nature
ISSN: 0028-0836
Published: 2002
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa15105
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2013-07-23T12:13:52Z
last_indexed 2018-02-09T04:46:50Z
id cronfa15105
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2013-06-18T09:52:34.4078675</datestamp><bib-version>v2</bib-version><id>15105</id><entry>2013-06-14</entry><title>Production and detection of cold antihydrogen atoms</title><swanseaauthors><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2013-06-14</date><deptcode>SPH</deptcode><abstract>A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem&#x2014;experimental investigations involving comparisons of particles with antiparticles are numerous1. Cold atoms and anti-atoms, such as hydrogen and antihydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN)2 and at Fermilab3, but these experiments were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected directly when they escape the trap and annihilate, producing a characteristic signature in an imaging particle detector.</abstract><type>Journal Article</type><journal>Nature</journal><volume>419</volume><journalNumber>6906</journalNumber><paginationStart>456</paginationStart><paginationEnd>459</paginationEnd><publisher/><placeOfPublication/><issnPrint>0028-0836</issnPrint><issnElectronic/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2002</publishedYear><publishedDate>2002-12-31</publishedDate><doi>10.1038/nature01096</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2013-06-18T09:52:34.4078675</lastEdited><Created>2013-06-14T13:41:09.3619665</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>M</firstname><surname>Amoretti</surname><order>1</order></author><author><firstname>C</firstname><surname>Amsler</surname><order>2</order></author><author><firstname>G</firstname><surname>Bonomi</surname><order>3</order></author><author><firstname>A</firstname><surname>Bouchta</surname><order>4</order></author><author><firstname>P</firstname><surname>Bowe</surname><order>5</order></author><author><firstname>C</firstname><surname>Carraro</surname><order>6</order></author><author><firstname>C. L</firstname><surname>Cesar</surname><order>7</order></author><author><firstname>M</firstname><surname>Charlton</surname><order>8</order></author><author><firstname>M. J. T</firstname><surname>Collier</surname><order>9</order></author><author><firstname>M</firstname><surname>Doser</surname><order>10</order></author><author><firstname>V</firstname><surname>Filippini</surname><order>11</order></author><author><firstname>K. S</firstname><surname>Fine</surname><order>12</order></author><author><firstname>A</firstname><surname>Fontana</surname><order>13</order></author><author><firstname>M. C</firstname><surname>Fujiwara</surname><order>14</order></author><author><firstname>R</firstname><surname>Funakoshi</surname><order>15</order></author><author><firstname>P</firstname><surname>Genova</surname><order>16</order></author><author><firstname>J. S</firstname><surname>Hangst</surname><order>17</order></author><author><firstname>R. S</firstname><surname>Hayano</surname><order>18</order></author><author><firstname>M. H</firstname><surname>Holzscheiter</surname><order>19</order></author><author><firstname>L. V</firstname><surname>J&#xF8;rgensen</surname><order>20</order></author><author><firstname>V</firstname><surname>Lagomarsino</surname><order>21</order></author><author><firstname>R</firstname><surname>Landua</surname><order>22</order></author><author><firstname>D</firstname><surname>Lindel&#xF6;f</surname><order>23</order></author><author><firstname>E. Lodi</firstname><surname>Rizzini</surname><order>24</order></author><author><firstname>M</firstname><surname>Macr&#xEC;</surname><order>25</order></author><author><firstname>N</firstname><surname>Madsen</surname><order>26</order></author><author><firstname>G</firstname><surname>Manuzio</surname><order>27</order></author><author><firstname>M</firstname><surname>Marchesotti</surname><order>28</order></author><author><firstname>P</firstname><surname>Montagna</surname><order>29</order></author><author><firstname>H</firstname><surname>Pruys</surname><order>30</order></author><author><firstname>C</firstname><surname>Regenfus</surname><order>31</order></author><author><firstname>P</firstname><surname>Riedler</surname><order>32</order></author><author><firstname>J</firstname><surname>Rochet</surname><order>33</order></author><author><firstname>A</firstname><surname>Rotondi</surname><order>34</order></author><author><firstname>G</firstname><surname>Rouleau</surname><order>35</order></author><author><firstname>G</firstname><surname>Testera</surname><order>36</order></author><author><firstname>A</firstname><surname>Variola</surname><order>37</order></author><author><firstname>T. L</firstname><surname>Watson</surname><order>38</order></author><author><firstname>D. P. van der</firstname><surname>Werf</surname><order>39</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>40</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>41</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2013-06-18T09:52:34.4078675 v2 15105 2013-06-14 Production and detection of cold antihydrogen atoms 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false 2013-06-14 SPH A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem—experimental investigations involving comparisons of particles with antiparticles are numerous1. Cold atoms and anti-atoms, such as hydrogen and antihydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN)2 and at Fermilab3, but these experiments were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected directly when they escape the trap and annihilate, producing a characteristic signature in an imaging particle detector. Journal Article Nature 419 6906 456 459 0028-0836 31 12 2002 2002-12-31 10.1038/nature01096 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2013-06-18T09:52:34.4078675 2013-06-14T13:41:09.3619665 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics M Amoretti 1 C Amsler 2 G Bonomi 3 A Bouchta 4 P Bowe 5 C Carraro 6 C. L Cesar 7 M Charlton 8 M. J. T Collier 9 M Doser 10 V Filippini 11 K. S Fine 12 A Fontana 13 M. C Fujiwara 14 R Funakoshi 15 P Genova 16 J. S Hangst 17 R. S Hayano 18 M. H Holzscheiter 19 L. V Jørgensen 20 V Lagomarsino 21 R Landua 22 D Lindelöf 23 E. Lodi Rizzini 24 M Macrì 25 N Madsen 26 G Manuzio 27 M Marchesotti 28 P Montagna 29 H Pruys 30 C Regenfus 31 P Riedler 32 J Rochet 33 A Rotondi 34 G Rouleau 35 G Testera 36 A Variola 37 T. L Watson 38 D. P. van der Werf 39 Dirk van der Werf 0000-0001-5436-5214 40 Niels Madsen 0000-0002-7372-0784 41
title Production and detection of cold antihydrogen atoms
spellingShingle Production and detection of cold antihydrogen atoms
Dirk van der Werf
Niels Madsen
title_short Production and detection of cold antihydrogen atoms
title_full Production and detection of cold antihydrogen atoms
title_fullStr Production and detection of cold antihydrogen atoms
title_full_unstemmed Production and detection of cold antihydrogen atoms
title_sort Production and detection of cold antihydrogen atoms
author_id_str_mv 4a4149ebce588e432f310f4ab44dd82a
e348e4d768ee19c1d0c68ce3a66d6303
author_id_fullname_str_mv 4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf
e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen
author Dirk van der Werf
Niels Madsen
author2 M Amoretti
C Amsler
G Bonomi
A Bouchta
P Bowe
C Carraro
C. L Cesar
M Charlton
M. J. T Collier
M Doser
V Filippini
K. S Fine
A Fontana
M. C Fujiwara
R Funakoshi
P Genova
J. S Hangst
R. S Hayano
M. H Holzscheiter
L. V Jørgensen
V Lagomarsino
R Landua
D Lindelöf
E. Lodi Rizzini
M Macrì
N Madsen
G Manuzio
M Marchesotti
P Montagna
H Pruys
C Regenfus
P Riedler
J Rochet
A Rotondi
G Rouleau
G Testera
A Variola
T. L Watson
D. P. van der Werf
Dirk van der Werf
Niels Madsen
format Journal article
container_title Nature
container_volume 419
container_issue 6906
container_start_page 456
publishDate 2002
institution Swansea University
issn 0028-0836
doi_str_mv 10.1038/nature01096
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 0
active_str 0
description A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem—experimental investigations involving comparisons of particles with antiparticles are numerous1. Cold atoms and anti-atoms, such as hydrogen and antihydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN)2 and at Fermilab3, but these experiments were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected directly when they escape the trap and annihilate, producing a characteristic signature in an imaging particle detector.
published_date 2002-12-31T03:17:14Z
_version_ 1763750376193916928
score 11.013148