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Abstract

In this work a hierarchical approach is presented to efficiently estimate 3D pose from
single images. To achieve this the body is represented as a graphical model and opti-
mized stochastically. The use of a graphical representation allows message passing to
ensure individual parts are not optimized using only local image information, but from
information gathered across the entire model. In contrast to existing methods the poste-
rior distribution is represented parametrically. A different model is used to approximate
the conditional distribution between each connected part. This permits measurements
of the Entropy, which allows an adaptive sampling scheme to be employed that ensures
that parts with the largest uncertainty are allocated a greater proportion of the available
resources. At each iteration the estimated pose is updated dependent on the Kullback
Leibler (KL) divergence measured between the posterior and the set of samples used to
approximate it. This is shown to improve performance and prevent over fitting when
small numbers of particles are being used. A quantitative comparison is made using the
HumanEva dataset that demonstrates the efficacy of the presented method.

1 Introduction
3D Human pose estimation from monocular images or video is an extremely difficult prob-
lem. Currently there are two main approaches to solving this problem, the first is to learn a
direct mapping from image features to 3D pose [1, 19], the second is to first extract 2D pose
as an intermediate stage and then ‘lift’ this to a 3D pose [2]. The limitation with both of these
approaches is that they are only applicable to poses that are similar to those represented in the
original training set, e.g. walking. It is unlikely they will scale to extract arbitrary 3D poses.
Contrary to this, in the domain of 2D pose estimation current state-of -the-art methods have
been shown capable of detecting poses that are much more varied [3, 8, 14]. This has been
achieved using generative models built around the Pictorial Structures representation [10].
Recent work in 2D pose estimation has shown that by first clustering 2D poses detection
rates can be significantly improved [14, 15]. Often these clusters have a semantic meaning,
for example different orientations of the person being detected [14]. We suggest that rather
than simply clustering 2D poses a much more direct approach is to learn a generative 3D
model that can be orientated and projected at arbitrary scales and orientations, allowing 3D
pose to be directly extracted from single images.

c⃝ 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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The main challenges are how to represent this 3D generative model and how to efficiently
search the high dimensional pose space. Current 2D approaches that uniformly discretize the
search space will be unsuitable for 3D pose estimation as the search space is significantly
larger and unconstrained, so a stochastic approach will be required. When searching for
3D pose, probable limb configurations are completely dependent on the state of central part,
i.e. the global orientation and position of the torso, which we define as the root node of
the model. This is as neighbouring parts are connected at fixed locations and have fixed
lengths. This leads us to suggest a hierarchical approach to 3D pose estimation starting from
a hypothesized root node state.

The obvious limitation with this approach is that if the hypothesized state of the root
node is incorrect, the entire approach will fail. However, if we consider the original search
space proposed in the work of Felzenszwalb and Huttenlocher [8] for 2D pose estimation, the
search space was divided into a grid over image positions, scales and orientations. In total
1.5× 107 image likelihood evaluations were performed in a single frame, where a single
evaluation is performed for each hypothesized part location. In this work we show that for a
single hypothesized root node the pose of the remaining parts can be adequately searched in
≈ 5000 image likelihood evaluations, this would allow 3000 hypothesized root node states to
be evaluated without increasing the computation compared with that of [8] (assuming image
evaluation is the dominant computational expense).

In this work we address how to efficiently search and represent the 3D pose space given
a hypothesized root node state. For evaluation we assume that the root node of the solution
is known. Contrary to many stochastic approaches, where the posterior is represented as a
set of samples [17, 21], ours is always represented parametrically. Samples are drawn from
it to permit the update and evaluation of the posterior. A parametric model has several useful
benefits. Firstly, it allows the posterior to be represented in a compact form. Secondly, it will
be of benefit if applied to a tracking by detection approach [2, 9]. Given independent pose es-
timates in each frame, methods such as Virterbi searching or Continuous Belief Propagation
could be used to link independent detections together. Furthermore, as the proposed solution
is iterative an approach could be envisaged where more complex part detectors are employed
after each iteration as further knowledge is extracted and the search space is reduced.

Typical hierarchical approaches assume that a part of the body can first be accurately
located, based on which the remaining parts can be located sequentially, moving outwards
from the centrally located part to the model extremities. The problem with this approach
is that it results in parts that are only locally optimized, thus often recovering the incorrect
pose across the entire body. In this work we reformulate the hierarchical search as that
of Bayesian inference performed over a graphical model with a single fixed node. Initial
outward optimization can be viewed as message passing between connected nodes. The
benefit of this methodology, differing from typical approaches, is that information is also
back propagated to parts higher up the model hierarchy before optimization is performed,
ensuring a correct global solution is more likely to be recovered.

The use of graphical models to estimate pose has gained much popularity. Parts of the
body are represented by the graph nodes and the conditional dependencies between these
parts are represented by the edges. To estimate 2D pose the search space can be repre-
sented by pixel locations in the image and pose can be estimated using methods such as
Dynamic Programming [8], Belief Propagation [11] or Loopy Belief Propagation [20]. For
3D pose estimation the search space is too large to be uniformly discretized and stochastic
methods such as Non-Parametric Belief Propagation [21], Markov-Chain Monte Carlo [17],
Variational MAP [13] or Partitioned Sampling [18] can be employed. A problem with these
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approaches is that they often rely on weakly constrained parts where joint locations are not
forced to coincide [13, 21], this was recently shown to be too unconstrained for accurate 3D
pose estimation [6]. In this work we examine how a graphical model can be utilized given
a part’s state is known a priori, effectively fixing a node in the graph. To the best of our
knowledge this problem has not previously been investigated for 3D pose estimation using
this framework and provides insight into existing hierarchical approaches, in particular the
benefit gained by passing information between parts.

Most stochastic approaches are iterative, this allows a fixed number of particles to effi-
ciently search the solution space by focusing the particles into progressively smaller regions
with high likelihoods [7, 13, 21]. A problem with these techniques is how to diffuse the
particles between iterations. Often a single covariance is used which is shrunk by a pre-
determined fixed amount across iterations [7, 13]. In this work the posterior distribution is
represented as a set of Gaussian Mixture Models (GMM). Samples are then drawn from these
models, weighted by their beliefs and the models updated given observations obtained from
the image. Over a number of iterations the models converge to a single maximum without
the need to artificially shrink any covariances.

In this paper the focus is on formulating standard hierarchical methods as Bayesian in-
ference over a graph where a node is fixed and on increasing the efficiency of the method so
less samples are required to search the pose space. Firstly, outward messages are calculated
via importance sampling making the search strategy more efficient. Secondly, calculating
the Entropy of each model a method is provided to adaptively create a sampling scheme to
ensure that a higher proportion of resources are used to search for parts that have greater
uncertainty. Finally, a method using the KL divergence between the model and the set of
samples used to approximate it is presented to prevent over fitting when low numbers of
samples are being used. This is shown to substantially improve the accuracy of the method.
Quantitative results are provided using the HumanEva dataset.

2 Model Representation

The body is represented by a set of ten parts, each part has a fixed length and connected parts
are forced to join at fixed locations. The conditional distribution between two connected
parts, which describes the likely orientation of a part given that of the part to which it is
connected, is modeled by first learning a joint distribution using a Gaussian Mixture Model
(GMM) p(xi,x j∣θi j), where xi and x j is the state of the ith and jth part respectively and
θi j is the set of model parameters. As each model is represented using a GMM the model
parameters are defined as θi j = {λ k

i j,µ
k
i j,Σ

k
i j}K

k=1, where K is the number of components
in the model and λ k

i j,µ
k
i j,Σ

k
i j represent the kth component’s weight, mean and covariance

respectively. For efficiency all covariances used to represent limb conditionals are diagonal
and can be partitioned such that Σk

i j = diag(Λk
ii,Λ

k
j j) and likewise µk

i j =
(

µk
i ,µ

k
j

)
.

Given a value for x j (e.g. a sample) the conditional distribution p(xi∣x j,θ
k
i j) is calcu-

lated from the joint distribution p(xi,x j∣θi j). This is also a GMM with model parameters
{λ k

i ,µ
k
i ,Λ

k
ii}K

k=1. The component weights are proportional to the marginal distribution λ k
i ∝

p(x j∣θ k
i j), which is calculated from the normal distribution p(x j∣θ k

i j) = λ k
i jN (x j; µk

j ,Λ
k
j j).

Note this conditional model is different to typical approximations used, when the condi-
tional model is approximated by p(xi j∣θi j), where xi j is the value of xi in the local frame of
reference of x j [8, 21].
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(a) (c) (d)(b)

Figure 1: Hypothetical two part example highlighting the difference in modeling different
parts independently (a) - (b) and using conditional models (c) - (d). (a) and (c) show the
prior model and (b) and (d) the model after a number of iterations. Both limb conditionals
are represented by a two component mixture model where each component is represented
by different colors. Whilst the conditional model can represent each observational mode by
a single mixture component (d), the independent (unconditional) model can not and as such
‘phantom’ modes appear (b).

The state of each part xi represents a quaternion rotation that defines its orientation in the
global frame of reference, which here is defined to be that of the torso. The location of a part
is dependent on the state of the part to which it is attached.This is as parts are forced to be
connected at fixed joint locations.

The benefit of learning a full conditional model between neighbouring parts is two fold.
Firstly, consider an approach where two independent particle filters are used to locate the
upper and lower arm respectively and suppose that each distribution has two modes. As the
two particles filters are modeled independently how will the samples drawn from the second
filter know to which mode in the first particle filter they are correlated with? This is illustrated
in Fig. 1 where we see in (a) and (b) the effect of using an approximate limb conditional,
p(xi j∣θi j), and in (c) and (d) where a full conditional is learnt, p(xi∣x j,θi j), and the modes
are correlated. In (a) and (b) as the conditional distribution between the two connected parts
is not modeled extra modes appear in the posterior. This is as the distribution, p(xi j∣θi j), is
modeled in only the local frame of reference of the upper part.

The second benefit of using this method to model conditional distributions is that dif-
ferent GMM components learnt in quaternion space correspond to different spatial locations
in ℝ3. This is illustrated in Fig. 2 where samples for each part have been generated using
the proposed distributions. A covariance has then been fitted in ℝ3 to the set of samples
generated by each GMM component in quaternion space. As can be seen, in general, a
single component modeled in quaternion space corresponds to a separate location in euclid-
ian space. It also demonstrates that this representation can clearly capture multiple modes.
Details of how to sample from the limb conditionals are provided in the following section.

3 3D Pose Estimation
The human body is defined by a graph, which is assumed to be a tree, where the set of n
nodes vi ∈V represents the set of parts used to ensemble the object and {vi,v j} ∈ ℰ represent
the edges that connect the nodes of the graph together. Given proposal values for each
node X = {x1, ..,xn} and corresponding observations Z = {z1, ..,zn}, the posterior can be
calculated as

p(X ∣Z,θ) = ∏
{i, j}∈ℰ

p(xi∣x j,θi j)∏
i∈V

p(zi∣xi), (1)

where p(xi∣x j,θi j) are the limb conditionals which represent the model prior and were de-
scribed in the previous section, and p(zi∣xi) are observational likelihoods that describe how
well the state of a given part explains the observed image. The observational likelihoods use
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Figure 2: A visualization of the conditional distributions p(xi∣x j,θ
k
i j) for each part. (left)

individual samples for each part. (right) fitting a covariance to the samples generated from
each covariance. Red - left foot, left knee and right elbow. Dark blue - right hand. Purple -
left elbow and head. Light blue - right foot, right knee and right hand.

a combination of edge and color cues and are described in Section 4. The posterior for a
single part, also known as the belief, can be calculated for each part using message passing

p(xi∣Z) = p(zi∣xi) ∏
v j∈Ci

p(xi∣Z j), (2)

where v j ∈Ci are the set of nodes connected to the ith node and Z j represents the observa-
tions for the subtree containing v j, created by removing the edge {vi,v j}. The messages are
represented by the term p(xi∣Z j), which is a prediction over xi given the observations Z j.

In this work we assume the state of a single part of the model is known a priori which
fixes a node in the graph. This node will be referred to as the root node, xr, and is located at
the top of the tree with all branches coming from it. In this work it is defined as the torso.
Whilst the choice of node picked to be the root node is arbitrary, intuitively it should be the
part that has the least variation in its state.

There are two types of messages: Outwards messages propagating from the root node
out to the limb extremities, called leaf nodes, and inwards messages passed from the leaf
nodes to the root. The messages are represented using sample sets and outward messages
are propagated using importance sampling.

To calculate an outwards message p(xi∣Z j), where i is the child of j, first consider a set
of samples used to represent the message from the kth node to the jth where k is the parent

of j. This set of N j uniformly weighted samples is defined as p(x j∣Zk)≈
[
xn

j ,π
n
j

]N j

n=1
where

π represents a sample’s weight. Each sample is then weighted proportional to the observa-
tional likelihood πn

j ∝ p(z j∣xn
j) following which a set of Ni samples can then be selected to

approximate p(xi∣Z j) ≈ [xn
i ,π

n
i ]

Ni
n=1. This is achieved by selecting a sample xn

j with likeli-
hood ∝ πn

j and then calculating the conditional distribution p(xi∣xn
j ,θ

k
i j) as described in the

previous section. A sample xn
i is then generated from this GMM by first selecting a com-

ponent with probability k∗ = λ k
i , following which a sample is generated from the selected

component xn
i ∼N (xi; µk∗

i ,Λk∗
ii ). The set of Ni samples are assigned an equal weight.

The sample xn
j , from which the sample xn

i is drawn conditioned on, is called its ancestor
and this method of sampling is called ancestral sampling [4]. Its purpose in this work is
to grow the search space out from the central part of the model, exploring regions of the
pose space that have a higher likelihood. The key difference between this approach and that
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of Partitioned Sampling (PS) [18] or Markov Chain Monte Carlo (MCMC) [17] is that in
our approach a given sample only represents the state of the limb it is drawn for. This is in
contrast to PS or MCMC where a sample must represent the state of all parts of the model,
but specific components of the sample are changed depending on the part being optimized.
We can achieve this as the conditional model links different modes across connected parts.
This allows samples to be drawn for each part independently whilst maintaining conditional
dependence between connected parts.

Inwards messages are computed from the leaf nodes towards the root. Each sample
passes information back to its ancestors which is computed as

p(xn
i ∣Z j) =

1
∣N j(xn

i )∣
∑

m∈N j(xn
i )

p(z j∣xm
j ) ∏

vc∈C j

p(xm
j ∣Zc), (3)

where j is the child of i, m ∈ N j(xn
i ) is the set of samples that are ancestors of xn

i , ∣N j(xn
i )∣ is

the number of ancestors and vc ∈C j is the set of child nodes of v j. The marginal or belief can
then be calculated by combining the incoming messages with the local observation likelihood
as described by Eqn. 2

p(xn
i ∣Z) = p(zi∣xn

i ) ∏
v j∈Ci

p(xn
i ∣Z j). (4)

The distribution of the samples used to represent the belief at each node is provided by the
outwards messages and their corresponding weights are provided by the inwards messages
combined with local observational likelihoods. The expectation value for each part can then
be calculated as

E [xi] =
N

∑
n=1

p(xn
i ∣Z). (5)

Given a fixed set of particles, T , a sampling scheme is employed to distribute the particles
across the different parts of the model. Intuitively parts that have greater uncertainty require
more particles since a larger space must be searched. A measure of the uncertainty is pro-
vided by the Entropy of the distribution h(θi j) =

∫
p(xi∣θi j) ln p(xi∣θi j)dxi. Whilst there is

not an exact analytical expression to calculate the Entropy of a GMM, an approximation can
be used to express the GMM as a single Gaussian [12]

µ̂i =
K

∑
k=1

λ
k
i jµ

k
i , (6)

Λ̂ii =
K

∑
k=1

λ
k
i j

(
Λ

k
ii +(µk

i − µ̂i)(µ
k
i − µ̂i)

T
)
. (7)

The Entropy can then be calculated as h(θi j) = ln
√
(2πe)d ∣Λ̂ii∣, where d is the dimension

of xi. The number of samples assigned to each part Ni is then given by Ni ∝ eh(θi j), which is
equivalent to distributing the particles to each part proportional to the hypervolume encom-
passed by the covariance. The minimum number of samples assigned to a single part is set
as 1% of the total number of samples, to ensure no parts are assigned zero samples.

Once the beliefs have been calculated for each node, represented as a set of weighted
samples, the model is updated. The parameters of each mixture component are reestimated
using the weighted samples that are drawn from it. Before each model is updated, simulated
annealing is applied to the particles’ weights so that ≈ 60% of the samples would be dis-
carded if resampling has taken place [7]. A new sampling strategy is then estimated and a
new set of samples is drawn from the updated model. The beliefs for the new samples are
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calculated and the model again updated. This process is iterated a set number of times. If the
normalized weight of a component falls below a predetermined threshold, the component is
pruned from the mixture model. This is to allow the samples to be focused towards areas of
the posterior with a higher likelihood and will eventually converge to a single solution.

However, model over fitting may occur if very few samples are drawn from the compo-
nents. This is because with too few samples it poorly represents the underlying distribution.
This problem however can be largely alleviated by checking the model fitting, for instance,
using the Kullback Leibler (KL) divergence to measure how well a sample set represents a
mixture component. The model could then be updated depending on this measure, based on
the intuition that if the sample set poorly represents the mixture component the model can
not be confidently updated using this sample set.

Let [xn
i ]n∈N(θ k

i j)
denote the set of samples drawn from the kth component of the mix-

ture model θi j. The initial model update is calculated using the samples and their weights
{θ k

i j}est = {λ k
i j,µ

k
i ,Λ

k
ii}est as described previously. However, using the same samples, the

mean and covariance are recomputed assuming each sample has a uniform weight {θ k
i j}uni =

{µk
i ,Λ

k
ii}uni. The KL divergence is then calculated between this distribution and the compo-

nent that the samples were drawn from ({θ k
i j}t = {λ k

i j,µ
k
i ,Λ

k
ii}t ) denoted by KL

(
{θ k

i j}t ∣{θ k
i j}uni

)
.

The component parameters are then updated as

{µk
i }t+1 = (1−w){µk

i }t +w{µk
i }est

{Λk
ii}t+1 = (1−w){Λk

ii}t +w{Λk
ii}est

{λ k
i j}t+1 = (1−w){λ k

i j}t +w{λ k
i j}est

(8)

where w = e−KL( f ∣g) (details of how to compute the KL divergence between two Gaussian
distributions are provided in [12]). If the sample set accurately represents the component,
the KL divergence will be zero and the model will be updated to the new estimated model
parameters. However, if it poorly represents the prior, the KL divergence will be very large
and the model will not be updated. Note that the components’ weight must be renormalized
once this update has been carried out for all components in the mixture model.

4 Observational Likelihoods
In this section we describe how the observational likelihoods p(z j∣x j) are calculated. A part
is represented by a rectangular patch with two image cues exploited, edges and color. Edge
cues are extracted using a set of M overlapping HOG features [5] placed along the edges
of the part. Each feature is represented as a single normalized histogram of the local image
gradients at that location and they are combined such that p(z j∣x j)edge =

1
M ∏

M
m=1 H(θ⊥),

where H(θ⊥) returns the value in the histogram bin that is perpendicular to the edge of the
part. Color is exploited by placing a bounding box at the location of the root node and
then learning a foreground model using the pixel values within the box and a model for the
background using pixels outside the box. The models are learnt using a GMM. This creates
a very crude and noisy foreground probability map. The likelihood is then calculated as the
average foreground probability value encompassed by the part. The individual likelihoods
for each cue are then combined as p(z j∣x j) = p(z j∣x j)edge p(z j∣x j)col .
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(a)

(b)

(i) (ii) (iii) (iv) (v) (vi)

Figure 3: Example frames showing the expected pose after iterations 1 (i), 3 (ii), 5 (iii) , 7
(iv) and 10 (v) in 3D (b) and projected onto the image (a). The samples are also shown for
the left wrist (red) and right wrist (green). (b)(vi) shows the final 3D pose viewed from a
different orientation.

5 Experiments and Results
The model for each part was learnt using the Train partition of the HumanEva dataset using
≈ 4500 frames of data taken across all 3 subjects and all 5 different actions (Box, Gesture,
ThrowCatch, Walk, Jog) contained in the set. Hence the solution space for correct pose is
not constrained to a single action. For quantitative evaluation a test set was created from the
Validation partition of the HumanEva dataset. This was composed of 100 randomly selected
frames from each action category selected across all color views (C1, C2, C3), so that 500
frames were used in total. The root node and orientation was set using the pelvis marker
data and the scale was set as the maximum distance between the head and the feet using the
ground truth provided. This scale was often inaccurate (e.g. if the subject was squatting),
however, was used so all experiments are easily reproducible. Inaccurate scale information
is particularly detrimental on the 3D pose estimation error. In each frame the algorithm was
iterated 10 times. It is assumed that the person is viewed under orthographic projection.

Typical 3D pose estimation results showing particle convergence are given in Figs. 3
and 4. Fig. 3 (iii) shows that the model is more than capable of supporting multiple modes
as shown in the particle distribution for the left wrist. As can be seen the search space is
quickly reduced and the model converges to the correct pose. A common cause of error in the
reconstruction is due to depth ambiguities, for example in the lower right leg in Fig. 4 (b) (vi).
These errors are most common where the prior model is less constrained. In the above
example the leg is free to rotate backwards and forwards as this motion would be necessary
to perform walking or jogging. However, lateral motion of the leg would be much more
constrained. In the same example the right arm is correctly located in front of the person.
This as the prior would not permit the forearm to be located elsewhere and still project to the
same location.

Quantitative results are provided for the reprojected 2D error and the 3D pose reconstruc-
tion error using different numbers of samples in Fig. 5 using the average Euclidian distance
between the markers as proposed in [22] for 3D pose and [16] for 2D errors, where the
left/right limbs are switched and the smallest reprojection error used. Note that each sample
represents a hypothesized state of a single part not of the entire body. For comparison we
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also present results when the KL divergence technique is not used and examine the effect of
message passing. This shows that when messages are not passed and each part is updated
using only local information the performance deteriorates. By using the KL divergence the
error is greatly reduced as the model is prevented from over fitting when less samples are
used. It would be expected that the curves representing full message passing and the KL
update method would converge as more samples are used, as the KL-divergence between the
samples drawn and the models would approach zero.

(a)

(b)

(i) (ii) (iii) (iv) (v) (vi) (vii)
Figure 4: Example frames after iterations 1,4 and 10 showing the expected pose after each
iteration in 3D and projected onto the image. Red samples show samples for the right foot
(a) and right wrist (b), blue points depict the samples for the opposing parts.

The quantitative results given in Figs. 5(a) and 5(b) also show strong correlation between
the reprojected 2D error and the 3D pose reconstruction error. This suggests that 3D pose
estimation may be better solved by simultaneously locating individual parts of the model in
the 2D image plane and extracting the underlying model in 3D space rather than treating
them as independent sequential processes as is commonly adopted in the literature. The
method presented in this work is a promising technique to achieve this.

6 Conclusions
In this paper a hierarchical method, formulated as inference over a graphical model with a
fixed node, has been presented to estimate 3D pose from single images. A key motivation is
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the 2D reprojection error (a) and 3D reconstruction error (b). Full Msg and No Msg show
the error without the KL divergence method with and without message passing. KL update
shows the error using the KL divergence update method with message passing.
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that it allows a solution to be found where parts are forced to be joined at fixed locations and
have fixed lengths. To demonstrate the efficacy of the approach we have applied it to single
frame pose estimation. We have shown that 3D pose estimation is possible whilst employing
more general model priors, compared to those where the solution space is often restricted to
a single action (e.g. walking). Furthermore, this has been achieved using relatively simple
appearance models. This shows that the proposed prior, whilst more general, still maintains
information that is crucial in resolving image reconstruction ambiguities. An important com-
ponent is the use of a parametric representation, which allows us to effectively integrate this
work into a tracking by detection framework, utilizing stronger part detectors.
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