

RESEARCH

Open Access

The Eldfell eruption, Iceland, 1973: using “Small Stories” to investigate the human evacuation from Heimaey

Rh. H. Meara^{1*}, A. Árnason², E. M. Roberts¹, H. Hallbergssdóttir³, I. Óskarsson⁴ and S. B. Hafsteinsson⁵

Abstract

Research into Eldfell 1973 typically favour scientific studies, with human aspects of the eruption overlooked. The first night, and the subsequent evacuation to the mainland are particularly neglected, their details often incorporated into the larger overall story of the eruption. This research uses a “Small Stories” narrative approach to reconstruct the events of the first night of the Eldfell eruption. Archived documents, written personal accounts and interviews highlight the communication and planning involved in the evacuation, the lived experiences of individuals during the event. Understanding the community response to the eruption supports present and future generations of islanders, scientists, and emergency responders to understand and prepare the community for future eruptions on the island and further afield. We answer the call to better utilise historical documents in volcanological studies but also pose our own call to action that hazard scientists establish and maintain long-term meaningful relationships with at risk communities, even during times of quiescence.

Keywords Eldfell, Heimaey, Iceland, Eruption, Community, Evacuation

Introduction

The Eldfell 1973 eruption was, until recently, the only eruption in an urban environment in Iceland since the early settlement of the country. A volcanic fissure opened on the eastern side of the island of Heimaey, c. 100 meters from the nearby Kirkjubær farm (Figs. 1 and 2), posing immediate danger to residents, livestock, property, and the harbour. Within hours c. 5000 islanders were evacuated to the Icelandic mainland, utilising the

60-boat fishing fleet that was in dock overnight. Around 300 people stayed behind to begin rescue work and damage control.

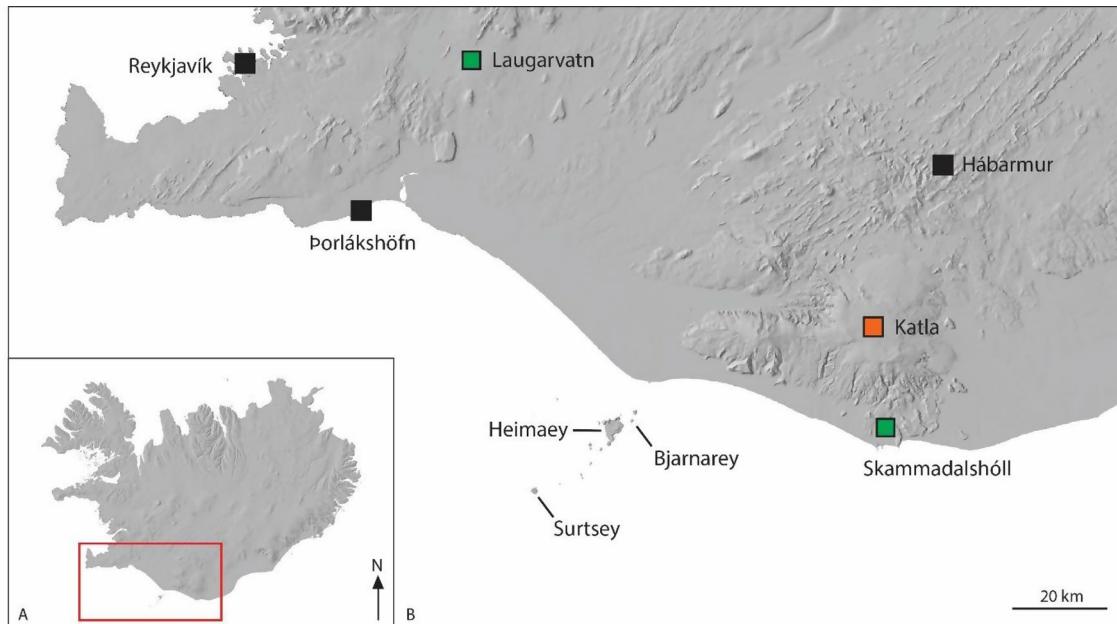
In our first paper (Meara et al. 2024), we explored the long-term impacts of the Eldfell 1973 eruption on the island community of Heimaey. This 50-year perspective provided a unique insight into post-eruption community recovery and highlighted how even relatively small-scale events can have long-term implications. But to truly comprehend the long-term impacts, we must understand what happened during the eruption and subsequent recovery. Many of the key moments and themes of the eruption are well known (e.g. evacuation to the mainland and cooling of lavas with seawater), as Eldfell 1973 is regularly used as a case study while teaching and studying geosciences. But how much do we really know beyond these themes? What do we know of the islanders’ experiences and the lasting impacts of the eruption,

*Correspondence:

Rh. H. Meara
r.h.meara@swansea.ac.uk

¹Geography Department, Swansea University, Swansea SA2 8PP, UK

²School of Social Science, University of Aberdeen, Aberdeen, UK


³Eldheimar Museum, Gerðisbraut 10, 900 Vestmannaeyjabær, Iceland

⁴Allir í Bátana Blog, Safnahús Vestmannaeyja, Kirkjuvegur, 900

Vestmannaeyjabær, Iceland

⁵Faculty of Sociology, Anthropology and Folkloristics, University of Iceland, Reykjavík, Iceland

Fig. 1 **a)** Map of Iceland. The red box highlights the area discussed in the text. **b)** Map of south-west Iceland showing the locations of Reykjavík, Þorlákshöfn, Heimaey, Bjarnarey, Surtsey, Katla and Hábarmur. Seismograph locations are denoted by green boxes at Skammadalshóll and Laugarvatn

be they personal, social or cultural? Our novel case study is someone else's very real lived experience.

Here we answer the call posed by Pyle (2018) and Pyle and Barclay (2020), who ask what we can learn from historical records of past eruptions to better prepare for future events. We use interviews, written personal accounts, and archived historical documents to recreate in detail the events of “*Gosnótt*”, the first night of the Eldfell eruption and the evacuation from Heimaey. We establish a chronology of events and discuss what was happening on the island before the eruption began, people's first reactions, the evacuation itself, what people took with them as they fled the island, and what happened after reaching the mainland. Much of the data are exclusively available in Icelandic, and we are therefore presenting these detailed observations to an international audience for the first time in English.

This paper is the second in a series investigating the socio-volcanology and historical geography of the Eldfell 1973 eruption. In this instalment, we utilise a “*Small Stories*” approach (Georgakopoulou and Bamberg 2007, 2015) to foreground the islander's own words in telling the story of the evacuation. Small Stories is a method typically used in Sociolinguistics to make space for neglected, silenced and marginalized voices. The method uses a research lens of narrative inquiry and analysis to understand personal identity (Georgakopoulou and Bamberg 2007). We utilise the approach in a more geographical manner, similar to work by Lorimer (2003), Crossa (2005), and Jackson (2010). In this sense, Small Stories give space to a neglected event – the human evacuation

of Heimaey on the first night of the 1973 eruption – rather than a specific person. Although the event itself is relatively well-known, the nuance and detail of the human evacuation, its’ “*identity*” so to speak, is often lost, absorbed into the overall “*Big Story*” (e.g. Freeman 2011; Olson and Craig 2009; Georgakopoulou 2015) of the eruption, and overlooked in favour of geochemical and physical volcanology data (e.g. Thorarinsson et al. 1973; Self et al. 1974; Sigmarsson 1996). In this work, we centre the voices and narratives of those who lived through the eruption, while the Eruption itself is demoted to the role of a supporting character.

Our intention in this, and subsequent papers, is to collect and collate the small stories of the Eldfell eruption. By engaging with impacted communities, to understand their experiences in context, we can truly understand the long-term impacts and help to prepare this and other communities for future events. We end with our own call to action. As hazard specialists we need to understand not only a volcano and its volcanic history, but also to understand nearby communities and their history. To understand the long-term interconnectedness of people and landscapes. Hazard specialists must build long-term meaningful relationships with at-risk communities, even during times of quiescence, to ensure future trust and communication in times of need.

Islands and hazards, Iceland and Heimaey

Heimaey: geographical context

The Vestmannaeyjar archipelago comprises a series of 15+ islands and skerries located c. 10 km south of Iceland

Fig. 2 Hand-drawn weather map from 18.00 hours on the 22nd of January 1973. Data collected from the Stórhöfði weather station on the southern-most point of Heimaey. Reproduced with permission from Safnahús Vestmannaeyjar, 2026.

(Fig. 1). The islands are part of the Vestmannaeyjar Volcanic System (VVS), located at the southern end of the propagating Eastern Volcanic Zone. The archipelago is volcanic in origin, created from sub-marine and sub-aerial eruptions (Mattsson and Höskuldsson 2003). The island of Heimaey was formed through sub-aerial volcanism, the most recent eruptions being Stórhöfði (7–6,000 BP), Sæfell (6220 BP), Helgafell (5900 BP), and Eldfell (1973; Mattsson and Höskuldsson 2003; Mattsson et al. 2003).

Heimaey, the only permanently inhabited island in the archipelago is home to Vestmannaeyjabær, a town that had a population of c. 5300 people in 1973. Many of the islanders, or *Vestmannaeyingar*, had and continue to have, long-standing family connections with the island. The Vestmannaeyingar consider themselves culturally separate to mainlanders, despite the relatively small distances that separate the two land masses (Sigurgeirs dóttir and Hallbergsdóttir *pers com*). During the 1970s,

Heimaey was accessible by a c. 4-hour ferry journey from the nearest port of Þorlákshöfn (Fig. 1) or by plane from Reykjavík, and in poor weather, the island would be cut off from the mainland. The island's economy in the 1970s was heavily dependent on the fishing industry, with Heimaey considered a major fishing port in 1972. Due to a long history of isolation and self-reliance, the Vestmannaeyingar community already had a reputation for resilience; a reputation that would play a vital role in coping with what was to come (e.g. Garðardóttir and Guttormsson 2009; Helgason 1997, 2018).

Island communities, natural hazards and Heimaey

Komorowski et al. (2016) and references therein discuss the challenges of volcanic crises on small islands and note that island communities are often impacted by key vulnerabilities.

1. Inaccessibility and remoteness can impact monitoring, communication and decision making during volcanic crises.
2. Small land areas mean that even small-scale eruptions can cause extensive damage to landscapes and communities, resulting in the need for permanent evacuation.
3. Island communities can be politically complex, often impacted by post-colonial legacies. Such complexity can impact monitoring and communication during volcanic crises.

These vulnerabilities are relevant at both national and local scales in Iceland. The island nation is known for its hazards – volcanic eruptions, earthquakes, avalanches and jökullhaups – many caused by its location on the spreading Mid-Atlantic Ridge. Icelandic governmental organisations, such as Veðurstofa Íslands (the Icelandic Meteorological Office - IMO) and Almannavarnir (the Icelandic Civil Defence), are responsible for monitoring activity in the region, along with planning and implementing evacuation strategies (e.g. Lögglustjórin et al. 2017).

Icelandic hazards are extensively researched, however, most research focuses on the science of hazards (e.g. Magnússon et al. 2007; Wastl et al. 2011; Halldórsson et al. 2022; Sigmundsson et al. 2022; Pfeffer et al. 2024). In contrast, there is much less research into the connections between people and hazards. This work uses archived documents, surveys and interviews to research the frequency, magnitude, and distribution of historical hazard events (e.g. Porseirsson et al. 2013; Einarsson 2019; Gísladóttir et al. 2021), to understand people's perceptions and knowledge of Icelandic hazards (e.g. Jóhannesdóttir and Gísladóttir 2010; Bird et al. 2009, 2010, 2011; Pagnieux et al. 2011; Bird and Gísladóttir 2012, 2018, 2020; Thorvaldsdóttir and Sigbjörnsson 2015; Matti and Ögmundardóttir 2021; Matti et al. 2022; Kokorsch and Gísladóttir 2023), and to understand the long-term impacts of hazard events on individuals and communities (e.g. Akason et al. (2006); L et al. (2006); Carlsen et al. (2012); Haraldsdóttir et al. (2014); Thordardottir et al. (2015); Thordardottir et al. (2016); Thordardottir et al. (2018); Thordardottir et al. (2019); Hlodversdottir et al. (2018); Gissurardóttir et al. (2019); Hafsteinsson and Árnason (2020); Ómarsdóttir et al. (2022); Meara et al. (2024)).

Most Icelandic hazard research focuses on the mainland, and although their findings are important and relevant, they do not always reflect the geographical and cultural implications of Heimaey's island setting. One key difference between Heimaey and the mainland, or even the case studies discussed by Komorowski et al. (2016) is island size. Guadeloupe, Comoros, and Cape

Verde for example, are relatively large islands measuring 10s of km in size, while Heimaey measures around 3×5 km, and has only one functional harbour suitable for evacuation. The island's size is key to understanding the impacts of the Eldfell 1973 eruption. Lava and ash destroyed more than 400 buildings and permanently changed the island's landscape (Meara et al. 2024). On such a small island, there is nowhere else to go during an eruption, and evacuees must leave the island completely. Had destruction been more widespread, impacting the harbour for example, then Heimaey would have been permanently abandoned. The island was saved in part by the (relatively) effusive nature of the eruption, and the location of the fissure which spread much of the lava eastward toward the sea, and away from the town. The island was also saved by the sheer determination of the Vestmannaeyingar, who fought to keep lava away from the harbour, and to reclaim Heimaey from the ashes in the months and years following the end of the eruption (Meara et al. 2024).

Methods

This project utilizes several methods to reconstruct the events of the 23rd of January 1973.

Primary Data was collected via digital ethnography and interviews conducted in 2022 – 2024.

Digital ethnography (e.g. Góralaska 2020) was conducted on the community's local private Facebook page. Permission was granted by the group administrators. Content of interest included posts, photographs and discussions which focussed on shared memories of the evacuation from Heimaey. This method allowed observation of community memory in practice, without our intervention as outsiders influencing discussion. Key dates in particular triggered discussions such as anniversaries of the beginning and end of the eruption, as well as during the annual Goslokahátið eruption festival (Meara et al. 2024).

Interviewees were identified through a survey, digital ethnography, community networks on Heimaey, and archived documents. The survey was completed in 2022 to collect data on commemoration of the Eldfell eruption, since published in Meara et al. (2024). A total of 30 interviews were conducted in 2022 – 2025 in person, online and via email. In person interviews were conducted in Iceland, on Heimaey and the mainland, and were conducted at interviewees homes or in public spaces such as libraries and museums. Online interviews were conducted on Zoom and Microsoft Teams. One interview was conducted by email – a list of questions was sent to the interviewee who then sent written replies. Further follow up questions and discussion was had through subsequent email communication. Interviews took a narrative approach centred around semi-structured questions and lasted between 30 minutes and 1 hour

and 50 minutes. Questions considered within this paper focused on interviewee's experiences of the first night of the eruption, including first reactions, the evacuation itself, and what was taken to the mainland.

Participants could choose to conduct interviews in either English or Icelandic. Face to face interviews often utilised photo-elicitation methods (Pyyry et al. 2021). Photographs were used to facilitate discussion with individuals and often prompted further sharing of stories and memories associated with the places and people in the images. Photographs were selected to represent images taken during the eruption, during the post-eruption reclamation work, and of areas of eastern Heimaey lost beneath the ash and lavas. Images were sourced from the photographic archive of Sigurgeir Jónasson at Safnahús Vestmannaeyjar, from the Heimaslóð online archive, the community Facebook group, and from the online newspaper archive Tímarit.

Secondary Data included personal accounts, newspaper and magazine articles, incident reports, ship logbooks, photographs, maps, seismic data, weather reports, speeches, interviews, radio programmes, books and committee meeting minutes. Secondary data was collated from several archives, including the 1973-Allir í bátana and Heimaslóð websites, the Sagnheimar and Eldheimar museums, the Icelandic Meteorological Office, the Icelandic Red Cross, the Iceland Seismic Archive, the Safnahús Vestmannaeyjar archive and the National Museum of Iceland. The local news outlet Eyjafréttir, and several published autobiographical books were also utilised. Archived newspapers were sourced from the timarit.is website and included articles from five of the main Icelandic newspapers in the 1970s (Morgunblaðið, Tíminn, Dagur, Vísir and Alþýðublaðið). Newspaper articles were identified using 28 key words connected with geological terminology, specific people and places (see supplementary files).

In all, data was collected from 30 interviews, 55 written personal accounts, 10 (auto)biographical books, and 499 newspaper articles. Material available exclusively in Icelandic was translated into English by the authors and proofread to ensure no loss of nuance from the original text.

Our analysis is informed by grounded theory (originally developed by Glaser and Strauss 1967), where themes emerge from the material we work with rather than being determined by any particular theoretical ideas we might entertain. Thus, we sought to generate themes systematically from the data. The process of analysis was an iterative one that sought to be faithful to people's experiences whilst aiming to understand these experiences through our re-telling.

Our inductive thematic narrative analysis investigated the data and stories to identify "through lines" (Saldaña

2003). In this instance, "through lines" are considered as shared experiences of the same event (*Gos Nött*), connecting across individual narratives and stories. This analysis of the data identified five key "through lines", structured chronologically across the different data sets:

- i. Poor weather on the 22nd of Jan.
- ii. Evening activities and the start of the eruption.
- iii. First impressions.
- iv. Evacuation by boat and air.
- v. Arriving on the mainland.

These five "through lines" or themes form the basis of our reconstruction of "*Gos Nött*" and are presented and discussed in the following sections. Firstly, a chronological timeline of *Gos Nött* is presented. The timeline provides a backdrop for the Small Stories shared by the islanders. Secondly, each theme is discussed. Quotes from the data set are used to narrate and contextualise the experiences of the islanders as they witness the beginning of the eruption and evacuate en masse to the mainland. The data presented collates stories and memories from a breadth of people involved with the eruption, including adults, children, evacuees, rescue workers and US military service personnel. Care has been taken to include stories from those voices no longer with us, by utilizing autobiographies and eyewitness accounts written by individuals before their deaths.

Recreating a chronological timeline of *Gos Nött* - January 23rd, 1973

The Eldfell eruption began unexpectedly in the early hours of January 23rd, 1973. The 1.6 km-long fissure opened on the eastern side of Heimaey around 100 m to the nearest buildings in the Kirkjubær district (Figs. 3 and 4). Within 2 hours the evacuation of c. 5300 islanders to the mainland had begun - by boat to Þorlákshöfn and by air bridge to Reykjavík. By 10 o'clock in the morning on January 23rd, around 8 hours after the start of the eruption, almost 5000 civilians had been evacuated with no deaths, and only minor injuries reported. This event marked the first real challenge for the newly created Almannavarnir, the Icelandic Civil Defence, and was widely considered a major success. Table 1 provides a chronological timeline of the events from the evening of January 22nd through 23rd established from interviews and archived documents.

Poor weather – 22nd of January 1973

The weather on the 22nd of January 1973, was unusually poor. Observations collected at 15.00 h GMT from the Stórhöfði weather station, at the southern-most point of Heimaey, noted strong winds, low pressures at sea level, high precipitation rates, and low visibility (Fig. 2; Table

Fig. 3 Aerial photo of Heimaey and the town of Vestmannaeyjarbær showing the approximate location of the newly opened fissure (red line). Helgafell volcano can be seen to the left of the fissure, the town and harbour are to the northwest of the image and the airport's eastern runway is seen in the south-western corner of the image. Several key buildings are identified including Kirkjubær farm (Kæ), Kirkjuból (Kb), Einaland (Ei), the hospital (Hosp), the police station (Pol), and the fire station (FS). Reproduced with permission from Safnahús Vestmannaeyjar, 2026

Fig. 4 Photograph of the newly opened fissure on eastern Heimaey taken on the 23rd of January 1973. Reproduced with permission from Sigurgeir Jónasson, 2026

2; *Morgunblaðið* 23.01.1973:9). Eyewitness accounts confirm the exceptionally poor weather, with fishermen noting winds so strong, that they “could hardly stand on the pier” in the harbour while unloading their fish catch (Sveinbjörnsson, 2013). Others noted their concern about the weather and the danger involved with collecting children from school in such strong winds (Sigfússon and Eiríksdóttir, 2015).

The weather calmed over the course of the day, and milder conditions returned by the evening and into the early hours of the 23rd. However, the excessive storm conditions had forced the fishing fleet to return to Vestmannaeyjar and by mid-afternoon on the 22nd most of the fleet was safely moored in the harbour. The return to harbour is key to the success of the subsequent evacuation to the mainland. The original evacuation plan for

Table 1 Recreating the timeline of the first night of the eruption, highlighting key marker events

Date	Time	Event
22.01.73	22.00	Poor weather and extreme winds had driven the fishing fleet back to Heimaey harbour.
22.01.73	22.00	Large earthquake(s) felt in Heimaey. Recorded on the mainland at Laugarvatn and Skammdalshóll (Fig. 1b).
23.01.73	23.00	
23.01.73	01.30	
23.01.73	01.50	Fissure eruption begins c. 100 m from the nearest houses in Kirkjubær. Police are alerted by phone and dispatched to investigate.
23.01.73	02.00	Distress call made from Vestmannaeyjar to boats in the nearby area.
23.01.73	02.30	Islanders begin making their way to the harbour.
23.01.73	02.40	Almannavarnir called to emergency meeting in Reykjavík.
23.01.73	04.00	Radio announcements instruct islanders to evacuate the island using the fishing fleet in the harbour and aeroplanes at the airport.
23.01.73	04.00	Boats begin to leave the harbour aiming for Þorlákshöfn on the Icelandic mainland.
23.01.73	04.00	Cows from Kirkjubær are herded to the harbour and slaughtered.
23.01.73	04.30	Reykjavík police are sent to Heimaey to support the island's force.
23.01.73	06.00	Fissure extends into the sea causing explosive phreatomagmatic eruptions.
23.01.73	06.00	The last boat leaves Heimaey sailing for Þorlákshöfn.
23.01.73	07.20	The first boat arrives at Þorlákshöfn (Árni í Görðum VE73).
23.01.73	08.30	Evacuees begin arriving at Red Cross centres at schools in Reykjavík.

The timeline was created using archived documents and eyewitness accounts

Heimaey, developed in 1964 following the Surtsey eruption, highlights transportation by boat as the main evacuation strategy in the event of an eruption on Heimaey (Böðvarsson 1964). This plan, however, relies on large cargo ships and passenger ferries travelling from the mainland with an estimated arrival time of 15 to 24 hours from the beginning of the eruption (Böðvarsson 1964). The rather fortuitous access to the fishing fleet enabled the successful evacuation of the entire population of Heimaey within 8 hours of the fissure opening.

Evening activities, tremors, and fire fountains

Despite the poor weather, typical Monday night activities were underway later in the evening. Personal accounts note attendance at the sewing club, handball practice, a trip to the cinema, playing bridge with friends, completing DIY projects, and revising for upcoming exams.

The island's cinema had opened for the evening, despite the weather, and a sold-out screening of the 1965 film *The Greatest Story Ever Told*, was enjoyed by all in attendance (Jónsdóttir *pers.com*).

So, in spite of the weather, the guy who owned the cinema, he saw some business out of this [bad weather]. So, there he opened the cinema that evening and ... So, I had a phone call from my beautiful boyfriend, and he was asking me on a date! (Interview 14)

Two seismometers had been located on the mainland as part of a study by a university in California, USA (Fig. 1; Einarsson, *pers com*). One seismometer was at the Skammdalshóll farm in the Mýrdal region with farmer Einar H. Einarsson, and the other at Laugarvatn with teacher Þórir Ólafsson (Fig. 1; Tíminn 24.01.73:10). The seismometers had recorded several hundred small precursor earthquakes at depths of around 15–25 km some 30–14 hours before the eruption began (Eyjólfsson 1973; Einarsson 2018). In an interview with Tíminn, Einar H. Einarsson noted that despite hundreds of small earthquakes recorded on the seismograph, they were likely not felt in the islands due to their depth and small magnitude (Tíminn 24.01.73:10). Data from the two seismographs suggested an eruption was likely, with potential locations at Vestmannaeyjar to the south, or Hábarmur, near the Torfajökull volcano to the north (Fig. 1). However, without a third working seismograph, there was no way to confirm the exact location. Seismic activity paused for several hours before recommencing at around 10 o'clock at night (Morgunblaðið 24.01.1973:31; Einarsson and Jakobsson 2020; *Analogue Seismogram Archives of Iceland*). Similar patterns, extensive precursor seismic activity, followed by a period of quiescence, are commonly observed during Icelandic eruptions (Einarsson, *pers. comm.*).

Large earthquakes were felt on the island at 22.00, 23.30 and 01.30 (Eyjólfsson and 1973; Einarsson and Jakobsson 2020; *Analogue Seismogram Archives of Iceland*), although they did not initially cause any concern (Morgunblaðið 23.01.1973:9; Tíminn 24.01.1973:1). Several people living on the island at the time noted their experiences of feeling the later, larger earthquakes (e.g. Hermansen, 2013):

Sometime after midnight there was a powerful jolt to the house, so strong that it moved the beds so the floor creaked, this did nothing to us, except that Dóri had a word that this was a prelude to something major, "there is never an earthquake in the Islands" he said, and we nodded without having any opinion on the matter ourselves, then we fell asleep one by one and thought nothing more of it. (Magnússon, 2013).

At 01.50 the eruption began on the eastern side of Heimaey. A 1600 m-long fissure opened about 100 m east of

Table 2 Weather data collected at the Stórhöfði weather station located at the southern-most point of Heimaey during the 22nd and 23rd of January 1973

Date	Time GMT	Max. T (°C)	Min. T (°C)	Avg wind speed (ms ⁻¹)	Max wind speed (ms ⁻¹)	Wind dir (°)	Air press at SL (hPa)	Total precip. since last msmt (mm)	Type of precip.	Vis- ibil- ity (km)
22.01	03.00			11.8	11.8	140	997.4		Rain	40
22.01	06.00			19.6	19.6	140	993.6			30
22.01	09.00	5.4	1.9	26.3	27.3	140	988.4	1.6	Sleet showers	4.0
22.01	12.00			33.5	33.5	110	982.4		Rain	4.0
22.01	15.00			31.4	35	110	980.2		Rain, drizzle	2.0
22.01	18.00	6.1	3.8	13.9	31.4	200	986.5	21	Rain	15
22.01	21.00			13.9	18	200	990.2		Rain	25
22.01	24.00			6.2	16	230	994.0		Sleet	30
23.01	03.00			2.1	10.8	180	994.2		Rain	30
23.01	06.00			8.8	8.8	110	991.1			20
23.01	09.00	6.3	2.5	9.8	11.8	70	987.1	1.4	Rain	15
23.01	12.00			13.9	13.9	360	984.5		Snow, rain	10
23.01	15.00			19.6	20.1	320	987.2		Snow, rain	35
23.01	18.00	3.4	1.2	14.9	20.1	320	993.4	3.6		35
23.01	21.00			9.8	14.9	270	997.4			30
23.01	24.00			7.7	10.8	250	999.0		Rain	25

Data shows stormy weather conditions during the 22nd of January, with strong winds, low pressure, high precipitation, and low visibility. Data provided by the Icelandic Meteorological Office (2023)

Kirkjubær Farm (Fig. 3) and began erupting lava through fire fountains (Fig. 4). Eyewitnesses described the ground as “tearing northeast from Helgafell” (Harðarson, 2023).

I could literally see when the crack opened, and it was like a zipper was opened. I was paralyzed by this sight and could not believe my eyes. (Kolbeinsdóttir, 2014).

Fissure eruptions are relatively common in Iceland due to the divergent tectonic setting. Fissure eruptions had happened before in Iceland, however these had typically occurred away from residential areas e.g. Laki 1783 and Eldgjá 934 (Thordarson and Self 1993, 2001). The 1973 eruption was the first time that the commencement of a fissure eruption had been witnessed and recorded.

First impressions and reactions

The first to witness the eruption were those living in the Kirkjubær area c. 100 m from the fissure. Eyjólfsson (1973) records the first impressions those in the area, including the residents who lived at the houses Kirkjuból, Einaland, and Kirkjubær (Fig. 3). Þóra Valdimarsdóttir and Kristján Kristófersson from Kirkjuból note that they felt strong jolts at around 01.50 AM. Their first instincts were to check the heating system in the basement as there was “constant trembling and odd noises in the pipes”. While Lilja Sigfúsdóttir from Kirkjubær stated:

I woke up to a noise and a roar. At first, I thought it was the wind howling around the house, but it seemed unusually bright in the bedroom. Then I heard what sounded like an explosion and saw a strange purple glow and flashes. I got up to take a closer look and saw columns of fire shooting up into the sky. I said to myself, ‘God help me, what is happening?’ I couldn’t even bring myself to say the word ‘eruption.’ It was too terrifying. I woke Pétur and said, ‘Something terrible is happening here ... I couldn’t bring myself to go back inside. We lost so much. We literally took nothing with us. As we stood in the yard, staring in shock at the flames, a driver came and offered us a ride down to the police station.

Residents living further to the west thought a fire had developed in the east of Heimaey, likely at Kirkjubær Farm or a nearby property (e.g. Sigurðardóttir, 2013; Guðmannsdóttir, 2014). Others realised that an eruption was happening, but assumed the activity was focussed elsewhere, Katla on the mainland (e.g. Eyjólfsson and 1973), or to the east, in the sea near the island of Bjarnarey (Bjarnason, 2014).

... [my sister, on the mainland] had the news that an eruption had started on the mainland, probably in Katla, the glow could be seen all the way over Helgafell. I thought this was quite good news, in fact, the eruption of Katla volcano had been expected for quite some time (Jónsson, 2018).

Due to the late hour, many islanders were asleep and were woken up by family, friends and neighbours sharing news of the eruption. Some were more disbelieving than others, assuming the messengers were drunk, playing jokes, or that the noise must be related to excessive celebrations, a plane crash, or even warfare (Bjarnason, 2014; Guðlaugsdóttir, 2014; Interview 1; Interview 17).

At that time, we were recently engaged to be married! So young! And my father, he was not approving, he did not approve. And my father said while you are living under my roof, this boyfriend of yours is not allowed to stay in your bedroom after midnight. But after the movie, he walked me home. And because we had a little time to midnight, so we went upstairs. And the next thing I remember that night was my mother woke us up calling our names! So, then she told us there was eruption on the island, that we should come down immediately. And at that time, I realise I was not alone in my bedroom, but the clock was 2.30 in the morning! Yeah 2.30 in the morning. So, that's why they, at that time, you know, when we came downstairs and they realised I was not alone, my father was like another volcano for a while! (Interview 14)

At 01.55, the police were alerted to the potential fire at Kirkjubær and sent to investigate. Within 15 minutes a distress call was sent to nearby boats and ships (Sigurðsson 2022) and the coast guard were alerted to the situation (Guðmundsson, 2023). Fire sirens were activated across the town, one on the roof of the police station, and the other at the fire station (Alþýðublaðið 24.01.1973:4; Guðmundsson, 2023). The sirens alerted the islanders to the danger of the eruption. Instructions were given to listen to the local radio station and await evacuation orders.

In the meantime, many made their way across to the eastern side of the island to see the eruption in some instances even causing traffic jams and getting dangerously close to the escalating volcanic activity (Sveinbjörnsson, 2013; Pálsson, 2023; Interview 3;).

I then got dressed, woke up my wife and said I was going to go out and find out what was going on. I ran towards it and got surprisingly close to the scene. I then saw the earth open and turn over, returned home and told my wife that it had started to erupt on Heimaey. But I confess that this did not affect me very strongly. I think now, when I think about it afterwards, that the Surtsey eruption had something to do with it. We had become so used to watching volcanic eruptions near us. (Jessen 1973).

It may seem strange to reflect that one of the first reactions many had to the news of an eruption was to move towards the fissure. However, in the context of Heimaey and the Vestmannaeyingar, the community here had extensive experience of nearby volcanic eruptions. Most recently, the island of Surtsey (Fig. 1) had erupted from the seabed with volcanic activity ongoing between 1963 and 1967. Many islanders had been able to sail out to watch the eruption during this time (e.g. Johnsen 1974). In historical times, islanders would also have been witness to eruptions on the mainland, including Katla (1918, 1955) and Hekla (1913, 1947, and 1970; Fig. 1). Not all islanders shared the same calm first impressions:

When I opened my eyes, I saw the flames through the attic window. As I stepped out, I heard an overwhelming rumbling and felt the clear pressure in the air. It terrified me, and I became immediately scared. I think anyone who hasn't experienced a natural disaster at their doorstep probably doesn't fully understand what that fear is like. (Sveinsson 2008).

Many personal accounts discuss the awesome nature of the eruption; however some discuss the realities and the horror unfolding. Morgunblaðið (23.01.1973:12) and Alþýðublaðið (24.01.1973:3) both note that an agitated horse escaped its enclosure and ran straight into the oncoming lava flow and had to be put down. At about 03.00 the livestock from Kirkjubær farm were driven through the town to the harbour (Fig. 5).

One of the most distressing things I heard that night was the screams of the cows in the half-darkness and smoke from the volcanic fire. The cows charged forward in confusion, not making their usual sounds but instead bellowing in pain and fear over what was happening. (Eyjólfsson and 1973)

The difficult decision was made to slaughter the 28 cows and 14 calves farmed at Kirkjubær. Their food stocks had been destroyed, they could not be easily evacuated, and as dairy cows they would suffer unnecessarily without appropriate care (Alþýðublaðið 24.01.1973:3; Tíminn 24.01.1973:1; Eyjólfsson and 1973). The intensifying eruption hindered the rescue of the eight calves still trapped at Kirkjubær. The men were left with no choice but to have the calves put down. Johnsen (1974) notes how "tears fell from the farmer's eyes" as his livestock were slaughtered, while Eyjólfsson and (1973) recollects that "it's nothing to lose the houses ... but losing the fields and the livestock—that's harder than words can express".

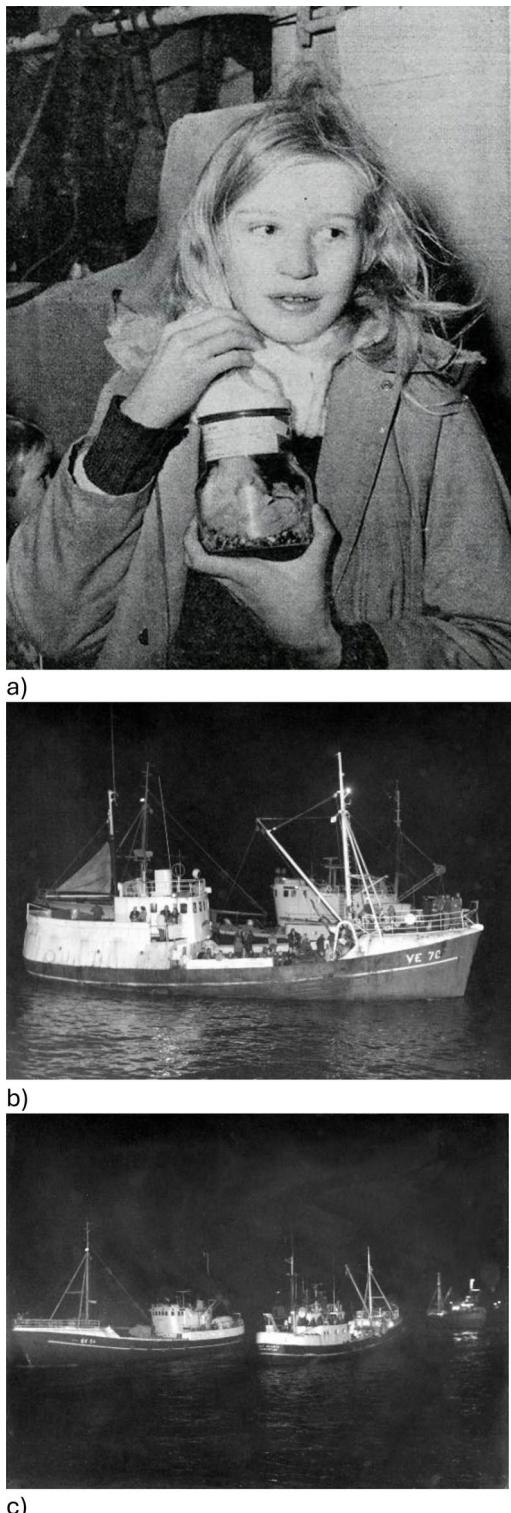
Fig. 5 Cows from Kirkjubær farm are driven to the harbour area for slaughter. Reproduced with permission from Sigurgeir Jónasson, 2026

The evacuation of Heimaey

Almannavarnir, the Icelandic Defence Council, were called into action on the mainland at c. 02.40 (Vísir 23.01.1973:8). The council agreed to evacuate islanders to the mainland at least until the extent of the eruption could be assessed. While on Heimaey, an emergency meeting of the town council was convened. Around 20 police officers from Reykjavík were sent to Heimaey by plane, arriving on the island by 04.55 (Morgunblaðið 23.01.1973:8; Vísir 23.01.1973:13).

Evacuation by boat

Around the same time, islanders were instructed to make their way to the harbour where the fishing fleet were ready to evacuate the islanders. Announcements were made by radio, and both fire engines and police cars drove around the island with sirens and loudspeakers spreading the message (e.g. Jóhannsson, 2018).


I was still in my overalls in the bunk [aboard Arnar AR 55], so I didn't need to get dressed. I had a bad feeling about this ... I immediately feared that the harbour would close off ... I was worried we wouldn't be able to sail out. Men appeared on the dock with megaphones, calling to us that people were coming down to the pier, and we were supposed to ready our boats to take them aboard. (Sveinsson 2008).

Several accounts note which items were packed for the journey to the mainland. The evacuation was precautionary, and most thought they would return home by morning. This belief is reflected in the clothing and supplies taken; many islanders left in their night clothes, some took milk, diapers and spare clothes for babies but left most other items behind (e.g. Ómarsdóttir, 2014). Those living closest to the fissure had little time to collect their belongings together:

We then went outside to get a better look at the disaster. I should never have done that before I had taken the essential things that I would have wanted to keep with me. I was overcome with emotion couldn't bring myself to go back inside. We lost so many belongings. We literally took nothing with us. (Eyjólfsson 1973).

Some families were able to take their pets with them to the mainland (e.g. Guðmundsson, 2023). Others left their animals behind, secure in the knowledge that the animals would be safe until they returned the next morning (Interview 2).

We prepared to leave. Mostly we took care to dress well. Nothing else was taken except Margrét's hamster. We found a large jam jar in the storage room and made a few holes in the lid. (Bjarnason, 2014; Fig. 6a).

Fig. 6 Photographs showing the islanders during their evacuation by boat to Þorlákshöfn. **a)** 9-year-old Margrét evacuates with her pet hamster, Patty, in a jam-jar (Photo: Sveinn Þormóðsson, Morgunblaðið, 23.01.1973). **b)** The boat Kristbjörg VE 70 leaves the harbour in Vestmannaeyjar with 60 passengers and two crew members on board. **c)** The fishing boats travel in convoy towards Þorlákshöfn, including Gunnar Jonsson VE 500 and Fífill GK 54. Reproduced with permission from (a) Morgunblaðið; (b-c) sigurgeir Jónasson, 2016

The belief that life would carry on as normal is reflected, not only in the items taken, but also in the plans being made for the next day. Many of the high school students were panicking about exams scheduled for the following morning, including Danish and Mathematics (e.g. Bjarnason, 2014; Sigurðardóttir, 2013; Harðarson, 2023). Meanwhile, the local bank manager was still confident about securing a house sale the next day (Sigfússon and Eiríksdóttir, 2015).

It was good to get there and we were wrapped in blankets and taken to a bus that was supposed to take us to Reykjavík, the school principal, Eyjólfur Pálsson, also came on the bus and I tried to hide so he wouldn't see me as I didn't expect that I would be able to attend the exam (Sigurðardóttir, 2014).

Several accounts remember strange moments, or things that made them laugh. One person brought a leg of lamb with them to the boat, not wanting to leave a good meal behind (Sigfússon and Eiríksdóttir, 2015), while another family argued on the pier about how best to transport a green parrot to the mainland (Borgþórsdóttir, 2013).

The calmness of the islanders as they congregated in the harbour is a theme mentioned regularly in personal accounts and newspaper articles, with one account noting that “it was almost as if people were on a Sunday Walk, such was the mood and calmness” (Jóhannsson, 2018; Jónsson, 2018).

Many had family connections with specific boats while others boarded where there was space and “were welcomed with outstretched hands” (e.g. Bjarnason, 2014; Jónsson, 2018).

Additional boats were sent to Heimaey from the mainland in line with the 1964 evacuation plan (Böðvarsson 1964). However, these were later sent back as the fishing fleet had already successfully completed the necessary evacuation (Morgunblaðið 23.01.1973:20; Vísir 23.01.1973:3). By morning at least 4400 people had been evacuated by boat, and were on route to Þorlákshöfn, a harbour on the south-east coast of Iceland (Fig. 1). The islanders had worked together to successfully evacuated themselves from danger.

Table 3 notes which boats were moored in the harbour, their estimated departure times from Heimaey and arrival times at Þorlákshöfn, the number of passengers carried and other important details about the ships (1973-Allir í bátana). Boats were filled, some holding several hundred islanders (e.g. Danske Pétur VE423 held 231 people, Fífill GK54 held 226 people, and Halkion VE205 held 262 people).

When we were about halfway through the sea route in Þorlákshöfn, the civil defence got involved and,

Table 3 Boats involved with the evacuation of Heimaey on the 23rd of January 1973 (adapted from 1973-Allir í bátana)

Boat Name	Dep. Heimaey	Arr. Þorlákshöfn	No. passengers	Extra information	Total
Andvari VE 100	05.00		48	1 pregnancy	48
Arnar ÁR 55	03.00/04.00–04.30	07.15	113 (10)		161
Árni í Görðum VE 73	04.00	(One of the first to arrive)	124 (10)	1 pregnancy*	285
Ásberg RE 22	06.00	08.30	45 (13)		330
Ásver VE 355/Jörundur III RE 300	04.00–04.30		181 (9)	1 pregnancy	511
Baldur VE 24			43 (4)		554
Bergá SF3			48 (5)		602
Bergur VE 44	05.00–06.00	10.00	171 (8)		773
Björg VE 5			25 (4)	1 pregnancy	798
Dalaröst ÁR 52	04.00–04.30/06.00		67 (4)		865
Danski Pétur VE 423	04.15	08.00	231 (7)	2 pregnancies	1096
Einir VE 180			18 (1)		1114
Ellíðaey VE 45	04.00–05.00	08.00–10.00	50 (5)	1 pregnancy	1164
Emma VE 219	03.30		27 (4)	1 pregnancy	1191
Fifill GK 54	06.00–07.00	One of the first to arrive.	226 (14)	1 pregnancy	1417
Frár VE 208	03.30–04.00		57 (2)	1 pregnancy	1474
Freyja VE 125			29 (2)	1 pregnancy	1503
Friðrik Sigurðsson ÁR 17			24 (11)		1527
Frigg VE 316			21 (1)		1548
Fróði ÁR 33				Left without passangers	1548
Geir Jónasson ÁR 35				Left without passangers	1548
Gjafar VE 300	04.00	07.15	420 (9)	5 pregnancies	1968
Guðmundur Tómasson VE 238			19 (1)		1987
Gullberg VE 292			146 (3)	1 pregnancy	2133
Gullborg VE 38			28 (3)		2161
Gunnar Jónsson VE 500	04.00–05.00	08.00	146 (5)	2 pregnancies	2307
Haflidi VE 13	04.00		20 (1)		2327
Haförn VE 23			26 (4)		2353
Halkion VE 205			262 (9)	2 pregnancies	2615
Hamraberg VE 379	04.30		35 (3)		2650
Hrönn VE 366		14.00 (the last ship with passengers to arrive)	23 (4)	Damaged. Towed by Gullberg VE 292 and then by Grindvíkingur.	2673
Huginn II VE 55	03.00–04.00		128 (6)	4 pregnancies	2801
Ingólfur VE 216			35 (2)		2836
Ísleifur IV VE 463	03.00		111 (9)	1 pregnancy	2947
Ísleifur VE 63			216 (4)	2 pregnancies	3163
Júlia VE 123			27 (3)	1 pregnancy	3190
Jökull VE 15			11 (3)		3201
Kópur VE 11			41 (7)		3242
Kristbjörg VE 70			60 (2)	1 pregnancy	3302
Leó VE 400	05.00		62 (6)	1 pregnancy	3364
Lundi VE 110	04.00	11.00	200 (3)	Damaged. No engine at least initially.	3564
Magnús Magnússon VE 112	04.00		18 (5)		3582
Öðlingur VE 202			10(2)	1 pregnangy	3592
Ófeigur II VE 324			80 (3)		3672
Ófeigur III VE 325			27 (4)		3699
Reynir VE 120			16 (2)		3715
Sigurfari VE 138	06.00		55 (3)	1 pregnancy	3770
Sjöstjarnan VE 92	(very early)		14 (1)		3784
Sjöfn VE 37			21 (2)		3805
Skálafell ÁR 20				Left without passangers	
Sólvari AK 170	Last boat out	11.00	134 (11)	1 pregnancy	3939
Stígandi VE 77	First boat out		41 (3)		3980

Table 3 (continued)

Boat Name	Dep. Heimaey	Arr. Þorlákshöfn	No. passengers	Extra information	Total
Suðurey VE 20	04.30	07.30	48 (4)	1 pregnancy	4028
Surtsey VE 2			106 (8)	3 pregnancies	4134
Sæbjörg VE 56	04.00?	07.30?	50 (5)		4184
Sæfaxy VE 25			33 (2)	1 pregnancy	4217
Snætindur ÁR 88				Transported the slaughtered cows.	
Sæunn VE 60			33 (2)		4250
Sævar VE 19			16 (2)		4266
Ver VE 200	04.00	10.00	42 (4)		4308
Þórunn Sveinsdóttir VE 401	04.00		134 (9)	5 pregnancies	4442

Departure and arrival times are estimated from personal accounts and archived newspapers. Numbers in brackets represent the number of crew members. The running total represents the number of people evacuated from Heimaey

among other things, the boats were called up and asked for information about how many people were on board each individual boat. We counted as much as possible in the crowded conditions, and came to the conclusion that there were 120–130 people on board the boat, by counting one in every berth and then what could be seen. But when the people started to disembark in Þorlákshöfn in the morning, a large group came out of the net train and the other one in front of the boat, and in addition there were 10 babies in one bunk and eight in another, just to name a few. (Guðjónsson, 1973).

Ship captains reflect that they had no idea if the fissure had spread beneath the harbour, or if the harbour would close before they could safely evacuate their fellow islanders (e.g. Sveinsson 2008; Interview 16). There was no formal plan in place of what to do or where to go once they'd escaped the harbour. However, the captain of Stígandi VE77 notes they were the first boat to leave the harbour and set sail for Þorlákshöfn knowing that "a stream of boats would follow us" (Sveinsson 2008). Figure 7 shows the logbook entry of the ship Danski Pétur VE423, captained by Joel Þór Andersen, for the 23rd of January. The entry notes that the ship left Vestmannaeyjar at 04.15 with c. 200 people on board after a volcanic eruption began at around 01.45. The ship arrived at Þorlákshöfn at 08.00 where the passengers disembarked and by 09.00 the ship was on its return journey to Vestmannaeyjar.

Table 3 also note the number of "Laumufarþegi", which literally translates to "stowaways". These stowaways represented future unborn islanders whose mothers were pregnant during the evacuation. Table 3 suggests that at least 44 known pregnancies were among those evacuated by boat on the night of the 23rd of January 1973. Some accounts mention women going into labour during the evacuation, with one giving birth shortly after arriving on the mainland (Eyjólfsson 1973; Hermansen, 2013; Guðmannsdóttir, 2014).

One of the boats, which was on its way to land, announced that there was a young woman on board who was expecting a child. They were trying to find out whether the birth was imminent enough that she would give birth on the way. Then they planned to slow down the voyage, so that the baby would be born closer to Vestmannaeyjar than the mainland. So that the child would be a real Islander. (Johnsen 1974).

Boats began to leave Heimaey as soon as they were full due to concerns that the eruption might close the harbour. Most boats left between 03.00 and 07.00. As the boats sailed past the eruption, ash began falling, its heat melting the clothes worn by those on deck (Sigurðardóttir, 2013; Valtýsson, 2013; Hallbergsdóttir 2011; Jóhannsson, 2018). The true extent of the situation began to dawn on the islanders, with many realising all too late that they might never return to their homes (Sigurðardóttir, 2013; Ómarsdóttir, 2014; Jóhannsson, 2018).

As the boats progressed on the 6-hour journey towards Þorlákshöfn, many of the passengers, unused to sailing, were impacted by seasickness and the bitter cold (e.g. Jóhannesdóttir, 2013; Ólafsson, 2014; Jónasson, 2017; Jóhannsson, 2018; Jónasson, 2018; Guðmundsdóttir, 2023; Interview 4; Interview 6; Interview 9; Interview 19). Some suffered minor injuries on the packed boats (Ómarsdóttir, 2014), and one islander recalls being bitten by fleas in the boat's bunk (Interview 15).

My two cousins were in a bunk together and when we had just left, she got seasick. She called her dad, but there were so many people in the kitchen on the floor as well that he couldn't get to the corner. Then he called to her: take the damn schoolbooks out of your bag and throw it up in there. And with that, everyone started vomiting. All utensils in the kitchen that were used for cooking, pots, bowls, sinks and everything that could be found ... One of my sisters was lying under the kitchen table and was not sea-

Ár 1973 Mánuður Januar		
Dagur	Hinn	Sigling, veður, veiðar, staðarákvæðanir
Földud.	19.	kl 0700; + metin kl 0900; SV-gola Mikill sjór; Dr 48½ hr. 5. not skíðar í Gv Afti 1067 fiskar; Kl 1900: sett á fers í land. Kl 2120: + höf
Langsöld	20.	kl 0800; + metin kl 1020; SV-gola - alda dr. 2 hr. 102 fiskar Kl 1630 Sett á fers í land. Kl 1815: + höf
Sunnud.	21.	kl 0700; kl 0930: + metin, dr 5 hr. afti 673 fiskar. Kl 1830: Sett á fers í land. Kl 2015: + höf
22. 9 landi vegne bretru		
Þriðjud.	23.	Kl 0415: Farið frá Vm með ca. 200 manna til Þorlákshöfn, vegna kl. 0400 gos rem höfði austarst í Reykumí um kl. 0145 Kl 0800: + höfni; þorlákshöfn. Fólkis sett í land. Kl 0900: Sett á fers til Þorlákshöfn. Kl 1330: + Vm höfni. Kl 2100: - höf heldið austur til að drága metin, NV-gola (þod) en SV-gola ridd; + metin kl 2330; dr.
Miðvöld.	24.	Dr. 5 hr. afti 1851 fiskar; SV-gola kl 1200: undan að drága sett í fers í land Kl 1330: + höfni; Kl 1700: - Vm höfni á leið til Þorláksh. SV- St gola

Fig. 7 Logbook from the ship Danske Pétur. Records for the 22nd of January show that the boat returned to harbour due to bad weather. Records for the 23rd show that the boat left Heimaey at 4.15 am with 200 people on board and sailed to Þorlákshöfn due to an eruption. The ship arrived at the mainland at 8 am and left again at 9 am

a)

b)

Fig. 8 Patients from the hospital and elderly residents of the Skálholt retirement home were evacuated from Heimaey by aeroplane to the Keflavík base near Reykjavík. Photos: permission granted from (a) The Reykjavík Photography Museum; (b) Sigurgeir Jónasson

sick. She passed the time by counting how often the people vomited. I threw up 11 times and my little sister and mom 9 times. (Ágústsdóttir, 2013).

Evacuation by air

Not everyone was evacuated by boat to the mainland. Patients at the hospital and elderly people from the Skálholt retirement home were among those evacuated by plane to the airbase at Reykjavík (Fig. 8; Tíminn 24.01.1973:19 (Sigurðsson 2022).;

The US defence base at Keflavík and Flugfélag Íslands, the national aviation company, sent planes to Heimaey to assist with the evacuation (Morgunblaðið 23.01.1973:2,8). The first plane left Heimaey at around 04.00 (Sveinsson 2008) and by 10.00, around 300 people had been evacuated by air including 4 pregnant people (Guðmundsson 2013; 1973-Allir í bátana). Interviewee 10, a US Navy pilot stationed at the Keflavík Military Base shared his experiences:

At 5.30 am on the morning of the 23rd January 1973, I was asleep in bed when the phone rang. The air ops officer [at Keflavík Air Force base] told me there was a volcanic eruption in the Westman Islands, and I was needed for an evacuation flight ... Neither me, or my co-pilot had ever been to the Westman Islands, but we found it on a chart and took off heading south-east from our base at Keflavík. Flying the 70 miles to Heimaey took about 20 minutes ... we checked in with the tower there [at the airport], an Icelander was running the tower there as normal, and he spoke English, and we spoke English, so it was good ... but you know he didn't have any radar or anything ... We never did worry about the volcano. The danger we worried about, and this really did scare us, the number of aeroplanes that were up there with us in the clouds and ... There was no radar! So, nobody knew where these other aeroplanes were ... It seemed like everybody who had a family somewhere in Iceland who had an aeroplane was coming down rescuing their relatives! (Interview 10).

Through the course of the night, the eruption escalated, with the fissure extending over a large area, past Helgafell and into the sea on the north-east side of the island. The resulting explosive phreatomagmatic activity was highlighted in one personal account:

I asked my dad about this later, he said that he had watched as the plane took off to the east, with almost all his family on board. At the same time, it seems that a crack in the eruption probably opened into the sea because a large plume had formed and

he had watched the plane disappear into the plume, he also said that it had been a great relief when the plane had come out of the plume. (Pálsson, 2023).

Arriving on the mainland

The boats sailed in convoy to Þorlákshöfn, the closest port to Heimaey (Fig. 6b and c). Sveinbjörnsson (2013) describes how memorable it was to stand on the bridge and “see the lights on all these different large ships and boats sailing in the same direction to Þorlákshöfn like an endless railway train”. Arnar ÁR55 was the first ship to arrive at Þorlákshöfn at 07.15. As more boats arrived at the harbour, the docks became congested, and many boats had to wait outside the harbour mouth for a long time (Víglundsson, 1973).

As the islanders disembarked, they were met by volunteers from the Red Cross, US soldiers, police and medical staff including a paediatrician and a midwife (Morgunblaðið 23.01.1973:6; Eyjólfsson and 1973). As people were helped ashore, the urgency and confusion of the situation caused several near-miss accidents (e.g. Jónasson, 2017).

I watched my father helping to get people and belongings off the boat. He had taken a white bundle from the boat and tucked it under his arm while helping the woman who owned it. Then, all of a sudden, he heard a baby crying from under his arm. He was actually holding a newborn baby, without even realizing it. He was utterly terrified when he realized what had happened. It was pure luck that he didn't drop the bundle because the baby could have fallen between the ship and the pier where he was standing. (Sveinsson 2008).

The islanders were transported by bus to reception centres, and offered refreshments, blankets, and accommodation. Locations included the Seaman's School, and six local schools - Árbæjarskóli, Austurbæjarskóli, Hamrahlíðarskóli, Langholtsskóli, Melaskóli and Vogaskóli - all in the Reykjavík region (Red Cross report 1973; Morgunblaðið 23.01.1973:8). Stefán Ólafsson of Múlakaffi, a restaurant in Reykjavík, organised food for the evacuees and arranged for students from the Hotel and Catering School of Iceland to prepare food at the reception centres (Red Cross report 1973; Vísir 24.01.1973:20). Almannavarnir (the Icelandic Civil Defence) had supplies ready for such an eventuality including blankets and mattresses (Morgunblaðið 23.01.1973:8). Food was also provided at Vélsmiðia Héðinn's canteen in Reykjavík (Morgunblaðið 24.01.1973:11). Some personal accounts recollect the warm welcome received, along with warm soup, bread and food (e.g. Sveinsson 2008; Jónsson, 2018), while others highlight how after reaching safety, they finally could

process how dangerous the situation had been for all involved.

It wasn't until we had been disembarked in Þorlákshöfn and boarded the bus where I sat down with my little girl in my arms and the radio was on. Suddenly the man's voice comes in the radio, and he says something at first but then he said these words that woke me up. "An eruption has started on Heimaey" and then at this moment I realized the danger we were in and what had really happened. I broke down and cried like a baby (Kolbeinsdóttir, 2014).

Although extensive emergency preparations had been made at the evacuation centres, Vísir reports that at Árbæjarskóli there were not enough supplies to support the youngest evacuees and an emergency trip to purchase more diapers was instigated immediately (Vísir 23.01.1973:20).

The Red Cross collected registration data for the islanders (Tíminn 25.01.1973:3). Data included names, date of birth, address in Vestmannaeyjar, and intended short term accommodation on the mainland (Red Cross report 1973). Emergency accommodation was arranged for those who did not have friends or family on the mainland (Red Cross report 1973) with 500 beds organised at hotels across Reykjavík (Morgunblaðið 23.01.1973:8).

Those who had left the islands by plane were flown to the domestic airport in Reykjavík and the first planes arrived at around 06.00 (Vísir 23.01.1973:4). On arrival, the islanders were registered by the Red Cross and taken to Melaskóli to join the other evacuees. Patients were taken to the Landspítalinn, Borgarspítalinn and Landakot hospitals in Reykjavík (Morgunblaðið 23.01.1973:8). Among these taken to hospital were several women who had gone into labour either late on the 22nd or during the evacuation on the 23rd (Alþýðublaðið 24.01.1973:6–7,12; Morgunblaðið 23.01.1973:11). Interviewee 18 discussed her experience of evacuation from Heimaey while in labour:

They took me first down to the boat, and it was there that I started having contractions. But then all of a sudden, I was not allowed to walk myself anymore, because my water had broken, I was half tied up in the hospital stretcher to make sure I wouldn't fall out. The captain arrived and he thought I had a broken leg. Asked me if it was badly broken, then I told him I was about to have a baby, then he didn't want to leave without having a doctor or a nurse to assist with the birth ... Hólmfriður the nurse and Didda, she was something healthcare-related, they both came. They went up to the hospital to get supplies just in case I would have the baby on the way, but

then Guðrún the midwife arrived while I was still down by the docks, and she put her foot down ... At that point I was having quite a lot of contractions. Then they took me to the hospital ... First, I went to the hospital, and from there they took me to the airport ... Then all of a sudden, I'm in the hallway of the national hospital [in Reykjavík]. I remember, Vala came over [on the 22nd] and put my hair in rollers, I had to look good on the maternity ward! Helga Jón [the nurse] pulled them out of me in the helicopter on the way [to the National Hospital in Reykjavík]! Then I saw in the picture [in the newspaper], I had not brushed my hair or anything! I have never seen the hair rollers since!

Although the evacuation went well overall, there were some incidents. Egilsdóttir (2008) discusses her experience of the evacuation alongside her parents and 6 siblings. Travelling to the harbour with such a big family was difficult, and so the children were transported in two car journeys. As the second journey was underway, unbeknownst to their parents, the first group of siblings were ushered onto a boat which quickly left the harbour. During the boat ride to Þorlákshöfn, and bus ride to Reykjavík, the children were separated not only from their family but also from each other. Their parents refused to leave the island until the very last boat was leaving the harbour to search for their lost children, fearing that they may have fallen into the harbour and drowned. Several days passed before the family were finally reunited at Melaskóli. The long term emotional and mental impacts of this separation affected the family for many years after the event (Sveinsson 2008).

As the day progressed, islanders began dispersing to stay with friends and family across the mainland. By the end of the day, only 60 people needed housing, and they stayed at Hótel Esja. Some islanders stayed here for up to three weeks (Gunnarsson 1974). Taxis and volunteer drivers transported the islanders to their new accommodation (Vísir 24.01.1974:20; Morgunblaðið 26.01.1973:11).

It was the schoolboys who came to drive people from the Austurbæjarskóli where you were signed in. And a lot of young people from the university and high school and all that, they were volunteers to drive people because the taxis, didn't you know, we didn't have money or anything ... And I remember that the lady said to him. "You have to remember not to let her out of the car alone. You have to go take her to the door until somebody does, you know, take her." And when we were driving to where he lived, my brother, I said, okay, it's a light, they are all there. And this boy said, "No, I cannot leave you. I have to

go out with you." And he did follow me all the way to the door and to my mom. And I was so shy! But he wanted so to be perfect. I will always remember this boy, but I don't know his name or anything. But he, he did follow the rules all the way (Interview 27).

Registration data collected by the Red Cross on the 23rd of January 1973 indicates that 4215 islanders were transported to Reykjavík (Red Cross Report 1973). The islanders were distributed as follows: Árbæjarskóli 497, Austurbæjarskóli 626, Hamrahlíðarskóli 680, Langholtsskóli 40, Melaskóli 716, Sjómannaskóli 945, Vogaskóli 377, other (hospital/nursing home) 339. These numbers exclude the rescue workers who stayed behind and the sailors who returned to the islands from Þorlákshöfn.

Registration cards were processed by typing girls from the City of Reykjavík and the Central Bank, a task which was completed by midnight on the 24th of January 1973 (Red Cross Report 1973). IBM in Iceland offered use of computers to record the data on punch information report cards which were kept in three versions – listed alphabetically by name, listed by address in Vestmannaeyjar and listed by address on the mainland (Red Cross Report 1973). Over the next few days and weeks, the islanders moved from their emergency accommodation to more long-term housing. Keeping track of these movements was a priority and the IBM systems recorded and maintained up to date information on the changing addresses of the evacuated islanders (Morgunblaðið 25.01.1973:11).

Discussion

We consider the Eldfell eruption, in its entirety, to be a "Big Story". This Big Story covers the initial fissure opening through to the end of the eruption, recovery work, the 50th anniversary in 2023 and plans for future volcanic hazard mitigation. In this Big Story, the first night and the associated evacuation, if mentioned at all, are typically summarised in a few sentences with little detail provided. In this paper however, we have utilised the "Small Stories" approach (Georgakopoulou 2015) to re-create a timeline of the first night of the eruption. We have presented a detailed account of the first 15 hours of the eruption and recorded how the community of Heimaey responded during the volcanic crisis.

In the following sections we discuss our findings, highlighting what lessons can be learnt from understanding past behaviour, and stress the importance of working with communities to establish strong collaborative relationships

Lessons from past volcanic crises

Revisiting the Eldfell eruption highlights the theme of technological change in the 50+ years since 1973. A lack of monitoring infrastructure in 1973 meant that no early warnings about the eruption were made. The depth of precursor earthquakes meant that those on the island didn't feel the activity until it was too late. Today, the establishment of a country-wide seismic monitoring system, and advancements in remote sensing technologies now allow for detailed observations of active volcanoes in Iceland (e.g. Greenfield et al. 2022; Parks et al. 2023). The IMO monitors volcanic activity across Iceland, including the Vestmannaeyjar Volcanic System (VVS), meaning an eruption would not happen here unexpectedly again. Predicting the location and kind of eruption that might happen within the VVS is complicated (Pfeffer et al. 2020). The marine-setting of the volcanic system means that future eruptions could happen in the sea near to Heimaey causing an explosive phreatomagmatic eruption like Surtsey (1963–1967). While an explosive Surtseyan eruption could impact evacuation routes from Heimaey, the extensive monitoring in place should provide time and space for organised formal evacuations to take place.

A key theme when discussing the Vestmannaeyingar is that of the resilient island community. Heimaey is separated from the Icelandic mainland by only 10 km of ocean, however the community here has its own separate history and culture, shaped by time, landscapes and loss (e.g. Garðardóttir and Guttormsson 2009; Helgason 1997, 2018). This close-knit community have always worked together, the success of their existence here over the centuries dependant on this collective approach. Their shared history of isolation and resilience in the face of extreme weather and fishing tragedies for example, have created a supportive community atmosphere where people are inclined to support each other and not work for personal benefit alone. These characteristics of resiliency and self-reliance are highlighted in the events of Gos Nött. Despite the escalating situation and the urgency involved, the community responded by uniting and supporting each other to safety. For example, thinking that Kirkjubæær farm was alight, the initial response of many islanders was to rush eastward to help friends and neighbours.

It's important to understand the specific movements of people when the eruption began, such as travelling to see the eruption and causing traffic jams, congregating together as families to finish games of chess and drink coffee before leaving. This information, while seemingly anecdotal, can be used to understand, predict and prepare for future eruptions. These behaviours, alongside historical and cultural contexts, can be included into models (e.g. Moradi et al. 2025) which predict movement

and decision making to support local law enforcement and rescue teams as they plan for evacuations.

The 1964 Heimaey evacuation plan (Böðvarsson 1964) notes that full evacuation, with support ships sent from the mainland, should take between 15 and 24 hours. In 1973, the community did not wait for help, instead sailors prepared their boats and welcomed islanders aboard, taking the initiative to support their friends and family to safety. In less than 5 hours, more than 4000 people had been successfully evacuated to the mainland.

Descriptions of Gos nött often focus on the calm behaviour shown by the Vestmannaeyingar in the face of danger. As the community moved to the harbour the atmosphere is described more as a "Sunday walk" and not a flight from advancing lavas. Understanding the community's history, their resilience and no-nonsense attitude, this calmness makes sense. The wider Icelandic philosophy of "*Petta Reddast*" embodies this calm response, that despite the immediate challenges, everything will work out in the end. This philosophy, combined with experiences of the 1973 evacuation and subsequent recovery, would likely guide the community response during future eruptions. However, when planning, we must consider not just the overall community response, but also that of individuals. Many have noted the fear and distress felt as the reality of the situation became clear. Sailing past the fissure on the way to Þorlákshöfn had many realising that they might never see their homes again. For some, the calm exterior didn't crack until they were safely on the mainland and on their way to evacuation centres. In Meara et al. (2024), we noted how many islanders couldn't reflect on the eruption and its impacts until the 40th anniversary in 2013, and that even now many still respond badly to earthquakes and extreme weather in the islands. Of those interviewed here, many were children during the eruption, and in hindsight, it's likely that they would have benefitted from specific support which was unavailable in 1973.

The community of Heimaey has changed somewhat in the past 50 years, and the Eldfell eruption has become another chapter in the saga of Heimaey and the Vestmannaeyingar. But we shouldn't assume that the event, and its impacts on the community, are ancient history. The close community feeling remains, as does the fishing fleet based in the harbour. Should another eruption happen, it's likely that residents would use their previous experience as guidance and work together to evacuate. The Vestmannaeyingar have an established understanding of what to do in an eruption, a cultural blueprint so to speak. Some older residents however have noted that they would not evacuate again. They do not wish to be separated from their homes for a second time and would prefer to stay on the island and take their chances (Interview 12, 26). Other islanders would refuse to leave

without bringing their animals or personal belongings (Interview 2), a response to government interference in 1973 that limited access back to Heimaey after the initial evacuation (Meara et al. submitted to this issue).

Our “Small Stories” highlight changes in technology and telecommunications and their application during an evacuation. Guðmundsson (2023) for example notes that the Icelandic Civil Defence were unable to contact Heimaey due to the high load of calls impacting the telephone network during the early hours of the eruption. The story of the children separated from their family also underlines how differently we communicate in the present day – it’s almost unthinkable to consider adults or teenagers without access to mobile phones for example. However, despite these changes, many of the experiences and emotions presented in this paper are still relevant to those we experience today – fear and distress, the need for safe sanctuary, even the need for clean nappies.

Community collaboration and engagement

Bird et al. (2009, 2011, 2012), and Jóhannesdóttir and Gísladóttir (2010) highlight that local communities in Iceland often have an unrivalled understanding of natural hazards and their impacts. Experiences of historical events shared between generations, engagement with the landscape and seasons, and community support structures all mould this knowledge and understanding. Community understanding of volcanic eruptions and their impacts is nowhere more apparent than on Heimaey. A large portion of the community have first-hand experience of the events of 1973, and continued education and commemoration on the island means that younger generations are also well-versed in the history (Meara et al. 2024). This experience and understanding mean that the islanders are ideally placed to contribute to planning and preparation for future events. This is particularly important in the context of the island communities as noted by Komorowski et al. (2016) and references therein.

There are no eruptions currently expected within the Vestmannaeyjar archipelago, and the area is now closely monitored, however preparation and engagement with at risk communities such as the Vestmannaeyjar should be an on-going priority. Taking the time to understand not only the volcanic systems beneath our feet, but also the people who live there should be key to any hazard management plan. By collecting and collating the islanders’ “Small Stories”, we can look to understand not only the volcano and its eruptions, but also the community who live on the slopes of a slumbering volcanic system. Through these stories, we can understand who the Vestmannaeyjar were before 1973, and who they have since become. We can understand how the community might respond to another eruption, and what strategies might work best for monitoring, mitigating and communicating

during future events. Heimaey and the Vestmannaeyjar are unique. One of only three permanently inhabited islands in Iceland, Heimaey is the only island directly impacted by active volcanism. As such, it is imperative that the community here are included during planning and development of their own volcano crisis management plans.

Our work on Heimaey has developed organically into a longitudinal study thus far spanning four years, with hopefully more to come. We have naturally developed working and personal relationships with the islanders, and often discussions have evolved beyond the confines of formal interviews. Specifically, during these past four years, in addition to our own data collection, we have also seen this Vestmannaeyjar experiencing the Sundnhúkagígar eruptions on the Icelandic mainland and their impacts on the town of Grindavík. Unofficial discussions have highlighted similarities between the events (e.g. the emergency evacuations, communities separated, and backlash around the costs of protecting the town from advancing lavas) while also noting certain lessons which have not been learned in the 50 years since the Eldfell eruption (e.g. needing to rescue pets and livestock from the abandoned town; Meara et al. submitted to this issue; Morgunblaðið 18.11.2023). In both interviews and more general discussions, there was a feeling that similar mistakes were being made, and as such another community was being let down.

These discussions highlighted how strong emotions from the events of 1973 still run deep in this community, and that these emotions were triggered seeing the eruptions developing in Grindavík. There is still some bad feeling linked to interventions by Almannavarnir and the Icelandic Government limiting access to Heimaey in 1973 (Meara et al. submitted to this issue), and this was reflected in discussions around resident access to Grindavík. Islanders also noted differences in communications about the eruptions. In 1973 there were only a handful of newspapers, radio and tv outlets covering the eruption and two main scientific voices heard throughout the process – Þorbjörn Sigurgeirsson and Sigurður Þorarinsson. They compared this to modern communications during the Sundnhúkagígar eruptions and highlighted the increased number of media outlets reporting on the events, as well as social media. They noted that at times information was becoming hard to follow, and that mixed messages appearing in the press made it hard to know who or what to believe.

These conversations have brought us to the realisation that to be ready for future eruptions at-risk communities, like the Vestmannaeyjar, need long-term engagement from officials, with relationships built on trust, understanding and engagement even during times of quiescence. We therefore suggest our own small call to action.

Communities are not just data sets to be quantified, their knowledge and understanding not mere resources to be extracted. It is our responsibility to really know the communities we serve, not just scientifically, not just academically. It is our responsibility to engage, to learn their history, culture, and language. We need to understand and participate in the community's day to day lives. As we move away from the practice of "parachute science", we need to embrace building long-term relationships based on trust, respect and empathy with both people and places.

A simple change in the case of Heimaey for example, could be a presence at the annual Goslokahátið celebration (Meara et al. 2024). The festival, held annually on the first weekend in July, brings together islanders and the wider diaspora to commemorate the end of the Eldfell eruption and the town's recovery. Celebrations include concerts, sporting tournaments, religious ceremonies and garden parties. What better time for volcanologists to engage with a community than during a festival dedicated to a volcanic eruption? Potential engagement activities could centre around young people, for example sponsoring a prize for schoolwork about the eruption or offering opportunities to meet and dress up like a volcanologist. A small, but regular investment of time here could lead to long-term relationships beneficial to both scientists and the community.

This work may seem very specific in its targeted approach towards Heimaey and the Vestmannaeyingar, and it is. The unique nature of this small island community, particularly within the wider Icelandic context, calls for targeted interventions and discussions. This doesn't however, mean that the paper's findings aren't applicable to a wider audience. We hope that this work will inspire conversations between scientists, government organisations and impacted communities. Working together to build collaborative long-term relationships between key stakeholders, even during times of quiescence, can only be beneficial to all involved.

Conclusions

This paper set out initially to answer the call by Pyle (2018) and Pyle and Barclay (2020), who note that historical records should be used to improve eruption histories and understand the social and political impacts of volcanic eruptions. We engaged with the present and past voices of the Vestmannaeyingar through interviews, personal accounts, autobiographies, and historical documents to create a chronology of Goss Nótt, the first night of the Eldfell 1973 eruption. In doing so, we identified several "through lines" (Saldaña 2003) which connected varied narrative data sets and highlighted shared experiences of the event as discussed in the previous sections.

Much of the data included is shared here in English for the first time.

The work highlights how individuals and the wider community reacted in the early hours of the eruption and shows the realities of emergency evacuation. We have shown how the community supported each other to safety and that despite the unexpected nature of the eruption, there were no deaths and very few injuries during the first day.

Much has changed in the 50+ years since the Eldfell eruption – monitoring technology, digital banking, mobile phones and communication systems, social media etc. However, there are many aspects of human behaviour that remain the same. We can all see ourselves, our friends and families, in the stories shared. Often, the small details are the most important when understanding peoples lived experiences.

Until 2023, the eruption of Eldfell was the only Icelandic eruption to have occurred close to an urban settlement. While other Icelandic eruptions have seen transient impacts for travel and commerce both within and beyond Iceland, this was an eruption with lasting consequences for an entire community, uprooting lives and forever changing the place they call home. Understanding the experiences of those involved in the 1973 eruption has clear implications for enabling appropriate responses to future events, not only on the island of Heimaey, but also for communities such as Grindavík on the Icelandic mainland.

Our research conclusions compliment the findings of Bird et al. (2009) and others, who note that engaging with local communities is essential to the development of national contingency plans. We state that the history, culture and lived experiences of this island community make them essential co-producers of the Vestmannaeyjar Contingency Plan. The community here has unrivalled experience of the land and sea, the seasons, eruptions and evacuations. We answer the call to utilise historical documents to better understand eruptions and their impacts. But we add a call of our own - that hazard scientists develop long-term relationships with at-risk communities focused on regular meaningful engagement and communication, even in times of quiescence.

Acknowledgements

The authors would like to thank the community of Vestmannaeyjabær for their support and contributions to this research—particular thanks are given to Kári Bjarnason, and Hrefna Guðmundsdóttir. Thanks also to Anna Clarke, Sian Neilson, Dr Kirstie Wright, Dr Rhys Jones, Dr Diana Beljaars, Jonas Rae, Lilja Gísladóttir, Professor Paul Meara, Dr Gwen Awbery, Dr Jan Rae, and Simon Rae for their support, discussions and proofreading throughout the development of this work. Finally, thanks to the reviewers and the editor of this paper who provided extensive suggestions which have thoroughly benefitted this final piece of work.

Authors contributions

Rhian Meara undertook the fieldwork, collected the survey and interview data and wrote the manuscript. Arnar Árnason was involved with project development, data interpretation, data translation and manuscript drafting. Erin Roberts contributed data interpretation and manuscript drafting. Helga Hallbergsdóttir was involved with fieldwork planning, project development, and on-site networking and interviewing. Ingibergur Óskarsson collected original Icelandic personal written accounts used in this research and participated in field work. Sigurjón Hafsteinsson contributed to fieldwork planning and data translation. All co-authors contributed to draft review and editing.

Funding

This project was funded through an Innovation Grant from the Coleg Cymraeg Cenedlaethol, and Covid-19 recovery funding from Swansea University.

Data availability

Data has been collected for this research through interviews and surveys. Participants have signed consent forms agreeing that their data can be shared as part of an anonymised publication but have not consented to the wider sharing of their recordings. This is in keeping with Swansea University's GDPR regulations.

Declarations

Ethics approval and consent to participate

This research has been conducted with ethical approval from Swansea University under the ethics code SU-Ethics-Staff-270323/585. Participants have provided informed consent to participate in this research.

Consent for publication

Consent for publication of photographs in this paper have been granted from Morgunblaðið, the Sagnheimar Museum, the Reykjavík Photography Museum and The National Museum of Iceland.

Competing interests

The authors declare no competing interests.

Received: 18 July 2025 / Accepted: 7 January 2026

Published online: 29 January 2026

References

Akason JB, Ólafsson S, Sigbjörnsson R (2006) Phases of earthquake experience: a case study of the June 2000 south Iceland earthquakes. *Risk Anal.* 26(5):1235–1246. <https://doi.org/10.1111/j.1539-6924.2006.00811.x>

Bird DK, Gísladóttir G (2012) Residents' attitudes and behaviours before and after the 2010 Eyjafjallajökull eruptions - a case study from southern Iceland. *Bull. Volcanol.* 74:1263–1279. <https://doi.org/10.1007/s00445-012-0595-z>

Bird DK, Gísladóttir G (2018) Responding to volcanic eruptions in Iceland: from the small to the catastrophic. *Palgrave Commun.* 4:151. <https://doi.org/10.1057/s41599-018-0205-6>

Bird DK, Gísladóttir G (2020) Enhancing tourists' safety in volcanic areas: an investigation of risk communication initiatives in Iceland. *Int. J. Disaster Risk Reduct.* 50:101896. <https://doi.org/10.1016/j.ijdrr.2020.101896>

Bird DK, Gísladóttir G, Dominey-Howes D (2009) Resident perceptions of volcanic hazards and evacuation procedures. *Nat. Hazards Earth Syst. Sci.* 9:251–266. <https://nhess.copernicus.org/articles/9/251/2009/>

Bird DK, Gísladóttir G, Dominey-Howes D (2010) Volcanic risk and tourism in southern Iceland: implications for hazard, risk and emergency response education and training. *J. Volcanol. Geotherm. Res.* 189:33–48. <https://doi.org/10.1016/j.jvolgeores.2009.09.020>

Bird DK, Gísladóttir G, Dominey-Howes D (2011) Different communities, different perspectives: issues affecting residents' response to a volcanic eruption in southern Iceland. *Bull. Volcanol.* 73:1209–1227. <https://doi.org/10.1007/s00445-011-0464-1>

Böðvarsson J (1964) Um skipulag brotflutnings íbúa Vestmannaeyja, vegna móglegrar hættu af völdum náttúruhamfara. *Almannavarnir, Íslands*

Carlsen HK, Gíslason T, Benediktsdóttir B, Kolbeinsson TB, Hauksdóttir A, Thorsteinsdóttir T, Briem H (2012) A survey of early health effects of the Eyjafjallajökull 2010 eruption in Iceland: a population-based study. *BMJ Open* 2:e000343. <https://doi.org/10.1136/bmjopen-2011-000343>

Crossa V (2005) Converting the "small stories" into "big" ones: a response to Susan Smith's "states, markets and an ethic of care". *Polit. Geogr.* 24:29–34. <https://doi.org/10.1016/j.polgeo.2004.10.008>

Egilssdóttir H (2008) Edda týnist í eldgosinu. Sönn saga úr Heimaey, Reykjavík

Einarsson P (2018) Short-term seismic precursors to Icelandic eruptions 1973–2014. *Front. Earth Sci.* 6:1–15. <https://doi.org/10.3389/feart.2018.00045>

Einarsson P (2019) Historical accounts of pre-eruption seismicity of Katla, Hekla, Óraefajökull and other volcanoes in Iceland. *Jökull* 69:1–18

Einarsson P, Jakobsson S (2020) The analogue seismogram archives of Iceland: scanning and preservation for future research. *Jökull* 70:57–72

Eyjólfsson GÁ (1973) Vestmannaeyjar Byggð og Eldgos. Ísafoldarprentsmiðja HF, Útgefandi. Reykjavík, Iceland

Freeman M (2011) Stories, big and small: toward a synthesis. *Theory Psychol.* 21(1):114–121. <https://doi.org/10.1177/095354309354394>

Garðardóttir Ó, Guttormsson L (2009) Public health measures against neonatal tetanus on the island of Vestmannaeyjar (Iceland) during the 19th century. *Hist. Fam.* 14(3):266–279. <https://doi.org/10.1016/j.hisfam.2009.08.004>

Georgakopoulou A (2007) Thinking big with small stories in narrative and identity analysis. In: Bamberg M (ed) *Narrative - state of the art*. John Benjamins Publishing Company

Georgakopoulou A (2015) Small stories research methods - analysis - outreach. In: De Fina A, Georgakopoulou A (eds) *The Handbook of narrative analysis*, 1st edn. John Wiley and Sons, Inc

Gísladóttir G, Bird D, Pagneux E (2021) What can we learn from previous generations? álfavær's experience of the 1918 Katla eruption. *Jökull* 71:71–90

Gissurðóttir ÓS, Hlðversdóttir H, Thordardóttir EB, Pétursdóttir G, Hauksdóttir A (2019) Mental health effects following the eruption in Eyjafjallajökull volcano in Iceland: a population-based study. *Scand. J. Public Health* 47(2):251–259. <https://doi.org/10.1177/1403494817751327>

Glaser B, Strauss A (1967) *The discovery of grounded theory: strategies for qualitative research*. Sociology Press, Mill Valley, CA

Góralaska M (2020) Anthropology from home. Advice on digital ethnography for the pandemic times. *Anthropol. Action* 27(1):46–52. <https://doi.org/10.3167/aia.2020.270105>

Greenfield T, Winder T, Rawlinson N, MacLennan J, White RS, Águstsdóttir T, Bacon CA, Brandsdóttir B, Eibl EPS, Glastonbury-Southern E, Gudnason EA, Hersir GP, Horálek J (2022) Deep long period seismicity preceding and during the 2021 Fagradalsfjall eruption, Iceland. *Bull. Volcanol.* 84:101. <https://doi.org/10.1007/s00445-022-01603-2>

Guðmundsson S (2013) Undir Hraun. Gosið í Heimaey 1973 í mál og myndum. Reykjavík

Gunnarsson Á (1974) Eldgos í Eyjum. *Iceland Review*, Reykjavík, Iceland

Hafsteinsson S, Árnason A (2020) Landscapes of trauma: a reflection on wonder. *J. Scott. Thought* 11:152–175

Hallbergsdóttir H (2011) Menn, haf og hraun Saga í list og minnismerkjum á Heimaey. [Unpublished MA dissertation] Háskóli Íslands

Halldórsson SA, Marshall EW, Caracciolo A, Matthews S, Bali E, Rasmussen MB, Ranta E, Gunnarsson Robin J, Guðfinnsson GH, Sigmarsdóttir O, MacLennan J, Jackson MG, Whitehouse MJ, Heon H, van der Meer QHA, Mibeik GK, Kaliliokoski MH, Repczynska MM, Rúnarsdóttir RH, Sigríðsson G, Pfeffer MA, Scott SW, Kjartansdóttir R, Kleine Bl, Oppenheimer C, Aiuppa A, Ilyinskaya E, Bitetto M, Giudice G, Stefánsson A (2022) Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland. *Nature* 609:529–534. <https://doi.org/10.1038/s41586-022-04981-x>

Haraldsdóttir HA, Guðmundsdóttir D, Romano E, Bþorðardóttir EB, Guðmundsdóttir B, Elklit A (2014) Volunteers and professional rescue workers: traumatization and adaptation after an avalanche disaster. *J. Emerg. Manag.* 12(6):457–466. <https://doi.org/10.5055/jem.2014.0209>

Helgason P (1997) Historical narrative as collective therapy: the case of the Turkish raid in Iceland. *Scand. J. Hist.* 22(4):275–289. <https://doi.org/10.1080/034687508579357>

Helgason P (2018) The corsairs' longest voyage. The Turkish raid in Iceland 1627, vol 119. *History of Warfare*. <https://doi.org/10.1163/9789004363700>

Hlðversdóttir H, Thorsteinsdóttir H, Thordardóttir EB, Njardvík U, Petursdóttir G, Hauksdóttir A (2018) Long-term health of children following the Eyjafjallajökull volcanic eruption: a prospective cohort study. *Eur J Psychotraumatol* 9(sup2). <https://doi.org/10.1080/20008198.2018.1442601>

Icelandic Meteorological Office. (2023). Icelandic Meteorological Office Database, delivery no. 2023-05-23/Storhofdi_jan1973

Jackson P (2010) Food stories: consumption in an age of anxiety. *Cult. Geogr.* 17(2):147–165. <https://doi.org/10.1177/1474474010363844>

Jóhannesson G, Gísladóttir G (2010) People living under the thread of volcanic hazard in southern Iceland: vulnerability and risk perception. *Nat. Hazards Earth Syst. Sci.* 20:407–420. www.nat-hazards-earth-syst-sci.net/10/407/2010/

Johnsen Á (1974) Eldar í Heimaey. Reykjavík

Kokorsch M, Gísladóttir J (2023) "You talk of threat, but we think of comfort": the role of place attachment in small remote communities in Iceland that experience avalanche threat. *Reg. Environ. Change* 23:150. <https://doi.org/10.1007/s10113-023-02144-w>

Komorowski JC, Morin J, S J, Kelman I (2016) Challenges of volcanic crises on small islands states. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) *Observing the volcano world. Advances in volcanology*. Springer, Cham. https://doi.org/10.1007/11157_2015_15

LB, Elklt A, Gudmundsdóttir DB (2006) Post-traumatic stress reactions in children after two large earthquakes in Iceland. *Nord. Psychol.* 58(2):91–107. <https://doi.org/10.1027/1901-2276.58.2.91>

Löggreglöstjórn VÍ, ríkislöggreglöstjóra A, Vestmannaeyja A (2017) Viðbragðsáætlun vegna eldgoss Vestmannaeyjum. Retrieved on February 1, 2018 from: www.almannavarnir.is/utgefðefni/vidbragðsáætlun-vegna-eldgoss-i-vestmannaeyjum-utgafa-1-0-23-01-2017/?wpdmld=22104

Lorimer H (2003) Telling small stories: spaces of knowledge and the practice of geography. *Trans. Inst. Br. Geogr.* 28(2):197–218. <https://doi.org/10.1111/1475-5661.00087>

Magnússon E, Rott H, Björnsson H, Pálsson F (2007) The impact of jökullhaups on basal sliding observed by SAR interferometry in Vatnajökull, Iceland. *J. Glaciol.* 53:232–240. <https://doi.org/10.3189/172756507782202810>

Matti S, Ögmundardóttir H (2021) Local knowledge of emerging hazards: instability above an Icelandic glacier. *Int. J. Disaster Risk Reduct.* 58:102187. <https://doi.org/10.1016/j.ijdrr.2021.102187>

Matti S, Ögmundardóttir H, Aðalgeirs Þóttir G, Reichardt U (2022) Communicating risk in glacier tourism: a case study of the svínafellsheiði fracture in Iceland. *Mit. Res. Dev.* 42(2):D1–D12. <https://doi.org/10.1659/MRD-JOURNAL-D-21-0051.1>

Mattsson H, Höskuldsson Á (2003) Geology of the Heimaey volcanic centre, south Iceland: early evolution of a central volcano in a propagating rift? *J. Volcanol. Geotherm. Res.* 127:55–71. [https://doi.org/10.1016/S0377-0273\(03\)00178-1](https://doi.org/10.1016/S0377-0273(03)00178-1)

Mattsson H, Höskuldsson Á, Hand S (2003) Crustal xenoliths in the 6220 BP Sæfells tuff-cone, south Iceland: evidence for a deep, diatreme-forming, Surtseyan eruption. *J. Volcanol. Geotherm. Res.* 145:234–248. <https://doi.org/10.1016/j.volgeores.2005.01.009>

Meara RH, Árnason A, H EO, Hallbergdóttir H, Hafsteinsson SB (2024) Magmatic memories: Eldfell, 1973. *Volcanica* 7(1):1–43. <https://doi.org/10.30909/vol.07.01.361403>

Moradi H, Iskandar R, Rodriguez S, Singh D, Dugdale J, Tzempelikos D, Sfetsos A, Bakogianni E, Pavlidis E, Díaz J, Ribas M, Moragues A, Estrany J (2025) Improving evacuation policies through agent-based modelling and stakeholder engagement in hazard-prone areas. *Int. J. Disaster Risk Reduct.* 119:105280. <https://doi.org/10.1016/j.ijdrr.2025.105280>

Olson MR, Craig CJ (2009) "Small" stories and meganarratives: accountability in balance. *Teach. Coll. Rec.* 111(2):547–572. <https://doi.org/10.1177/01614681091100201>

Ómarsdóttir I, Pétursdóttir G, Bird DK, Gísladóttir G (2022) Community resilience through the lens of social support: recovering from the 2010 Eyjafjallajökull eruption in Iceland. *Int. J. Disaster Risk Reduct.* 81:103272. <https://doi.org/10.1016/j.ijdrr.2022.103272>

Pagneux E, Gísladóttir G, Jónsdóttir S (2011) Public perception of flood hazard and flood risk in Iceland: a case study in a watershed prone to ice-jam floods. *Nat. Hazards* 58:269–287. <https://doi.org/10.1007/s11069-010-9665-8>

Parks M, Sigmundsson F, Drouin V, Hjartardóttir Á, Geirsson H, Hooper A, Vogfjörd KS, Ófeigsson BG, Hreinsdóttir S, Jensen EH, Einarsson P, Barsotti S, Fridriksdóttir HM (2023) Deformation, seismicity and monitoring response preceding and during the 2022 Fagradalsfjall eruption, Iceland. *Bull. Volcanol.* 85:60. <https://doi.org/10.1007/s00445-023-01671-y>

Pfeffer MA, Arellano S, Barsotti S, Peterson GN, Barnie T, Ilyinskaya E, Hjörvar T, Bali E, Pedersen GBM, Guðmundsson GB, Vogfjörd K, Ranta EJ, Óladóttir BA, Edwards BA, Mousallam Y, Stefánsson A, Scott SW, Smekens J-F, Varnam M, Titos M (2024) SO₂ emission rates and incorporation into the air pollution dispersion forecast during the 2021 eruption at Fagradalsfjall, Iceland. *J. Volcanol. Geotherm. Res.* 449:108064. <https://doi.org/10.1016/j.volgeores.2024.108064>

Pfeffer MA, Barsotti S, Jensen EH, Pagneux EP, Björnsson BB, Jóhannesson G, Höskuldsson Á, Sandri L, Selva J, Tarquini S, Vitturi MM, Jónsdóttir I, Egilson D, Giroud M, Karlsson S, Óladóttir B, Roberts MJ, Vogfjörd K, Harðardóttir J (2020) An initial volcanic hazard assessment of the Vestmannaeyjar volcanic System: impacts of lava flow and tephra deposit on Heimaey. *Veðurstofa Íslands* VI:2020–011 ISSN 1670-8261

Porgeirsson Ó, Jónsson S, Einarsson P, Rafnsson S, Halldorsson Ó (2013) Accounts of the 12 June 1838 earthquake and other large earthquakes in North Iceland. In: Proc. of the International Workshop on Earthquakes in North Iceland, Húsavík, Iceland

Pyle DM (2018) What can we learn from records of past eruptions to better prepare for the future. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) *Observing the volcano world. Advances in volcanology*. Springer, Cham. https://doi.org/10.1007/11157_2017_5

Pyle DM, Barclay J (2020) Historical records of volcanic eruptions deserve more attention. *Nat. Rev. Earth Environ.* 1:183–184. <https://doi.org/10.1038/s43017-020-0044-z>

Pyyry N, Hilander M, Tani S (2021) Photography and photo elicitation as visual methods. *Creat. Methods Hum. Geogr.* 75–86

Red Cross Report (1973)

Saldaña J (2003) *Longitudinal qualitative research: analysing change through time*. Walnut Creek, CA: AltaMira Press

Self S, Sparks RSJ, Booth B, Walker GPL (1974) The 1973 Heimaey strombolian scoria deposit, Iceland. *Geology Magazine* 111(6):539–548

Sigmarsdóttir O (1996) Short magma chamber residence times at an Icelandic volcano inferred from U-series disequilibria. *Nature* 382:440–442

Sigmundsson F, Parks M, Hooper A, Geirsson H, Vogfjörd KS, Drouin C, Ófeigsson VG, Hreinsdóttir S, Hjaltadóttir S, Jónsdóttir K, Einarsson P, Barsotti S, Horálek J, Ágústsdóttir T (2022) Deformation and seismicity decline before the 2021 Fagradalsfjall eruption. *Nature* 609:523–528. <https://doi.org/10.1038/s41586-022-05083-4>

Sigurðsson ÓR (2022) Undir Gjall Regni. *Frásögn löggreglumanns af gosinu í Eyjum 1973*. Reykjavík

Sveinsson Ó (2008) Útkall Flóttin Frá Heimaey. *Hljóðbók*, is

Thorarinsson S, Steinhórsson S, Einarsson T, Kristmannsdóttir H, Oskarsson N (1973) The eruption of Heimaey, Iceland. *Nature* 241:372–375. <https://doi.org/10.1038/241372a0>

Thordardóttir EB, Gudmundsdóttir B, Petursdóttir G, Valdimarsdóttir UA, Hauksdóttir A (2018) Psychosocial support after natural disasters in Iceland—implementation and utilization. *Int. J. Disaster Risk Reduct.* 27:642–648. <https://doi.org/10.1016/j.ijdrr.2017.11.006>

Thordardóttir EB, Gudmundsdóttir H, Gudmundsdóttir B, Hrólfsdóttir M, Aspelund T, Hauksdóttir A (2019) Development and predictors of psychological outcomes following the 2008 earthquake in Iceland: a longitudinal cohort study. *Scand. J. Public Health* 47(2):269–279. <https://doi.org/10.1177/140349481771444>

Thordardóttir EB, Valdimarsdóttir UA, Hansdóttir I, Hauksdóttir A, Dyregrov A, Shipherd JC, Elklt A, Resnick H, Gudmundsdóttir B (2016) Sixteen-year follow-up of childhood avalanche survivors. *Eur. J. Psychotrauma* 7(1). <https://doi.org/10.3402/ejpt.v7.30995>

Thordardóttir EB, Valdimarsdóttir UA, Hansdóttir I, Resnick H, Shipherd JC, Gudmundsdóttir B (2015) Posttraumatic stress and other health consequences of catastrophic avalanches: a 16 year follow-up of survivors. *J. Anxiety Disord.* 32:103–111. <https://doi.org/10.1016/j.janxdis.2015.03.005>

Thordarson T, Self S (1993) The Laki (skáftár fires) and grímsvötn eruptions in 1783–1785. *Bull. Volcanol.* 55:233–263. <https://doi.org/10.1007/BF00624353>

Thordarson T, Self S (2001) New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland. *J. Volcanol. Geotherm. Res.* 108:33–54. [https://doi.org/10.1016/S0377-0273\(00\)00277-8](https://doi.org/10.1016/S0377-0273(00)00277-8)

Thorvaldsdóttir S, Sigbjörnsson R (2015) Framing the 2010 Eyjafjallajökull volcanic eruption from a farming-disaster perspective. *Nat. Hazards* 77:1619–1653. <https://doi.org/10.1007/s11069-015-1667-0>

Wastl M, Stötter J, Kleindienst H (2011) Avalanche risk assessment for mountain roads: a case study from Iceland. *Nat. Hazards* 56:465–480. <https://doi.org/10.1007/s11069-010-9703-6>

Primary Sources

Ágústsdóttir R (2013) *Sagnheimar archive*

Bjarnason M (2014) *Eldgosið í Heimaey 1973*. Magnús Bjarnason Frá Garðshornirif jar upp gosið. 1973–Allir í bátana

Borgþórssdóttir P (2013) *Sagnheimar archive*

Guðjónsson GH (2013) *Guðmundur Helgi Guðjónsson – Slökvilið. 1973–Allir í bátana*

Guðjónsson I (1973) *Eldur er uppi. Bankablaðið. 1973–Allir í bátana*

Guðlaugsdóttir S (2014) Sjöstjarnan VE. 1973-Allir í bátana
Guðmannsdóttir F (2014) Fjóla Guðmannsdóttir. 1973-Allir í bátana
Guðmundsdóttir H (2023) Flutt til Eyja og árið sem á eftir kom. 1973-Allir í bátana
Guðmundsson V (2023) Saga Lögreglumanns. 1973-Allir í bátana
Hallbergsdóttir H (2014) Tvær stuttar og einn enn styttri. 1973-Allir í bátana
Harðarson E (2023) Saga Eyþórs. 1973-Allir í bátana
Hermansen J (2013) Árni í Görðum VE-73. 1973-Allir í bátana
Jessen F (1973). Öll viðbrögð okkar verða óhákvæmilega háð því". Bankablaðið.
1973-Allir í bátana
Jóhannesdóttir MR (2013) Árni í Görðum. 1973-Allir í bátana
Jóhannsson ÆB (2018) Örlaganóttin 1973. 1973-Allir í bátana
Jónasson I (2017) 1973- Gosnóttin. 1973-Allir í bátana
Jónasson S (2018) Gosnóttin 1973. 1973-Allir í bátana
Kolbeinsdóttir KH (2014) Kolbrún Harpa Kolbeinsdóttir. 1973-Allir í bátana
Magnússon P (2013) Gosið á Heimaey 1973. 1973-Allir í bátana
Ólafsson GBB (2014) Guðmundur P. B. Ólafsson. 1973-Allir í bátana
Ómarsdóttir SA (2014) Gossaga foreldra minna. 1973-Allir í bátana
Pálsson P (2023) Sagan mír, Páll Pálsson segir frá 1973-Allir í bátana
Red Cross Report. (1973) Blík 1973. Heimaskóð.is
Róbertsdóttir Í (2023) <https://en.1973-alliribatana.com/iris1>. 1973-Allir í bátana
Sigfússon G and Eiríksdóttir S (2015) Ætluðu að kaupa sína fyrstu íbuð í Eyjum
daginn fyrir gosið. 1973-Allir í bátana
Sigurðardóttir D (2014) Diana Sigurðardóttir. 1973-Allir í bátana
Sigurðardóttir S (2013) 23. Janúar 1973 – Nöttin Eina – Afi. 1973-Allir í bátana
Sveinbjörnsson SP (2013) Minningar frá gosárinu 1973 greinina skrifaði ég í Sjó-
mannadagsblað Vestmannaeyja 2013. 1973-Allir í bátana

Valtýsson FO (2013) Gostiminn. 1973-Allir í bátana
Víglundsson ÞP (1973) Eldgos við húsegginn. Blík 1973. 1973-Allir í bátana. <https://timarit.is/page/5220206?iabr=on#page/n17/mode/2up>

Newspaper Archives

Alþýðublaðið – 24.01.1973: <https://timarit.is/page/3204497#page/n0/mode/2up>
Morgunblaðið – 23.01.1973: <https://timarit.is/page/1439219#page/n0/mode/2up>
<https://timarit.is/page/1439291#page/n0/mode/2up>
Morgunblaðið – 24.01.1973: <https://timarit.is/page/1439303#page/n0/mode/2up>
Morgunblaðið – 25.01.1973: <https://timarit.is/page/1439335#page/n0/mode/2up>
Morgunblaðið: 26.01.1973: <https://timarit.is/page/1439367#page/n0/mode/2up>
Morgunblaðið: 17.11.2023b – "Stressuðum dúfum bjargað úr Grindavík" https://www.mbl.is/frettir/innleitt/2023/11/17/stressudum_dufum_bjargad_ur_grindavik
Tíminn – 24.01.1973: <https://timarit.is/page/3729996#page/n0/mode/2up>
Tíminn – 25.01.1973: <https://timarit.is/page/3730021#page/n0/mode/2up>
Tíminn – 27.01.1973: <https://timarit.is/page/3730059#page/n0/mode/2up>
Vísir – 23.01.1973: <https://timarit.is/page/3246958#page/n0/mode/2up>
Vísir – 24.01.1973: <https://timarit.is/page/3246978#page/n0/mode/2up>

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.