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Abstract
As robotic systems become more autonomous and capable, they are expected to work alongside
humans as teammates rather than just tools. Trust is a crucial factor in collaborative human-robot
interaction (HRI), and appropriate trust in robotic collaborators can influence the overall performance
of the interaction. Building upon previous work in modelling trust in HRI, this paper describes a refined
mathematical trust model to imitate a three-layered framework of trust, which can estimate human
trust in robots in real-time. We show that the refined mathematical model significantly outperformed
the existing model. Further, this model was tested and validated in a user study where participants
engaged with the NAO robot in four sequential collaborative sessions. The results showed that the
model is valid based on the linear regression analysis, with both the trust perception score (TPS)
and interaction session being significant predictors for the trust modelled score (TMS) computed by
applying the trust model. We also demonstrated that trust levels differed across the three layers of
trust. This trust model highlights the model’s potential in developing adaptive robotic behaviours
optimized for user trust, which can enhance the development of robotics systems that can respond to
changes in human trust level in real time.
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1 Introduction1

The deployment of robotic systems has seen a2

notable increase in environments where humans3

and robots work collaboratively [10]. A robot4

is defined as a re-programmable system capable5

of performing a wide range of tasks. This sys-6

tem can be autonomous, semi-autonomous, or7

controlled, and interacts with humans in vari-8

ous capacities, including social robots, self-driving9

cars, and other automated systems [11]. Estab-10

lishing successful Human-Robot Interaction (HRI)11

can enhance efficiency and increase productivity12

for both humans and robots [5, 49]. Trust is essen-13

tial to ensure smooth Human-Robot Collabora-14

tion (HRC). However, incorrectly calibrated trust15

can result in either over-reliance or under-reliance,16

potentially leading to the disuse of these advanced17

robotic systems [53]. Recognizing this, researchers18

in HRI are investigating how to develop an online19

measurement to sense trust in real-time [37]. How-20

ever, it presents a challenge to model humans’21
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trust in robots as factors affecting humans’ trust22

in robots vary across different settings [9].23

In HRI, there are primarily two methods to mea-24

sure trust [36]. Subjective methods, which are25

straightforward and direct, involve gauging peo-26

ple’s perception toward robots either before or27

after an interaction, as exemplified by several28

studies [31, 43, 55]. Nonetheless, these methods29

have limitations, particularly when it comes to30

real-time scenarios where preventing the misuse of31

robots is paramount. In contrast, objective meth-32

ods delve into the realm of real-time data, observ-33

ing the actions and reactions of both humans and34

robots during an interaction. They estimate trust35

by evaluating aspects like the robot’s performance36

and error rates, as illustrated by Ahmad et al.37

[3]. However, to systematically estimate trust, a38

combined approach may be necessary, taking into39

account factors like interaction duration and the40

robot’s overall performance, as suggested by Law,41

Scheutz [40].42

Mathematically capturing the essence of trust in43

HRI is a challenging task [60]. Several studies have44

attempted to create real-time mathematical mod-45

els of trust [19, 28, 34, 37]. However, these models46

are not without limitations. One primary issue is47

that the validation of these models has occurred48

in simulated environments, which raises questions49

about their practicality in real-world HRI sce-50

narios [37]. Another aspect is evaluating trust51

dynamics in the context of repeated and long-term52

HRI. While there has been limited exploration53

into factors that influence trust during repeated54

and long robot interactions [44, 46], the landscape55

remains largely unexplored.56

Exploring further into this, integrated from Lee,57

See [42], Hoff, Bashir [25] conceptualised a three-58

layered model of trust: dispositional, situational,59

and learned (both initial and dynamic), where60

dispositional, situational and initial trust reflects61

humans’ trust in robots prior to interaction,62

and dynamically learned trust reflects trust in63

robots post-interaction. The previous work has64

aimed to mathematically model trust dynamics65

in repeated HRI [2] based on Hoff, Bashir [25].66

Ahmad et al. attempted to emulate dynamically67

learned trust dynamics, and found that the time68

(interaction session) was a significant predictor of69

the Trust Modelled Score (TMS), whereas sub-70

jective Trust Perception Score (TPS) ratings did71

not predict the TMS. Additionally, the authors72

found that perceived risk influenced participants’73

behaviour, with higher risk leading to increased74

distrust. Moreover, participants’ trust behaviour75

was affected by their perception of the robot’s76

performance compared to its actual performance.77

While the fundamental relationship between per-78

formance outcomes and trust is well-established79

across automation, robotics, and AI/ML domains,80

our contribution extends beyond this basic princi-81

ple by developing a comprehensive mathematical82

framework that integrates performance with other83

critical factors including risk perception, ambigu-84

ity aversion, and user control to estimate trust85

in real-time during repeated interactions. In this86

paper, we integrate these factors into a three-87

layered trust model and validate whether this88

mathematical framework provides accurate trust89

estimation during repeated physical HRI. In addi-90

tion, we design a novel game-based experimental91

task and validate our Trust Modelled Score (TMS)92

equation across multiple interaction sessions. We93

further explore the dynamics of dispositional, sit-94

uational, and dynamically learned trust layers,95

providing a quantitative approach that advances96

beyond descriptive models to predictive, imple-97

mentable trust estimation for robotic systems. We98

aim to investigate the following research questions99

(RQs):100

RQ1 How can we model and validate three lay-101

ers of trust (dispositional, situational, and learned102

(initial and dynamic)) during repeated HRI in a103

collaborative setting?104

RQ2 Given the variations in the correlation105

among the three dimensions of trust, how does106

dynamic-learned trust evolve during repeated HRI107

in a collaborative setting?108

RQ3 Does the interplay or correlation among the109

three dimensions of trust (dispositional, situa-110

tional, and learned (initial and dynamic) trust)111

exhibit variation during repeated HRI in a collab-112

orative setting?113

RQ4 "Is refined mathematical modelling more114

accurate than current methods in estimating trust115

in robots?"116
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The novel contributions (C) of this paper are:117

C1 We present a refined mathematical model of118

the three layers of trust during cooperative HRI,119

incorporating factors that affect the experience,120

including risk and ambiguity aversion, building121

upon insights and limitations identified in previ-122

ous work.123

C2 We validate the model’s efficacy using a novel124

game-based task and show that subjective ratings125

of trust perceptions strongly predicted the estima-126

tion of trust computed by applying the developed127

model.128

C3 We find strong empirical evidence showing lin-129

ear relationships between different layers of trust130

as described by Hoff, Bashir [25] in a collaborative131

HRI task.132

C4 We compared two versions of the model and133

found a significant difference in predicting TMS.134

The refined trust model outperformed the initial135

model.136

2 Background137

2.1 Trust - Conceptualisation138

Trust is crucial for the successful operation of139

any team [21]. Despite being studied in vari-140

ous disciplines, it is challenging to establish a141

comprehensive definition. In this paper, we con-142

sider the following definition: Abbass et al. [1]143

defined trust as “multidimensional psychological144

attitude involving beliefs and expectations about145

the trustee’s trustworthiness derived from experi-146

ence and interactions with the trustee in situations147

involving uncertainty and risk”. This definition148

highlights the evolution of trust through experi-149

ence and interactions, which is critical in studying150

long-term HRI and enabling successful collabora-151

tions.152

In light of this interpretation, trust has been cate-153

gorised into three types: dispositional, situational154

and learned [25]. Dispositional trust refers to155

the user’s tendency to trust the robot before inter-156

action occurs. Dispositional trust is stable over157

time and is much more related to the user’s cul-158

tural background, age, gender, and personality.159

Studies have shown differences in trust behaviour160

between people of different cultures, age groups,161

and personality types [9, 41]. Situational trust is162

based on factors external to the user and related to163

the interaction environment, including task type,164

complexity, difficulty, perceived risks, and work-165

load. The other factors are internal to the user,166

including self-confidence and the user’s knowledge167

and expertise. Studies have shown that these fac-168

tors can affect human trust [16, 52, 56]. Finally,169

Learned trust is based on the user’s overall eval-170

uations and experiences with the robotic system171

before the first interaction (initial trust). During172

a new interaction with a robotic system (dynam-173

ically learned trust), humans’ experience affects174

their established trust level. Experience signifi-175

cantly influences human trust in robots in HRI176

[24, 50] and can be influenced by the robot’s177

performance and risk during current or repeated178

interactions and can influence the trust in future179

interactions [54]. This paper builds on previous180

research [2] that demonstrated changes in trust181

over time, the potential influence of risk, and the182

disparity between a user’s perception of a robot’s183

performance and its actual performance. This184

study delves deeper into the dynamics of trust185

by examining all three levels of trust and devel-186

oping a dynamic model to understand how trust187

evolves over time. We achieve this by integrating188

risk and differences between user perception and189

actual robot performance into the calculation of190

experience.191

2.2 Measuring Humans’ Trust in192

Robots193

2.2.1 Assessment Methods and Metrics194

Prior work has commonly used subjective meth-195

ods [43, 55, 58], objective methods [35, 36, 40] and196

psycho-physiological measurements for trust [4, 8].197

Additionally, researchers have also attempted to198

mathematically model human’s trust in robots199

[19, 23, 27, 29, 39, 51]. For instance, Freedy200

et al. [19] developed a decision-analytical-based201

measure of trust and conducted two initial experi-202

ments to examine trust in a human-robot collabo-203

rative task (a simulation environment called MIT-204

PAS). The model classified trust in robots based205

on the self-confidence demonstrated by humans206

into three categories: under-trust, proper-trust, or207

over-trust. Hoogendoorn et al. [27] developed trust208

models with biased experience. The models have209
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been evaluated against empirical data and have210

shown the impact of bias in the measurement of211

trust. Saeidi, Wang [51] utilised the trust and212

self-confidence model to reduce human cognitive213

workload and improve the overall performance of214

the human and the robot. This model was tested215

and validated through a simulated experiment216

during HRC, which showed its effectiveness in217

capturing human behaviour and improving over-218

all performance. Hale et al. [23] developed a trust219

model that reflects a robot’s level of cooperation220

over time and quantifies the amount of informa-221

tion a robot can gain based on its cooperation.222

The study used simulations to illustrate the trust-223

driven privacy framework. The results showed that224

the model was able to capture trust. When a225

robot stops contributing to a decrease in the cost,226

the trust and privacy levels decrease, leading to227

an increase in the amount of added noise to the228

human’s state. Hu et al. [29] introduced a quanti-229

tative trust model to study human trust behaviour230

in human-machine interactions. They conducted231

an experiment where participants simulated driv-232

ing a car with an obstacle detection sensor based233

on an image-recognition algorithm, deciding to234

trust the algorithm’s report based on prior expe-235

rience. Results showed that the model accurately236

captures human trust dynamics during interaction237

based on past experience.238

2.2.2 Trust in Repeated or Long-term239

interactions240

In general, there is limited research focusing on241

measuring or modelling trust in robots [24, 36] as242

well as investigating the factors impacting human-243

robot trust [20, 22, 46, 50, 59] in repeated or244

long-term interactions. Yanco et al. [59] conducted245

a study to explore the evolution of trust in auto-246

mated systems within the automotive and medical247

domains. They used computer-based surveys dis-248

tributed through Amazon Mechanical Turk to249

a wide audience. The study focused on factors250

such as brand reputation (e.g., Google Car versus251

a small startup) and scenario criticality (safety-252

critical versus non-safety-critical) and how these253

influenced trust. The findings showed that trust254

levels remained fairly consistent across different255

survey rounds, indicating that initial trust judg-256

ments were predictive of short-term trust stability.257

However, participants who were more familiar258

with automated systems expressed lower trust and259

reported higher perceived workload. While the260

study offers valuable insights into factors influenc-261

ing trust in automation, the findings are limited262

to static, survey-based assessments and may not263

accurately predict trust in real-time interactions.264

Hafızoğlu, Sen [22] conducted an experiment to265

examine the effects of past experiences on trust in266

repeated interactions with software agents in a col-267

laborative game environment. The study involved268

participants interacting with virtual agents in a269

team task setting. The results showed that posi-270

tive past experiences led to an increase in human271

trust in their agent teammates, while negative272

experiences resulted in a decrease in trust. Gremil-273

lion et al. [20] developed a model and estima-274

tion scheme that can predict changes in decision275

authority during interactions with a simulated276

autonomous driving assistant. The study utilized277

a highly controlled simulated leader-follower driv-278

ing task, where participants operated a virtual279

vehicle on a two-lane closed circuit. The vehicle280

was equipped with an autonomous driving assis-281

tant, which could either control only the throttle282

or both the steering and throttle. Participants had283

to decide when to toggle driving authority to the284

autonomous assistant based on the driving condi-285

tions while simultaneously performing a secondary286

task. The primary outcome of the study was the287

development of models that can predict a driver’s288

trust-based decisions using a range of psychophys-289

iological and environmental data. However, the290

study was limited to incorporating self-reports291

from subjects to enhance the model’s accuracy.292

Miller et al. [46] investigated the psychologi-293

cal dynamics of Human-Robot Interaction (HRI),294

focusing on trust across three layers: dispositional,295

initial, and learned trust. The study utilized a296

humanoid robot, TIAGo, a service robot designed297

for domestic environments. Participants engaged298

with the robot in a laboratory setting where the299

robot approached them twice. This interaction300

was controlled using a Wizard of Oz paradigm,301

where an operator remotely guided the robot302

to simulate autonomous behaviour. The study303

revealed that initial and dynamically learned trust304

were not significantly associated, suggesting that305

trust in HRI is dynamic and context-dependent,306

particularly in tasks requiring close physical prox-307

imity to a humanoid robot. Alarcon et al. [7]308

examined the dynamics of trust before and after309

4



trust violations in human-human and human-310

robot interactions. Participants were paired with311

either a human or a NAO robot partner in a312

modified trust game, where trustworthiness was313

manipulated through violations of ability (perfor-314

mance), benevolence, and integrity. The results315

showed that participants were less forgiving of316

performance-based errors from robots, supporting317

the Perfect Automation Schema (PAS). More-318

over, robots were perceived more negatively than319

humans even in cases of non-performance-based320

violations, suggesting persistent biases against321

robots. These findings highlight the asymmetry322

in trust attribution and the critical role of per-323

formance expectations in shaping trust in robots.324

Rossi et al. [50] evaluated how the timing of errors325

in repeated interactions with a humanoid compan-326

ion robot (Care-O-bot 4) influenced human trust.327

Their study found that the timing of errors in328

repeated and long-term human-robot interactions,329

whether at the beginning or end, correlates with330

a loss of human trust in the robot.331

Research on trust in repeated or long-term HRI332

has revealed several key theoretical insights that333

collectively inform our understanding of trust334

dynamics. Studies have consistently demonstrated335

that trust is dynamic and evolves over time based336

on interaction experiences [22, 46, 50], with the337

timing and nature of errors significantly impacting338

trust development [50]. Furthermore, familiarity339

with robots can paradoxically lead to lower trust340

levels as users become more aware of system lim-341

itations [15, 59]. Research has also shown that342

trust attribution differs between human-human343

and human-robot interactions, with robots being344

less forgiven for performance-based errors, sup-345

porting the Perfect Automation Schema [7].346

However, these findings, while valuable, primarily347

confirm established principles: that trust changes348

based on performance outcomes and user expe-349

riences. The critical theoretical gap lies not in350

understanding that trust changes, but in devel-351

oping mathematical frameworks capable of pre-352

dicting and quantifying these changes in real-time353

during physical HRI. Most existing studies have354

been limited to static, survey-based assessments355

[59], simulated interactions [12, 20], small sample356

sizes [50], or image-based robot representations357

[14], raising questions about their applicability to358

real-world physical human-robot interactions.359

Prior research has attempted to address this360

gap by developing mathematical trust models in361

repeated interactions [2] by emulating the dynam-362

ically learned trust framework of Hoff, Bashir [25].363

However, evaluation of these models highlighted364

significant deficiencies: they operated under sim-365

plified assumptions (such as initial trust values366

set at 0.5) and computed user experience based367

solely on control decisions and perceived robot368

performance.369

What distinguishes our work is not the demon-370

stration that trust changes over time—this is371

well-established—but rather the development of a372

comprehensive mathematical framework that can373

estimate these changes in real-time during phys-374

ical HRI. In the enhanced model presented in375

this paper, we have refined the scope of expe-376

rience calculation to encompass not only user377

decisions and robot performance but also criti-378

cal factors such as risk perception and aversion379

to ambiguity. More importantly, we introduce the380

Trust Modelled Score (TMS) equation as a novel381

mathematical tool that integrates multiple factors382

within a three-layered trust framework, advancing383

beyond descriptive models to provide predictive,384

quantitative trust estimation for robotic systems.385

3 Trust Model386

The trust model is based on three layers of trust:387

dispositional, situational and dynamically388

learned [25]. Dispositional trust is a reflec-389

tion of an individual’s built-in trust propensity390

that remains stable over time [25]. Situational391

trust represents the trust level before interaction392

that is influenced by factors such as the user’s393

knowledge, self-confidence, task type and per-394

ceived risks. Dynamically learned trust, repre-395

sents users’ experience over time through iterative396

interactions, incorporating both dispositional and397

situational trust.398

3.1 Initial Model399

The foundation of the initial trust model started400

focusing on the learned trust (initial and dynamic)401

[2]. We adopted the experiential learning model402

[33] to mathematically represent trust dynamics,403

expressed as:404
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Fig. 1 Modeling the Three Layers of Trust.

T (t+∆t) = T (t) + γ(E(t)− T (t))∆t, (1)

where t ≥ 0 ⊆ Z represents the count of inter-405

action events, E(t) is the experience and T (t) is406

the dynamically learned trust at tth interaction,407

and T (0) is the initial trust at t = 0, i.e. when408

no interactions have occurred. Here, ∆t represents409

the unit difference between events. Thus, ∆t = 1.410

The model delineates three distinct cases of trust411

evolution:412

1. Trust increases if the experience E(t) exceeds413

current trust T (t).414

2. Trust remains stable if E(t) equals T (t).415

3. Trust declines if E(t) is less than T (t).416

The rationale for comparing E(t) to the current417

trust level T (t) and using it to infer trust at the418

subsequent time step T (t + 1) is rooted in the419

understanding that trust at any given moment is420

not an isolated event. Instead, it is intrinsically421

linked to the trust levels before and after that422

instance. As the interaction progresses, each expe-423

rience E(t) serves as a snapshot of trust, capturing424

how the user’s trust is shaped by the immediate425

context. This instance of trust then influences the426

trust level in the next moment, T (t+ 1), creating427

a continuous feedback loop where trust dynami-428

cally adjusts in response to ongoing experiences.429

The idea that experience influences trust is sup-430

ported by empirical studies in the HRI field. For431

instance, Miller et al. [46] emphasizes that trust in432

robots is heavily influenced by prior experiences,433

particularly in repeated interactions where users434

can observe and evaluate the robot’s performance435

over time.436

The model’s central element is the experience,437

which is calculated based on human decision438

behaviour and robot performance in a competitive439

game task:440

E(t) =

t∑
i=1

PiCi

K
or 1 for K = 0, (2)

where Pi and Ci are performance and user control441

indicators, respectively, and K is the number of442

taking control.443

3.2 Extended Model444

Building on the initial model, the extended ver-445

sion further explores the dynamics of trust in446

HRI. This model is designed to estimate human447

trust in the trustworthiness of a robot, particularly448

in situations that present risk and uncertainty.449

We attempt to model three layers of trust: dis-450

positional, situational and learned (initial and451

dynamically), as shown in Figure 1.452

In this approach, we have chosen specific scales to453

compute different aspects of trust, aligning with454

the best practices in trust measurement within455
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HRI as detailed by Krausman et al. [38]. For456

computing dispositional trust (DT) values, we457

utilised a Likert scale questionnaire [17]. We com-458

puted the situational trust (ST) value using the459

trust perception scale [54]. The initial trust can be460

better reflected by averaging propensity and situ-461

ational trust, which considers past pre-interaction462

experiences with the system. Therefore, we con-463

sidered the initial learned trust T (0) as the464

average of dispositional and situational trust:465

T (0) =
DT + ST

2
. (3)

The rationale for this approach is that both dis-466

positional and situational trust, as pre-interaction467

stages, contribute equally to shaping the user’s468

initial expectations and trust levels before any469

direct interaction with the robot. Dispositional470

trust offers a stable baseline, reflecting an individ-471

ual’s inherent tendency to trust, while situational472

trust modifies this baseline based on the spe-473

cific context and conditions of the interaction. By474

averaging these two components, the initial trust475

calculation captures both the enduring personal476

characteristics and the dynamic environmental477

factors, providing a more balanced measure of the478

user’s initial trust.479

The dynamically learned trust is built on the480

initial model but with differences in the experience481

computation as:482

T (t+∆t) = T (t) + γ(E(t)− T (t))∆t, (4)

where t ∈ N marks the count of interaction events,483

E(t) is the experience at the complete tth inter-484

action, and T (t) is the dynamically learned trust.485

Here, γ ∈ [0, 1] is the learning rate, γ = 0.25486

, ∆t = 1, represents the unit difference between487

events.488

Based on the definition provided earlier, we can489

identify the following scenarios:490

Scenario1 T (t+∆t) > T (t); if E(t)− T (t) > 0

Scenario2 T (t+∆t) = T (t); if E(t)− T (t) = 0

Scenario3 T (t+∆t) < T (t); if E(t)− T (t) < 0

• Scenario 1: Trust in the next interaction T (t+491

∆t) increases if the difference between the user’s492

experience E(t) and the current trust level T (t)493

is positive.494

• Scenario 2: Trust remains unchanged T (t +495

∆t) = T (t) if the difference between the experi-496

ence and the trust level is zero.497

• Scenario 3: Trust decreases in the subsequent498

interaction T (t + ∆t) if this difference is nega-499

tive.500

As the experience E(t) is the key component of501

the model, we will explore the computation of502

the experience to extend the model. The ratio-503

nale for comparing E(t) to the current trust level504

T (t) and using it to infer trust at the subsequent505

time step T(t+1) is rooted in the understanding506

that trust at any given moment is not an isolated507

event. Instead, it is intrinsically linked to the trust508

levels before and after that instance. As the inter-509

action progresses, each experience E(t) serves as510

a snapshot of trust, capturing how the immedi-511

ate context shapes the user’s trust. This instance512

of trust then influences the trust level in the next513

moment, T (t+ 1), creating a continuous feedback514

loop where trust dynamically adjusts in response515

to ongoing experiences. In this version, it is calcu-516

lated based on human decision-making behaviour,517

the performance of robots, risk, and ambiguity518

aversion in a given task as follows:519

E(t) = (1− (

∑N
i=1 |PiCi − CiRi|

N
))−A(t) (5)

Where Pi, Ci, and Ri are context-dependent indi-520

cators of performance, human control, and risk,521

respectively, at the ith instance, N is the total522

number of interactions, and A(t) represents ambi-523

guity aversion. Both Pi and Ci are task-specific524

and are binary variables with possible values of 0525

or 1. The risk Ri is categorized into two funda-526

mental levels: low and high (0,1), respectively.527

The part of the equation |PiCi − CiRi| mea-528

sures how well the robot’s performance aligns529

with the user’s decisions and associated risks over530

time. This is because the user’s actions can be531

affected by the performance and the risk, mak-532

ing it important to consider both when evaluating533
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the alignment between the robot and the user to534

assess the experience E(t). Dividing by N nor-535

malizes |PiCi − CiRi|, ensuring it remains within536

a standardized range and providing a consistent537

measure of alignment between the robot’s per-538

formance, user’s decisions, and associated risks,539

irrespective of the number of interactions.540

Subtracting (
∑N

i=1 |PiCi−CiRi|
N ) from 1 inverts its541

scale, converting a measure of misalignment into542

alignment. This is key since E(t) signifies trust,543

which increases with better alignment between544

robot performance, user decisions, and risks.545

We understand that E(t) can be influenced by the546

difference between anticipated and actual robot547

failure rates. We have integrated the concept of548

ambiguity aversion, represented by A(t), into the549

model to account for the uncertainties users might550

face regarding the frequency of robot failures and551

the potential impact of this uncertainty on user552

control and experience.553

A(t) =

∑N
i=1 |Ki − Fi|

N
, (6)

Where Ki is the expected number of robot failures554

(how many times the user overrides the robot), Fi555

is the actual number of robot failures at time t,556

and N is the total number of instances. With this557

representing of E(t) ∈ [0, 1] ⊂ N, and an initial558

T (0) ∈ [0, 1] ⊂ N, it is clear that T (t) ∈ [0, 1] with559

1 representing a complete trust, and 0 illustrating560

a complete distrust; see Figure 2.561

4 Study Design562

We designed a study to validate the mathemati-563

cal trust model, involving participants interacting564

with the NAO robot on four different occasions565

during collaborative HRI, with each session last-566

ing approximately 7.45 minutes. Each session567

contained multiple decision points where partici-568

pants had to decide whether to accept or reject569

the robot’s suggestions. At each decision point,570

the model computed instantaneous trust, dynam-571

ically updating it throughout the session based on572

these interactions. By the end of each session, the573

cumulative experience, combined with the previ-574

ous trust score, formed a new trust level. After575

each session, participants completed a question-576

naire to assess their perceived trust in the robot.577

Fig. 2 Illustration of the impact of Current Trust Levels
T (t) and Experiences E(t) on the New Trust Level T (t+∆t)
for γ = 0.25, showing that a highly positive experience has
a limited impact when current trust is low.

This setup allowed us to compare the model’s578

real-time computed trust scores with participants’579

self-reported trust levels. All participants followed580

the same sequence of four interactive sessions to581

ensure consistency in the study conditions. While582

randomisation is often used in such studies, we583

chose a fixed session order to focus on measuring584

trust dynamics over time. This uniform approach585

allowed us to observe trust evolution consistently586

across participants. All sessions occurred on the587

same day, with a 5-minute interval between ses-588

sions. We tested the following hypotheses:589

H1: Both the Trust Perception Score (TPS) and590

interaction session (time) will predict the Trust591

Modelled Score (TMS).592

H2: We will observe a significant interaction effect593

on sessions (session1, session2, session3, and ses-594

sion4) for TMS and TPS scores, reflecting that595

human dynamically learned trust in robots will596

change over time during repeated HRI in a collab-597

orative setting.598

H3: We will observe variations in the interplay599

or correlation among the three layers of trust –600

dispositional, situational, and learned (both initial601

and dynamic).602

H4: The refined model will significantly improve603

the prediction of TMS compared to the initial604

model.605
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4.1 System description606

The system presented in Figure 3 consists of two607

modules. The first module is an interactive card608

game that generates various situations for partic-609

ipants to either trust or distrust the robot. The610

second module is a semi-autonomous robot that611

plays the game with the participants and assists612

them in making decisions. The model is designed613

to estimate human trust in the trustworthiness of614

the robot, particularly in situations that present615

risk and uncertainty. In the Bluff Game, we focus616

on key factors that impact trust, such as the617

robot’s accuracy in providing advice, the partici-618

pant’s control in accepting or rejecting the robot’s619

advice, and perceived risk (when the player’s cards620

are more than the opponent’s), which is indicated621

by the proportion of the participant’s cards to the622

opponent’s cards. The main objective of the sys-623

tem is to analyze the participants’ reactions to624

situations that involve trust with the robot and625

how the robot’s behaviour over time impacts their626

decisions to trust it.627

4.1.1 The Game628

We developed the Bluff Game, a Python-based629

interactive card system that allows participants630

(forming Player 1 with the robot) to play collab-631

oratively as a team against an adversary agent632

(Player 2). The game consists of 52 cards, includ-633

ing four sets of each ace, numbers 1-10, jack,634

queen, and king. The interactive interface provides635

play and decision buttons (accept and reject),636

enabling smooth interaction between the players637

and the game. At the beginning of the game,638

Player 1 and Player 2 receive 15 cards. The game’s639

goal is for players to eliminate all of the cards640

before the opponent. Whoever eliminates all their641

cards first wins the game. Bluff is a turn-taking642

game where Player 1 selects a set of 2-4 cards to643

discard, and Player 2 decides whether to accept or644

reject the selected cards. If Player 2 accepts, the645

turn passes without revealing the cards. If Player646

2 challenges the claim and it’s found to be true,647

Player 2 must take the discarded cards; if false,648

Player 1 takes back the cards. The game aims for649

either player to eliminate all their cards, updating650

the card list dynamically after each turn. Dur-651

ing the game, at each turn, Player 1 discusses652

decision-making with the robot on which action653

to take with Player 2’s claim (accept or reject). A654

message appears asking the participants to start655

the discussion. The robot provides suggestions656

on decision-making, advising whether to trust or657

distrust. These suggestions were based on a pre-658

determined strategy that is consistently applied to659

all participants in every session. This strategy was660

part of the Wizard of Oz (WOz) method used (see661

Figure 4), where the robot operator’s decisions662

were pre-scripted. If the player takes the robot’s663

advice, it is typically considered a trust case. Con-664

versely, if the player ignores the robot’s advice,665

it is often considered a distrust case, as shown in666

various studies [30, 57].667

The primary risk in the Bluff Game revolves668

around the possibility of losing the game, repre-669

senting a challenge to participants’ ability to trust670

the robot’s suggestions effectively. While losing671

does not carry severe real-world consequences, it672

introduces a competitive element that can influ-673

ence trust dynamics. Participants who are more674

competitive or motivated to win might perceive675

the stakes as higher, impacting their decision-676

making and trust calibration. In scenarios with677

more significant real-world consequences, such as678

financial stakes, trust dynamics would likely shift679

significantly. However, due to ethical considera-680

tions and to avoid unnecessary stress on partic-681

ipants, the controlled environment of the Bluff682

Game allows us to observe trust behaviours ethi-683

cally while maintaining a balance in perceived risk684

levels.685

The game’s dynamics are specifically designed to686

incorporate factors such as risk and ambiguity,687

which are integral to the conceptual framework688

of trust. Risk in the game arises when a player689

has significantly more cards than their opponent.690

Additionally, the game involves an element of691

uncertainty due to the ambiguity of the robot’s692

advice, challenging players to navigate decisions693

under ambiguous conditions. This aspect is crucial694

for reflecting the complexity and unpredictability695

present in HRC, effectively simulating real-world696

scenarios where decisions must be made with697

incomplete information.698

Our selection of the Bluff Game was guided by699

the fundamental requirement that trust research700

must involve situations of uncertainty where par-701

ticipants must rely on an agent despite incomplete702
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Fig. 3 System overview

information [45]. This approach aligns with estab-703

lished trust research methodologies that employ704

uncertainty-based tasks to create conditions where705

trust decisions become meaningful [12, 15, 20].706

The calculation of experience E(t) and the dynam-707

ically learned trust in the game setting hinges on708

several key variables. Risk, which can be defined in709

HRI as an individual’s perception of the possible710

negative consequences associated with interacting711

with robots [47]. This perception is based on their712

knowledge and experience of the task, regardless of713

their personal history or familiarity with the sys-714

tem, technology or person that may be involved715

in that situation [47]. In this context, Risk was716

quantified as the risk index Ri. Specifically, Ri is717

given a value of 1 if Player 2 has more cards than718

Player 1, which directly impacts the perceived719

likelihood of negative outcomes (losing the game)720

if unable to eliminate their cards first. Otherwise,721

Ri is assigned a value of 0.722

The performance Pi equates to 1 when the robot’s723

advice is accurate or when the user controls724

the incorrect robot’s advice. otherwise, Pi = 0.725

Another variable, control Ci, represents the par-726

ticipants’ decision to trust the robot, being set to727

1 if the user distrusts the robot’s advice and 0 if728

they trust. Our decision to represent these factors729

as either 0 or 1 was primarily driven by the spe-730

cific setup of our study, where the interactions and731

decision-making moments were relatively straight-732

forward. For example, trust decisions often involve733

clear-cut scenarios, such as whether the robot’s734

advice is accurate or not. In our context, risk is735

assessed by comparing the number of remaining736

cards between the participant and the opponent.737

These variables, along with the Ambiguity Aver-738

sion A(t), were essential in computing the expe-739

rience E(t) and dynamically learned trust during740

the game.741

The term |PiCi−CiRi| will represent the player’s742

behaviour by aligning the robot’s performance and743
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the participants’ control, and incorporating the744

associated risks during the game (see Table 1).745

The truth table indicates a value of 1, showing746

misalignment, in two scenarios: when performance747

is low, but control and risk are high Pi = 0, Ci =748

1, Ri = 1, and when performance is high, control749

is high, but the risk is low Pi = 1, Ci = 1, Ri = 0.750

A value of 0, indicating alignment or no control by751

the user regardless of the risk level, applies in all752

other situations. This differentiation is crucial for753

accurately calculating the experience E(t) within754

various risk contexts.755

Ambiguity, in this context, refers to situations756

where the outcome of following the robot’s advice757

was not immediately clear or predictable. For758

example, the robot might suggest accepting the759

opponent’s claim, but if that claim turned out760

to be false, the cards would be discarded with-761

out revealing their true value. Ambiguity aversion762

was applied in the following manner: A(t) reflects763

the user’s aversion to uncertainty surrounding the764

robot’s performance. A difference between Ki and765

Fi in each instance indicates a mismatch between766

the expected and actual robot performance, con-767

tributing to the overall Ambiguity Aversion A(t).768

This metric is important to understand the influ-769

ence of the user’s uncertainty on their instanta-770

neous trust (experience) in the robot during the771

game. (see Table 2).772

Pi Ci Ri |PiCi − CiRi|
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 1 Truth Table for
|PiCi − CiRi|

Ki Fi |Ki − Fi|
0 0 0
1 0 1
0 1 1
1 1 0

Table 2 Truth Table
for |Ki − Fi|

4.1.2 Interaction Scenarios773

We programmed the Nao robot to interact ver-774

bally with participants based on various game775

events. The game was controlled using the WOz776

method, and participants were kept uninformed777

about it to avoid any bias. The interaction was778

divided into three phases: welcome and introduc-779

tion to the game, gameplay, and ending of the780

game.781

On the first occasion, the robot welcomed the par-782

ticipants by saying, “Hello. I am a Nao robot.783

Today, I will assist you in making decisions to784

"accept" or "reject" in the card game. ” and “Now,785

please get ready and start the game” respectively.786

Participants engaged in the game on four differ-787

ent occasions. On the second, third, and fourth788

occasions, the robot greeted the participants and789

reintroduced them to the game by saying, “Hello790

again. Thank you for playing; please remember791

I am here to assist you in deciding to "accept"792

or "reject". Let’s have fun” and “Now, please get793

ready and start the game” respectively.794

Once the game began, the Nao robot informed the795

participants by saying “The game starts now”. Fol-796

lowing the game rules, the robot interacted with797

the participants during various game events. The798

game’s flow involved the robot interacting with the799

participants during decisions and other situations800

in the game as follows:801

1. During the experiment, the robot consistently802

followed a predefined protocol and strategy803

when participants asked about the decision-804

making process in the accept condition. The805

robot provided feedback as follows: “Given the806

game has just started, I think we could accept807

the claim for now; what do you think?”, “I think808

we could accept, what do you think?”, “I sug-809

gest accept, what do you think?”, or “I think it810

seems reasonable to accept the claim, what do811

you think?”.812

2. In the reject claims condition, the robot said,813

“I think they might want to discard non-similar814

cards first, what do you think?”, “I think they815

are bluffing, what do you think?”, “I suggest816

rejecting the claim; what do you think?”817

3. If the participants agreed with the robot’s sug-818

gestion to accept, the robot said “Okay, let’s819
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continue”, “Okay, let’s proceed”, or “Okay, let’s820

see how to conclude”.821

4. If the participants agreed with the robot’s sug-822

gestion of rejecting the claims, the robot said823

“Okay, let’s see”.824

5. If the participants disagreed with the robot’s825

suggestion, the robot said “Okay, it is up to826

you”.827

6. If the participants asked the robot to repeat the828

suggestion, the robot repeated the suggestion829

for them.830

7. If the robot did not hear the participants, the831

robot said “Sorry, I did not hear that, could you832

please repeat it”.833

8. If the participants seem to have been occupied834

with something else, the robot said “You seem835

occupied with something else, could you please836

focus on the game”.837

9. If the participants asked the robot for anything838

else during the game, the robot said “I can only839

advise you when you are deciding to accept or840

reject”.841

The robot congratulated or encouraged the partic-842

ipants for the next round at each game’s end. If the843

participants won the game, the robot expressed:844

“Congratulations on your win! Good luck in the845

next round”. If the participants lost the game, the846

robot said: “Hard luck, good luck in the upcoming847

rounds”. In the final session, the robot said good-848

bye and hoped to interact with you soon to its849

message, announcing the end of the experiment.850

4.2 Participants851

This study was conducted with 45 participants852

aged between 18 and 40 years. The age dis-853

tribution averaged 33.13 years with a standard854

deviation of 6.22. Out of the 45 participants, 19855

were females, 25 were males, and one participant856

chose not to disclose their gender. We invited857

participants to partake in the study via the univer-858

sity’s electronic mailing system and flyers around859

the university campus. Participants were able to860

book their slots for the study using the online861

scheduling platform Calendly1.862

We chose a sample size of 45 participants based863

on a priori power analysis to ensure sufficient864

1https://calendly.com

power for detecting significant effects in the study.865

We conducted the power analysis using G*Power,866

which indicated that to achieve 80% power for867

detecting a large effect at a significance level of α868

= .05, a minimum sample size of 43 participants869

was required for a linear multiple regression test870

with 2 predictors. Our results showed that R2 is871

.750, resulting in a large effect size f2 of 3.0.872

Our sample size of 45 participants is consistent873

with the norms in HRI research. According to a874

study by Zimmerman et al. [61], most in-person875

HRI studies involve fewer than 50 participants.876

This suggests that our sample size is well within877

the typical range for studies in this field, pro-878

viding a solid basis for our findings while still879

acknowledging the need for larger-scale studies in880

the future.881

To determine the participants’ prior interactions882

with robots, we classified them into four tiers:883

extensive, moderate, minimal, and none. Those884

with a background in robot construction or opera-885

tion were considered to have extensive experience,886

while individuals who frequently used robots were887

classified as moderate. Those who had sporadic888

interactions with robots were labelled as having889

minimal experience. The breakdown of partici-890

pants revealed that 11 had extensive experience,891

4 had moderate experience, 22 had minimal expe-892

rience, and 8 had never interacted with robots.893

4.3 Setup and Materials894

In the study, we utilised two separate rooms, as895

illustrated in Figure 4. In the first room, the par-896

ticipants had a laptop to play the game while the897

robot was positioned on the table next to them.898

The participants were seated beside the robot.899

The participants used a tablet to complete ques-900

tionnaires before and after each game round. In901

the second room, the experimenter sat in front of902

a laptop to control the game, robot, and overall903

interaction.904

We used the humanoid Nao robot developed905

by Aldebaran Robotics. Nao is 58cm in height,906

equipped with an inertial sensor, two cameras,907

eyes, eight full-colour RGB LEDs, and many other908

sensors.909
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Fig. 4 Experiment Setup. An experimenter controls the
robot in one room (left), while the participant is playing
the game with the assistance of the robot in another room
(right).

4.4 Procedure910

The study was conducted in the following steps:911

1. On entering the lab, participants were greeted912

by the researcher and completed the propensity913

to trust questionnaire before proceeding with914

the study.915

2. Participants received the experiment informa-916

tion sheet and game instruction sheet and917

signed the consent form.918

3. Participants completed the demographics ques-919

tionnaire, including information about their920

experience with the robot.921

4. Participants were given a demonstration of the922

game and had time to practice, allowing for923

a better understanding of the game and the924

interaction with the robot.925

5. Participants completed the pre-interaction926

questionnaire.927

6. Participants wore glasses and a wristband, and928

the experimenter began recording the data to929

be collected from these devices and left the930

room.931

7. Participants engaged in the game alongside932

the Nao robot, with their interactions being933

recorded, while the experimenter remotely con-934

trolled the gameplay and robot from the other935

room.936

8. After each game, the experimenter walked into937

the room, asked the participants to complete938

the post-interaction questionnaire.939

9. The rest of the study repeated steps 6, 7, and940

8 on three different occasions.941

10. At the end, participants were thanked for their942

participation and were told that they would943

receive a £10 Amazon voucher as a token944

of appreciation for their participation in the945

study.946

4.5 Measurements947

To accurately assess trust in HRI, we implemented948

a comprehensive approach, including question-949

naires and empirical data that included observa-950

tions of user control, robot performance, risk and951

ambiguity aversion. The data was applied to this952

model, enabling us to calculate TMS.953

• Before participating in any interaction or gain-954

ing awareness of the surrounding environment955

of the interaction, the participants were asked956

to complete a 10-item questionnaire on the957

tablet to assess dispositional trust [17]. This958

questionnaire utilised a 5-point Likert scale959

ranging from "Strongly Agree" to "Strongly960

Disagree" for responses. The items on the ques-961

tionnaire are detailed in Table 3. This scale was962

recently developed specifically for HRI contexts963

through the Delphi method with expert input,964

the scale offers strong content validity and a965

balanced consideration of both trust and dis-966

trust. It reflects the understanding, supported967

by the Computers Are Social Actors (CASA)968

paradigm, that human robot trust shares psy-969

chological foundations with interpersonal trust970

[24, 48, 55]. Dispositional trust refers to an971

individual’s general tendency to trust others,972

shaped by personality and previous experi-973

ences [25], and this general measure captures974

that foundational trait without requiring robot-975

specific items, making it suitable for assessing976

trust in HRI contexts.977

• After becoming aware of the interaction and the978

role of the robot, but before the primary inter-979

action, participants completed a pre-interaction980

questionnaire to assess their situational trust981

towards the robot by rating the robot on the982

TPS scale from 0 to 100. The scale consists of983

40 items and a subscale of 14 items). The items984

on the scale are detailed in Table 4. In this985

study, we utilised the 14-item subscale since it986

helps measure pre-interaction trust and changes987

in trust over time and during multiple trials.988

Following [55], we determined the trust score989
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by first reverse coding the "have errors," "unre-990

sponsive," and "malfunction" items, and then991

computing the average of all 14 items.992

• To validate the model’s credibility, we employed993

TPS subjective measures of trust created by994

Schaefer [55]. Participants were asked to rate995

the robot’s performance in the game using the996

aforementioned TPS scale.997

5 Results998

5.1 H1: Predicting TMS with TPS999

and Session1000

To test H1, we conducted a multiple linear regres-1001

sion to predict the Trust Modelled Score (TMS)1002

using two main predictors: Trust Perception1003

Score (TPS) and Session (time). The TPS is1004

a subjective score reflecting participants’ percep-1005

tion of trust in the robot during different stages of1006

interaction, while the Session represents the time1007

points or phases during the experiment in which1008

trust was assessed.1009

The regression model was found to be highly1010

significant, F (2, 177) = 265.605, p < .001, with1011

R2 = 0.750 (Adjusted R2 = 0.747), meaning that1012

75% of the variance in TMS is explained by TPS1013

and Session Variables (see Figure 5). Both TPS1014

and Session Variables were significant predictors1015

of TMS:1016

• TPS: b = 0.902, t(177) = 19.986, p < .001, indi-1017

cating a strong positive relationship between1018

perceived trust and the modelled trust score.1019

• Session: b = 0.015, t(177) = 4.825, p < .001,1020

indicating a significant change in trust across1021

the interactive sessions.1022

Additionally, a significant correlation was found1023

between TPS and TMS, r = 0.847, p < .001,1024

emphasizing the close relationship between partic-1025

ipants’ subjective trust and the trust predicted by1026

the model (see Figure 6).1027

To ensure that these findings were robust to the1028

repeated-measures structure of the data, a sup-1029

plementary mixed-effects regression model with1030

random intercepts for session was also conducted.1031

TPS remained a significant positive predictor of1032

TMS (β = 0.133, SE = 0.058, p = .021), and Ses-1033

sion also remained a significant predictor (β =1034

0.028, SE = 0.012, p = .016). The random inter-1035

cept variance approached zero, indicating that1036

very little unexplained session-level variability1037

remained once TPS and Session were included1038

as fixed effects. The fixed-effects estimates were1039

highly consistent with the linear regression, con-1040

firming that the conclusions for H1 are robust.1041

5.2 H2: The Effect of Interactive1042

Sessions on TPS and TMS1043

To test H2, a repeated-measures ANOVA was1044

conducted to examine the effect of interactive1045

sessions on TPS and TMS. The analysis demon-1046

strated significant variation in TPS and TMS1047

across the four interactive sessions:1048

• TPS: F (3, 42) = 6.994, p < .0011049

• TMS: F (3, 42) = 15.917, p < .0011050

Post hoc pairwise comparisons (using Bonferroni1051

correction) showed the following results:1052

• For TPS, there was a significant increase1053

between session 1 and session 3 (p = 0.026) and1054

between session 1 and session 4 (p = 0.007),1055

while no significant differences were observed1056

between sessions 2 and 3 or sessions 3 and 4.1057

• For TMS, significant increases were found1058

between session 1 and each subsequent session:1059

session 2 (p < .001), session 3 (p < .001),1060

and session 4 (p < .001). No significant differ-1061

ences were observed between sessions 2 and 3 or1062

sessions 3 and 4.1063

The mean and standard deviations for TPS and1064

TMS across sessions are presented in Table 5.1065

5.3 Hierarchical Regression Analysis1066

To validate the unique contribution of our Trust1067

Modelled Score (TMS) beyond temporal effects,1068

we conducted hierarchical regression analyses pre-1069

dicting Trust Perception Scores (TPS).1070

In the first step, TMS was entered as a predictor of1071

subjective trust ratings, accounting for 6.3% of the1072

variance, R2 = .063, F (1, 182) = 12.28, p < .001.1073
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Item No. Statement
1 I suspect hidden motives in others.
2 I am suspicious of other people’s intentions.
3 You can’t be too careful in dealing with people.
4 It is better to be cautious with strangers until they have shown they are trustworthy.
5 I feel that other people can be relied upon to do what they say they will do.
6 Most people are honest in their dealings with others.
7 I generally give people the benefit of the doubt when I first meet them.
8 I generally trust other people unless they give me a reason not to.
9 I trust what people say.
10 Trusting another person is not difficult for me.
Response Strongly Agree Agree Neutral Disagree Strongly Disagree

Table 3 Dispositional Trust Questionnaire Items

Item No. Statement
1 Dependable.
2 Reliable.
3 Predictable.
4 Act consistently.
5 Function successfully.
6 Meet the needs of the mission/task.
7 Provide appropriate information.
8 Communicate with people.
9 Provide feedback.
10 Follow directions.
11 Perform exactly as instructed.
12 Have errors.
13 Unresponsive.
14 Malfunction

Response 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Table 4 Trust Perception Scale (TPS) 14-item Subscale

In the second step, interaction session was added1074

as an additional predictor, explaining a further1075

4.0% of the variance, ∆R2 = .040, F (1, 181) =1076

8.16, p = .005. This resulted in a total R2 of .104.1077

These results demonstrate that our mathematical1078

trust model significantly predicts subjective trust1079

perceptions and explains unique variance beyond1080

temporal effects alone, thereby providing empiri-1081

cal validation for the utility of the TMS equation1082

in estimating trust in human–robot interaction1083

(HRI).1084

5.4 H3: Differences Across Trust1085

Layers1086

To test H3, a repeated-measures ANOVA was1087

used to explore the differences in human trust1088

across the dispositional, situational, and1089

dynamically learned trust layers. The results1090

showed significant differences between these trust1091

layers, F (5, 40) = 58.907, p < .001.1092

We conducted Pearson correlation tests to assess1093

the relationships between the different trust lay-1094

ers:1095
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• Dispositional trust (DT) and Situational1096

trust (ST) showed a significant positive corre-1097

lation (r(43) = 0.309, p = 0.039).1098

• Situational trust (ST) and Dynamically1099

learned trust (LT) were also positively corre-1100

lated (r(43) = 0.536, p < .001).1101

• Dispositional trust (DT) and Learned1102

trust (LT), represented by objective TMS1103

measurements, were significantly correlated1104

(r(43) = 0.563, p < .001).1105

5.5 H4: Comparison of Initial and1106

Refined Trust Models1107

To test H4, we compared the initial trust model1108

and the refined trust model, both applied to the1109

data collected during the experiment. A regression1110

analysis was performed for each model to estimate1111

the Trust Modelled Score (TMS). The results1112

showed:1113

• Initial model: F (2, 177) = 16.066, p < .001,1114

R2 = 0.154, Adjusted R2 = 0.144.1115

• Refined model: F (2, 177) = 265.605, p < .001,1116

R2 = 0.750, Adjusted R2 = 0.747.1117

To statistically compare the two models, we1118

conducted a one-way ANCOVA, which revealed1119

a significant difference between the models,1120

F (1, 357) = 18.893, p < .001. The refined1121

model demonstrated a stronger predictive capa-1122

bility, as indicated by the higher R2 value, showing1123

improved fit and predictive power compared to the1124

initial model (Figure 7).1125

TPS TMS

Session Mean SD Mean SD

1 .8027 .1322 .6236 .0727
2 .8324 .1163 .6702 .0626
3 .8469 .1035 .6841 .0628
4 .8522 .1183 .6910 .0980

Table 5 Means and Standard Deviations
(SD) for TPS and TMS across Sessions

6 Discussion1126

This study investigated modelling human trust in1127

robots during repeated collaborative HRI. In this1128

section, we discuss how our empirical findings link1129

Fig. 5 A regression plot displaying the relationship
between the computed trust modelled score and the pre-
dicted trust modelled score based on the trust perception
score and session variables.

Fig. 6 Scatter plot depicting the changes in the trust
perception score (in Orange) and trust modelled score (in
Blue) over time.

back to established trust theories and, crucially,1130

how our refined mathematical model expands the1131

existing theoretical knowledge of trust.1132

6.1 Predicting Trust Modelled1133

Score (TMS)1134

Our findings confirmed H1, demonstrating that1135

both the Trust Perception Score (TPS) and the1136

interaction session (time) are significant predictors1137

for the Trust Modelled Score (TMS), which was1138

computed from our model. This marks a notable1139

16



Fig. 7 Comparison of regression lines for the initial (blue)
and refined (green) trust models, illustrating the improved
predictive capability of the refined model in estimating the
TMS.

expansion of prior work [2] where TPS did not1140

emerge as a significant predictor. The enhanced1141

predictive power in this refined model is a direct1142

theoretical advancement stemming from our delib-1143

erate integration of risk and ambiguity aversion1144

into the calculation of the user’s experience, E(t).1145

Theoretically, human trust is not simply a func-1146

tion of a system’s objective performance but is1147

deeply intertwined with psychological factors such1148

as the perceived risks involved and one’s comfort1149

with uncertainty. By mathematically formalis-1150

ing how these factors influence the "experience"1151

that feeds into trust updates, our model provides1152

a more granular and psychologically informed1153

understanding of trust formation and dynam-1154

ics. This addresses RQ1, as it demonstrates how1155

the model, by incorporating these nuanced ele-1156

ments that contribute to dispositional, situational,1157

and learned trust, more accurately captures and1158

accounts for their interplay in real-time HRI, thus1159

expanding our theoretical grasp of multi-layered1160

trust dynamics.1161

6.2 Evolution of Dynamic-Learned1162

Trust Over Time1163

Regarding H2, our results showed that both TPS1164

and TMS changed significantly over time across1165

the four interactive sessions. This acceptance1166

of H2 directly addresses RQ2, examining how1167

dynamic-learned trust evolves in a collaborative1168

HRI setting. These findings strongly align with1169

experiential learning theories of trust [6, 32], which1170

posit that trust is a dynamic construct continu-1171

ously updated by ongoing interactions. Our work1172

empirically substantiates this by showing quantifi-1173

able shifts in both perceived and modelled trust1174

across sessions.1175

Further enriching this theoretical understanding,1176

our analysis of the contributing factors revealed1177

significant, dynamic changes in risk perception1178

across sessions. The observed decrease in per-1179

ceived risk from session 2 onwards suggests that1180

as participants gained familiarity and experience1181

with the robot’s capabilities within the task, their1182

assessment of potential negative outcomes shifted.1183

This highlights that it is not just the occurrence1184

of experiences, but the recalibration of contex-1185

tual factors like risk based on these experiences,1186

that drives trust evolution. Whilst ambiguity aver-1187

sion did not show significant session-to-session1188

differences in this specific game context, its inclu-1189

sion in the experience calculation still contributes1190

to a more complete instantaneous trust update,1191

reflecting the user’s comfort with uncertainty. This1192

demonstrates how our model offers a mechanism1193

to theoretically explain and quantify how specific1194

elements within the "experience" feedback loop1195

contribute to the evolving nature of dynamically1196

learned trust.1197

6.3 Interplay Among Trust Layers1198

Our study confirmed H3, revealing variations and1199

correlations among the three distinct layers of1200

trust – dispositional, situational, and learned (ini-1201

tial and dynamic) – during HRC. This directly1202

answers RQ3, providing empirical evidence for the1203

relationships proposed in theoretical frameworks1204

like that of Hoff, Bashir [25].1205

We observed a significant positive correlation1206

between dispositional trust (DT), representing an1207

individual’s general propensity to trust others [17],1208

and situational trust (ST), assessed after partici-1209

pants were introduced to the specific experimental1210

task [55]. This empirically supports the theoret-1211

ical notion that a fundamental, inherent trust1212

propensity can indeed influence an individual’s1213

initial trust judgement in a novel HRI context.1214

Whilst some studies, such as Driggs, Vangsness1215

[18], have found inverse relationships depending1216
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on task difficulty, our findings suggest that in a1217

collaborative and moderately challenging game, a1218

baseline willingness to trust carries over to the1219

initial assessment of a robotic partner.1220

Furthermore, we found that situational trust was1221

positively correlated with dynamically learned1222

trust (LT). This empirically established link is1223

crucial as it demonstrates a continuous influ-1224

ence from the initial contextual assessment of the1225

robot to the trust that develops through repeated1226

interaction. This finding provides a nuanced per-1227

spective, as it contrasts with some prior research1228

[46] that suggested a potential disconnect between1229

initial and learned trust. Our results imply that in1230

tasks involving sustained collaboration and cumu-1231

lative experience, the initial situational assessment1232

remains a relevant anchor for subsequent trust1233

development. The positive correlation between1234

dispositional trust and learned trust (TMS) fur-1235

ther reinforces the theoretical idea that an individ-1236

ual’s fundamental trust orientation can continue1237

to exert an influence on how trust accumulates and1238

evolves over extended interactions. These empiri-1239

cal correlations collectively demonstrate that the1240

distinct layers of trust are interconnected, and1241

their interplay is modulated by the specific task1242

and interaction dynamics, offering a more robust1243

and empirically grounded understanding of Hoff,1244

Bashir [25]’s framework.1245

6.4 Superiority of the Refined Trust1246

Model and Expansion of1247

Knowledge1248

The acceptance of H4 demonstrates that our1249

refined model significantly improved the predic-1250

tion of TMS compared to the initial model,1251

directly addressing RQ4. This substantial increase1252

in the refined model’s predictive power is not1253

merely a statistical improvement but signifies a1254

profound theoretical and practical advancement in1255

our understanding and modelling of HRI trust.1256

The key to this enhanced performance, and indeed1257

its contribution to the body of knowledge, lies1258

precisely in the new equation for the experi-1259

ence component, E(t), within our mathemati-1260

cal framework. Previous computational models of1261

trust in HRI often relied on simpler feedback1262

loops, perhaps solely based on whether the robot’s1263

action was "correct" or "incorrect" relative to a1264

performance metric. Our refined E(t) equation1265

(Equation 5), particularly through its integrated1266

terms, expands our knowledge of trust by for-1267

malising how crucial psychological nuances are1268

integrated into its real-time computation.1269

The term relating to the alignment of perfor-1270

mance, human control, and risk (derived from1271

the first part of Equation 5) moves beyond a1272

binary success/failure. It mathematically captures1273

the idea that a user’s experience and subsequent1274

trust update are influenced not just by the robot’s1275

accuracy, Pi, or the user’s decision, Ci, but crit-1276

ically, by how these align with the perceived1277

risk, Ri, of the situation. This formalises the1278

theoretical understanding that trust is context-1279

dependent and risk-sensitive; a correct action in1280

a low-risk scenario might build less trust than1281

an equally correct action in a high-risk scenario1282

where the robot’s reliability is truly put to the1283

test. This provides a computational mechanism for1284

how risk directly mediates the impact of perfor-1285

mance on trust, a crucial refinement over simpler1286

performance-based models.1287

The inclusion of ambiguity aversion, A(t), as1288

defined in Equation 6 and derived from the dis-1289

crepancy between expected, Ki, and actual, Fi,1290

robot failures, is another significant theoretical1291

expansion. Trust theory recognises that uncer-1292

tainty (ambiguity) about a system’s reliability1293

can inhibit trust, even if performance is generally1294

good. Our equation provides a concrete, mathe-1295

matical way to integrate this psychological factor,1296

showing how a user’s aversion to unpredictable1297

robot behaviour (or unexpected failures) directly1298

modulates the overall "experience" that feeds into1299

the trust model. This moves beyond simply react-1300

ing to observed failures and accounts for the user’s1301

mental model and expectations of robot fallibil-1302

ity, thus offering a more complete picture of trust1303

dynamics under uncertainty.1304

In essence, this new equation for E(t) allows the1305

model to become a more psychologically valid and1306

comprehensive computational model of trust. It1307

provides a concrete, quantitative mechanism for1308

understanding how these nuanced factors – risk1309

perception, ambiguity, and their interaction with1310

performance and user control – mathematically1311
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combine to update trust in real-time. This is a sig-1312

nificant leap from descriptive trust models, offer-1313

ing a predictive, quantitative, and implementable1314

framework that aligns more closely with the multi-1315

faceted complexities of trust in HRI as described1316

by Hoff, Bashir [25].1317

6.5 General Implications and Future1318

Work1319

The findings of this study have important impli-1320

cations for both HRI research and the broader1321

theory of trust. Firstly, our results strongly sug-1322

gest that trust in robots is not a static attribute1323

but a dynamic construct that evolves over time,1324

heavily influenced by repeated interactions and1325

changing contextual factors. This underscores the1326

critical need for more long-term studies in HRI1327

to fully capture the nuances of trust develop-1328

ment and decay. Secondly, the enhanced predictive1329

power of our model, achieved through the explicit1330

incorporation of psychological factors like risk and1331

ambiguity aversion, highlights their theoretical1332

significance in shaping human trust. This provides1333

a more comprehensive understanding of trust and1334

offers a pathway for designing more truly trust-1335

worthy and context-aware robotic systems. Lastly,1336

the observed correlations between dispositional,1337

situational, and learned trust layers suggest that1338

fundamental principles from social psychology and1339

interpersonal trust theories remain highly relevant1340

and valuable for refining trust models for HRI.1341

A key limitation of this study is that whilst1342

we captured participants’ prior experience with1343

robots, we did not conduct a direct correlation1344

analysis between this experience and the vari-1345

ous trust measures. Prior experience is a well-1346

documented factor influencing trust in automation1347

and robotics, as individuals with more expo-1348

sure often calibrate their trust differently. Future1349

studies should incorporate such an analysis to1350

explore how familiarity with technology affects1351

trust development over time.1352

Additionally, our participant pool was primar-1353

ily composed of university students. Whilst this1354

demographic offers advantages such as greater1355

familiarity and comfort with new technologies [26]1356

and well-developed cognitive abilities for complex1357

tasks [13], it may also introduce biases. Univer-1358

sity students might approach interactions with1359

a more critical mindset, potentially scrutinising1360

robot performance more rigorously than individu-1361

als in non-academic environments. This could lead1362

to different trust dynamics compared to popula-1363

tions where trust might be more readily given,1364

such as those in care settings, or where educational1365

backgrounds and prior technology exposure vary.1366

Therefore, future research should explore trust1367

dynamics across more diverse participant groups1368

to enhance the generalisability of our findings.1369

Similarly, other binary variables in our model,1370

such as performance (Pi) and control (Ci), could1371

benefit from continuous representations in future1372

iterations. For instance, performance could be1373

measured on a scale reflecting degrees of success1374

rather than simple success/failure, and control1375

could represent the degree of intervention rather1376

than a binary choice to trust or not trust.1377

A further limitation of this study is the absence1378

of significant real-world risk in the experimental1379

design. While the Bluff Game was designed to1380

create both a collaborative and competitive envi-1381

ronment that introduced a level of uncertainty, it1382

did not involve any monetary or other high-stakes1383

risks for the participants. The concept of trust1384

is intrinsically linked to the presence of risk, and1385

the lack of significant consequences for poor deci-1386

sions may have influenced the participantst́rust1387

behaviours. Future research should aim to incor-1388

porate more substantial risks, such as financial1389

incentives or penalties, to create a more ecologi-1390

cally valid environment for studying human-robot1391

trust.1392

7 Conclusion & Future Work1393

In this paper, we built upon prior work to present1394

a refined mathematical model that emulates the1395

three-layered (initial, situational, learned) trust1396

framework and potentially estimates human trust1397

in robots in real-time during repeated HRI. The1398

findings confirmed the model’s validity, with both1399

TPS and the sessions being significant predic-1400

tors for the TMS. Notably, the refined model1401

demonstrated a significant improvement in pre-1402

dicting the TMS more effectively than the initial1403

model. This increase in performance validates1404

the enhancements made to the model, highlight-1405

ing its increased precision in trust estimation.1406

The validation of this model can be attributed1407
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to several enhancements. We integrated addi-1408

tional task-dependent factors, such as risk and1409

ambiguity aversion, which significantly refined the1410

model’s ability to shape the experience. Testing1411

the model in different contexts further highlighted1412

its adaptability and robustness, demonstrating its1413

improved capability to assess human trust in real-1414

time. The implications of having a validated trust1415

measurement are substantial. This model opens1416

up opportunities for a variety of applications, such1417

as reinforcement learning, where the model can1418

help in shaping reward functions. Consequently,1419

this facilitates the development of behaviours in1420

robotic systems that optimise user trust across1421

various tasks, thereby enhancing the effectiveness1422

and adaptability of HRI.1423

In the future, we will primarily focus on applying1424

this validated model’s capabilities within the rein-1425

forcement learning domain to develop adaptive1426

robotic systems that can optimise human-robot1427

trust. Also, we will undertake further validation1428

testing and refinement of the model to enhance1429

its adaptability, accuracy, and applicability across1430

diverse HRI contexts.1431
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