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Abstract

As robotic systems become more autonomous and capable, they are expected to work alongside
humans as teammates rather than just tools. Trust is a crucial factor in collaborative human-robot
interaction (HRI), and appropriate trust in robotic collaborators can influence the overall performance
of the interaction. Building upon previous work in modelling trust in HRI, this paper describes a refined
mathematical trust model to imitate a three-layered framework of trust, which can estimate human
trust in robots in real-time. We show that the refined mathematical model significantly outperformed
the existing model. Further, this model was tested and validated in a user study where participants
engaged with the NAO robot in four sequential collaborative sessions. The results showed that the
model is valid based on the linear regression analysis, with both the trust perception score (TPS)
and interaction session being significant predictors for the trust modelled score (TMS) computed by
applying the trust model. We also demonstrated that trust levels differed across the three layers of
trust. This trust model highlights the model’s potential in developing adaptive robotic behaviours
optimized for user trust, which can enhance the development of robotics systems that can respond to

changes in human trust level in real time.

Keywords: Trust, Measurement, Repeated Interactions, Human-Robot Interaction

1 Introduction

The deployment of robotic systems has seen a
notable increase in environments where humans
and robots work collaboratively [10]. A robot
is defined as a re-programmable system capable
of performing a wide range of tasks. This sys-
tem can be autonomous, semi-autonomous, or
controlled, and interacts with humans in vari-
ous capacities, including social robots, self-driving
cars, and other automated systems [11]. Estab-
lishing successful Human-Robot Interaction (HRI)

can enhance efficiency and increase productivity
for both humans and robots [5, 49]. Trust is essen-
tial to ensure smooth Human-Robot Collabora-
tion (HRC). However, incorrectly calibrated trust
can result in either over-reliance or under-reliance,
potentially leading to the disuse of these advanced
robotic systems [53]. Recognizing this, researchers
in HRI are investigating how to develop an online
measurement to sense trust in real-time [37]. How-
ever, it presents a challenge to model humans’
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trust in robots as factors affecting humans’ trust
in robots vary across different settings [9].

In HRI, there are primarily two methods to mea-
sure trust [36]. Subjective methods, which are
straightforward and direct, involve gauging peo-
ple’s perception toward robots either before or
after an interaction, as exemplified by several
studies [31, 43, 55]. Nonetheless, these methods
have limitations, particularly when it comes to
real-time scenarios where preventing the misuse of
robots is paramount. In contrast, objective meth-
ods delve into the realm of real-time data, observ-
ing the actions and reactions of both humans and
robots during an interaction. They estimate trust
by evaluating aspects like the robot’s performance
and error rates, as illustrated by Ahmad et al.
[3]. However, to systematically estimate trust, a
combined approach may be necessary, taking into
account factors like interaction duration and the
robot’s overall performance, as suggested by Law,
Scheutz [40].

Mathematically capturing the essence of trust in
HRI is a challenging task [60]. Several studies have
attempted to create real-time mathematical mod-
els of trust [19, 28, 34, 37]. However, these models
are not without limitations. One primary issue is
that the validation of these models has occurred
in simulated environments, which raises questions
about their practicality in real-world HRI sce-
narios [37]. Another aspect is evaluating trust
dynamics in the context of repeated and long-term
HRI. While there has been limited exploration
into factors that influence trust during repeated
and long robot interactions [44, 46], the landscape
remains largely unexplored.

Exploring further into this, integrated from Lee,
See [42], Hoff, Bashir [25] conceptualised a three-
layered model of trust: dispositional, situational,
and learned (both initial and dynamic), where
dispositional, situational and initial trust reflects
humans’ trust in robots prior to interaction,
and dynamically learned trust reflects trust in
robots post-interaction. The previous work has
aimed to mathematically model trust dynamics
in repeated HRI [2] based on Hoff, Bashir [25].
Ahmad et al. attempted to emulate dynamically
learned trust dynamics, and found that the time

. . . . . . 11
(interaction session) was a significant predictor of
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the Trust Modelled Score (TMS), whereas sub-
jective Trust Perception Score (TPS) ratings did
not predict the TMS. Additionally, the authors
found that perceived risk influenced participants’
behaviour, with higher risk leading to increased
distrust. Moreover, participants’ trust behaviour
was affected by their perception of the robot’s
performance compared to its actual performance.

While the fundamental relationship between per-
formance outcomes and trust is well-established
across automation, robotics, and AI/ML domains,
our contribution extends beyond this basic princi-
ple by developing a comprehensive mathematical
framework that integrates performance with other
critical factors including risk perception, ambigu-
ity aversion, and user control to estimate trust
in real-time during repeated interactions. In this
paper, we integrate these factors into a three-
layered trust model and validate whether this
mathematical framework provides accurate trust
estimation during repeated physical HRI. In addi-
tion, we design a novel game-based experimental
task and validate our Trust Modelled Score (TMS)
equation across multiple interaction sessions. We
further explore the dynamics of dispositional, sit-
uational, and dynamically learned trust layers,
providing a quantitative approach that advances
beyond descriptive models to predictive, imple-
mentable trust estimation for robotic systems. We
aim to investigate the following research questions

(RQs):

RQ1 How can we model and validate three lay-
ers of trust (dispositional, situational, and learned
(initial and dynamic)) during repeated HRI in a
collaborative setting?

RQ2 Given the wvariations in the correlation
among the three dimensions of trust, how does
dynamic-learned trust evolve during repeated HRI
in a collaborative setting?

RQ38 Does the interplay or correlation among the
three dimensions of trust (dispositional, situa-
tional, and learned (initial and dynamic) trust)
exhibit variation during repeated HRI in a collab-
orative setting?

RQ4 "Is refined mathematical modelling more
accurate than current methods in estimating trust
in robots?"



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

The novel contributions (C) of this paper are:

C1 We present a refined mathematical model of
the three layers of trust during cooperative HRI,
incorporating factors that affect the experience,
including risk and ambiguity aversion, building
upon insights and limitations identified in previ-
ous work.

C2 We validate the model’s efficacy using a novel
game-based task and show that subjective ratings
of trust perceptions strongly predicted the estima-
tion of trust computed by applying the developed
model.

('8 We find strong empirical evidence showing lin-
ear relationships between different layers of trust
as described by Hoff, Bashir [25] in a collaborative
HRI task.

C4 We compared two versions of the model and
found a significant difference in predicting TMS.
The refined trust model outperformed the initial
model.

2 Background

2.1 Trust - Conceptualisation

Trust is crucial for the successful operation of
any team [21]. Despite being studied in vari-
ous disciplines, it is challenging to establish a
comprehensive definition. In this paper, we con-
sider the following definition: Abbass et al. [1]
defined trust as “multidimensional psychological
attitude involving beliefs and expectations about
the trustee’s trustworthiness derived from experi-
ence and interactions with the trustee in situations
involving uncertainty and risk”. This definition
highlights the evolution of trust through experi-
ence and interactions, which is critical in studying
long-term HRI and enabling successful collabora-
tions.

In light of this interpretation, trust has been cate-
gorised into three types: dispositional, situational
and learned [25]. Dispositional trust refers to
the user’s tendency to trust the robot before inter-
action occurs. Dispositional trust is stable over
time and is much more related to the user’s cul-
tural background, age, gender, and personality.
Studies have shown differences in trust behaviour
between people of different cultures, age groups,
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and personality types [9, 41]. Situational trust is
based on factors external to the user and related to
the interaction environment, including task type,
complexity, difficulty, perceived risks, and work-
load. The other factors are internal to the user,
including self-confidence and the user’s knowledge
and expertise. Studies have shown that these fac-
tors can affect human trust [16, 52, 56]. Finally,
Learned trust is based on the user’s overall eval-
uations and experiences with the robotic system
before the first interaction (initial trust). During
a new interaction with a robotic system (dynam-
ically learned trust), humans’ experience affects
their established trust level. Experience signifi-
cantly influences human trust in robots in HRI
[24, 50] and can be influenced by the robot’s
performance and risk during current or repeated
interactions and can influence the trust in future
interactions [54]. This paper builds on previous
research [2] that demonstrated changes in trust
over time, the potential influence of risk, and the
disparity between a user’s perception of a robot’s
performance and its actual performance. This
study delves deeper into the dynamics of trust
by examining all three levels of trust and devel-
oping a dynamic model to understand how trust
evolves over time. We achieve this by integrating
risk and differences between user perception and
actual robot performance into the calculation of
experience.

2.2 Measuring Humans’ Trust in
Robots

2.2.1 Assessment Methods and Metrics

Prior work has commonly used subjective meth-
ods [43, 55, 58], objective methods [35, 36, 40] and
psycho-physiological measurements for trust [4, §].
Additionally, researchers have also attempted to
mathematically model human’s trust in robots
[19, 23, 27, 29, 39, 51]|. For instance, Freedy
et al. [19] developed a decision-analytical-based
measure of trust and conducted two initial experi-
ments to examine trust in a human-robot collabo-
rative task (a simulation environment called MIT-
PAS). The model classified trust in robots based
on the self-confidence demonstrated by humans
into three categories: under-trust, proper-trust, or
over-trust. Hoogendoorn et al. [27] developed trust
models with biased experience. The models have
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been evaluated against empirical data and have
shown the impact of bias in the measurement of
trust. Saeidi, Wang [51] utilised the trust and
self-confidence model to reduce human cognitive
workload and improve the overall performance of
the human and the robot. This model was tested
and validated through a simulated experiment
during HRC, which showed its effectiveness in
capturing human behaviour and improving over-
all performance. Hale et al. [23] developed a trust
model that reflects a robot’s level of cooperation
over time and quantifies the amount of informa-
tion a robot can gain based on its cooperation.
The study used simulations to illustrate the trust-
driven privacy framework. The results showed that
the model was able to capture trust. When a
robot stops contributing to a decrease in the cost,
the trust and privacy levels decrease, leading to
an increase in the amount of added noise to the
human’s state. Hu et al. [29] introduced a quanti-
tative trust model to study human trust behaviour
in human-machine interactions. They conducted
an experiment where participants simulated driv-
ing a car with an obstacle detection sensor based
on an image-recognition algorithm, deciding to
trust the algorithm’s report based on prior expe-
rience. Results showed that the model accurately
captures human trust dynamics during interaction
based on past experience.

2.2.2 Trust in Repeated or Long-term
interactions

In general, there is limited research focusing on
measuring or modelling trust in robots [24, 36] as
well as investigating the factors impacting human-
robot trust [20, 22, 46, 50, 59] in repeated or
long-term interactions. Yanco et al. [59] conducted
a study to explore the evolution of trust in auto-
mated systems within the automotive and medical
domains. They used computer-based surveys dis-
tributed through Amazon Mechanical Turk to
a wide audience. The study focused on factors
such as brand reputation (e.g., Google Car versus
a small startup) and scenario criticality (safety-
critical versus non-safety-critical) and how these
influenced trust. The findings showed that trust
levels remained fairly consistent across different
survey rounds, indicating that initial trust judg-
ments were predictive of short-term trust stability.
However, participants who were more familiar
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with automated systems expressed lower trust and
reported higher perceived workload. While the
study offers valuable insights into factors influenc-
ing trust in automation, the findings are limited
to static, survey-based assessments and may not
accurately predict trust in real-time interactions.
Hafizoglu, Sen [22] conducted an experiment to
examine the effects of past experiences on trust in
repeated interactions with software agents in a col-
laborative game environment. The study involved
participants interacting with virtual agents in a
team task setting. The results showed that posi-
tive past experiences led to an increase in human
trust in their agent teammates, while negative
experiences resulted in a decrease in trust. Gremil-
lion et al. [20] developed a model and estima-
tion scheme that can predict changes in decision
authority during interactions with a simulated
autonomous driving assistant. The study utilized
a highly controlled simulated leader-follower driv-
ing task, where participants operated a virtual
vehicle on a two-lane closed circuit. The vehicle
was equipped with an autonomous driving assis-
tant, which could either control only the throttle
or both the steering and throttle. Participants had
to decide when to toggle driving authority to the
autonomous assistant based on the driving condi-
tions while simultaneously performing a secondary
task. The primary outcome of the study was the
development of models that can predict a driver’s
trust-based decisions using a range of psychophys-
iological and environmental data. However, the
study was limited to incorporating self-reports
from subjects to enhance the model’s accuracy.
Miller et al. [46] investigated the psychologi-
cal dynamics of Human-Robot Interaction (HRI),
focusing on trust across three layers: dispositional,
initial, and learned trust. The study utilized a
humanoid robot, TIAGo, a service robot designed
for domestic environments. Participants engaged
with the robot in a laboratory setting where the
robot approached them twice. This interaction
was controlled using a Wizard of Oz paradigm,
where an operator remotely guided the robot
to simulate autonomous behaviour. The study
revealed that initial and dynamically learned trust
were not significantly associated, suggesting that
trust in HRI is dynamic and context-dependent,
particularly in tasks requiring close physical prox-
imity to a humanoid robot. Alarcon et al. [7]
examined the dynamics of trust before and after
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trust violations in human-human and human-
robot interactions. Participants were paired with
either a human or a NAO robot partner in a
modified trust game, where trustworthiness was
manipulated through violations of ability (perfor-
mance), benevolence, and integrity. The results
showed that participants were less forgiving of
performance-based errors from robots, supporting
the Perfect Automation Schema (PAS). More-
over, robots were perceived more negatively than
humans even in cases of non-performance-based
violations, suggesting persistent biases against
robots. These findings highlight the asymmetry
in trust attribution and the critical role of per-
formance expectations in shaping trust in robots.
Rossi et al. [50] evaluated how the timing of errors
in repeated interactions with a humanoid compan-
ion robot (Care-O-bot 4) influenced human trust.
Their study found that the timing of errors in
repeated and long-term human-robot interactions,
whether at the beginning or end, correlates with
a loss of human trust in the robot.

Research on trust in repeated or long-term HRI
has revealed several key theoretical insights that
collectively inform our understanding of trust
dynamics. Studies have consistently demonstrated
that trust is dynamic and evolves over time based
on interaction experiences [22, 46, 50|, with the
timing and nature of errors significantly impacting
trust development [50]. Furthermore, familiarity
with robots can paradoxically lead to lower trust
levels as users become more aware of system lim-
itations [15, 59]. Research has also shown that
trust attribution differs between human-human
and human-robot interactions, with robots being
less forgiven for performance-based errors, sup-
porting the Perfect Automation Schema [7].

However, these findings, while valuable, primarily
confirm established principles: that trust changes
based on performance outcomes and user expe-
riences. The critical theoretical gap lies not in
understanding that trust changes, but in devel-
oping mathematical frameworks capable of pre-
dicting and quantifying these changes in real-time
during physical HRI. Most existing studies have
been limited to static, survey-based assessments
[59], simulated interactions [12, 20], small sample
sizes [50], or image-based robot representations
[14], raising questions about their applicability to
real-world physical human-robot interactions.
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Prior research has attempted to address this
gap by developing mathematical trust models in
repeated interactions [2] by emulating the dynam-
ically learned trust framework of Hoff, Bashir [25].
However, evaluation of these models highlighted
significant deficiencies: they operated under sim-
plified assumptions (such as initial trust values
set at 0.5) and computed user experience based
solely on control decisions and perceived robot
performance.

What distinguishes our work is not the demon-
stration that trust changes over time—this is
well-established—Dbut rather the development of a
comprehensive mathematical framework that can
estimate these changes in real-time during phys-
ical HRI. In the enhanced model presented in
this paper, we have refined the scope of expe-
rience calculation to encompass not only user
decisions and robot performance but also criti-
cal factors such as risk perception and aversion
to ambiguity. More importantly, we introduce the
Trust Modelled Score (TMS) equation as a novel
mathematical tool that integrates multiple factors
within a three-layered trust framework, advancing
beyond descriptive models to provide predictive,
quantitative trust estimation for robotic systems.

3 Trust Model

The trust model is based on three layers of trust:
dispositional, situational and dynamically
learned [25]. Dispositional trust is a reflec-
tion of an individual’s built-in trust propensity
that remains stable over time [25]. Situational
trust represents the trust level before interaction
that is influenced by factors such as the user’s
knowledge, self-confidence, task type and per-
ceived risks. Dynamically learned trust, repre-
sents users’ experience over time through iterative
interactions, incorporating both dispositional and
situational trust.

3.1 Initial Model

The foundation of the initial trust model started
focusing on the learned trust (initial and dynamic)
[2]. We adopted the experiential learning model
[33] to mathematically represent trust dynamics,
expressed as:
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Fig. 1 Modeling the Three Layers of Trust.

T(t+ At) = T(t) + y(E(t) — T(t)At, (1)

where t > 0 C Z represents the count of inter-
action events, E(t) is the experience and T'(t) is
the dynamically learned trust at ¢th interaction,
and T'(0) is the initial trust at ¢ = 0, i.e. when
no interactions have occurred. Here, At represents
the unit difference between events. Thus, At = 1.

The model delineates three distinct cases of trust
evolution:

1. Trust increases if the experience E(t) exceeds
current trust T'(¢).

2. Trust remains stable if E(t) equals T'(t).

3. Trust declines if FE(t) is less than T'(¢).

The rationale for comparing E(t) to the current
trust level T'(t) and using it to infer trust at the
subsequent time step T'(¢t + 1) is rooted in the
understanding that trust at any given moment is
not an isolated event. Instead, it is intrinsically
linked to the trust levels before and after that
instance. As the interaction progresses, each expe-
rience E(t) serves as a snapshot of trust, capturing
how the user’s trust is shaped by the immediate
context. This instance of trust then influences the
trust level in the next moment, T'(t + 1), creating
a continuous feedback loop where trust dynami-
cally adjusts in response to ongoing experiences.
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The idea that experience influences trust is sup-
ported by empirical studies in the HRI field. For
instance, Miller et al. [46] emphasizes that trust in
robots is heavily influenced by prior experiences,
particularly in repeated interactions where users
can observe and evaluate the robot’s performance
over time.

The model’s central element is the experience,
which is calculated based on human decision
behaviour and robot performance in a competitive
game task:

t

D

_ @

where P; and C; are performance and user control
indicators, respectively, and K is the number of
taking control.

E(t) = PiCi

or 1 for K =0,

3.2 Extended Model

Building on the initial model, the extended ver-
sion further explores the dynamics of trust in
HRI. This model is designed to estimate human
trust in the trustworthiness of a robot, particularly
in situations that present risk and uncertainty.
We attempt to model three layers of trust: dis-
positional, situational and learned (initial and
dynamically), as shown in Figure 1.

In this approach, we have chosen specific scales to
compute different aspects of trust, aligning with
the best practices in trust measurement within
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HRI as detailed by Krausman et al. [38]. For
computing dispositional trust (DT) values, we
utilised a Likert scale questionnaire [17]. We com-
puted the situational trust (ST) value using the
trust perception scale [54]. The initial trust can be
better reflected by averaging propensity and situ-
ational trust, which considers past pre-interaction
experiences with the system. Therefore, we con-
sidered the initial learned trust 7'(0) as the
average of dispositional and situational trust:

_ DT +ST

7(0) .

(3)
The rationale for this approach is that both dis-
positional and situational trust, as pre-interaction
stages, contribute equally to shaping the user’s
initial expectations and trust levels before any
direct interaction with the robot. Dispositional
trust offers a stable baseline, reflecting an individ-
ual’s inherent tendency to trust, while situational
trust modifies this baseline based on the spe-
cific context and conditions of the interaction. By
averaging these two components, the initial trust
calculation captures both the enduring personal
characteristics and the dynamic environmental
factors, providing a more balanced measure of the
user’s initial trust.

The dynamically learned trust is built on the
initial model but with differences in the experience
computation as:

T(t+ At) = T(t) + (E(t) — T(t)At,  (4)

where ¢ € N marks the count of interaction events,
E(t) is the experience at the complete tth inter-
action, and T'(¢) is the dynamically learned trust.
Here, v € [0,1] is the learning rate, v = 0.25
, At = 1, represents the unit difference between
events.

Based on the definition provided earlier, we can
identify the following scenarios:

Scenariol T(t+ At) > T(t);if E(t) —T(t) >0
Scenario2 T(t+ At)=T(t); if E(t) —T(t) =0
Scenariod T(t+ At) <T(t); if E(t) —T(t) <0
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® Scenario 1: Trust in the next interaction 7'(¢+
At) increases if the difference between the user’s
experience F(t) and the current trust level T'(¢)
is positive.

® Scenario 2: Trust remains unchanged T'(t +
At) = T'(t) if the difference between the experi-
ence and the trust level is zero.

® Scenario 3: Trust decreases in the subsequent
interaction T'(t + At) if this difference is nega-
tive.

As the experience E(t) is the key component of
the model, we will explore the computation of
the experience to extend the model. The ratio-
nale for comparing E(t) to the current trust level
T'(t) and using it to infer trust at the subsequent
time step T(t+1) is rooted in the understanding
that trust at any given moment is not an isolated
event. Instead, it is intrinsically linked to the trust
levels before and after that instance. As the inter-
action progresses, each experience F(t) serves as
a snapshot of trust, capturing how the immedi-
ate context shapes the user’s trust. This instance
of trust then influences the trust level in the next
moment, T'(t + 1), creating a continuous feedback
loop where trust dynamically adjusts in response
to ongoing experiences. In this version, it is calcu-
lated based on human decision-making behaviour,
the performance of robots, risk, and ambiguity
aversion in a given task as follows:

SN |PC; — CiRy|
N

E(t) = (1—( ) —A@)  (5)

Where P;, C;, and R; are context-dependent indi-
cators of performance, human control, and risk,
respectively, at the ¢th instance, N is the total
number of interactions, and A(¢) represents ambi-
guity aversion. Both P; and C; are task-specific
and are binary variables with possible values of 0
or 1. The risk R; is categorized into two funda-
mental levels: low and high (0,1), respectively.

The part of the equation |P;,C; — C;R;| mea-
sures how well the robot’s performance aligns
with the user’s decisions and associated risks over
time. This is because the user’s actions can be
affected by the performance and the risk, mak-
ing it important to consider both when evaluating
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the alignment between the robot and the user to
assess the experience E(t). Dividing by N nor-
malizes |P;C; — C;R;|, ensuring it remains within
a standardized range and providing a consistent
measure of alignment between the robot’s per-
formance, user’s decisions, and associated risks,
irrespective of the number of interactions.

Subtracting (W) from 1 inverts its
scale, converting a measure of misalignment into
alignment. This is key since E(t) signifies trust,
which increases with better alignment between
robot performance, user decisions, and risks.

We understand that E(t) can be influenced by the
difference between anticipated and actual robot
failure rates. We have integrated the concept of
ambiguity aversion, represented by A(t), into the
model to account for the uncertainties users might
face regarding the frequency of robot failures and
the potential impact of this uncertainty on user
control and experience.

N )

Where K is the expected number of robot failures
(how many times the user overrides the robot), F;
is the actual number of robot failures at time ¢,
and N is the total number of instances. With this
representing of E(t) € [0,1] C N, and an initial
T(0) € [0,1] C N, it is clear that T'(¢t) € [0, 1] with
1 representing a complete trust, and 0 illustrating
a complete distrust; see Figure 2.

A(t) =

4 Study Design

We designed a study to validate the mathemati-
cal trust model, involving participants interacting
with the NAO robot on four different occasions
during collaborative HRI, with each session last-
ing approximately 7.45 minutes. Each session
contained multiple decision points where partici-
pants had to decide whether to accept or reject
the robot’s suggestions. At each decision point,
the model computed instantaneous trust, dynam-
ically updating it throughout the session based on
these interactions. By the end of each session, the
cumulative experience, combined with the previ-
ous trust score, formed a new trust level. After
each session, participants completed a question-
naire to assess their perceived trust in the robot.

Experience (E(t))

08

___

08 03 10

04 06
Current Trust Level (7(t))

00 01 02 03 04 05 06
New Trust Level (T(t + At))

Fig. 2 Illustration of the impact of Current Trust Levels
T'(t) and Experiences E(t) on the New Trust Level T'(t+At)
for v = 0.25, showing that a highly positive experience has
a limited impact when current trust is low.

This setup allowed us to compare the model’s
real-time computed trust scores with participants’
self-reported trust levels. All participants followed
the same sequence of four interactive sessions to
ensure consistency in the study conditions. While
randomisation is often used in such studies, we
chose a fixed session order to focus on measuring
trust dynamics over time. This uniform approach
allowed us to observe trust evolution consistently
across participants. All sessions occurred on the
same day, with a 5-minute interval between ses-
sions. We tested the following hypotheses:

H1: Both the Trust Perception Score (TPS) and
interaction session (time) will predict the Trust
Modelled Score (TMS).

H2: We will observe a significant interaction effect
on sessions (sessionl, session2, session3, and ses-
siond) for TMS and TPS scores, reflecting that
human dynamically learned trust in robots will
change over time during repeated HRI in a collab-
orative setting.

H3: We will observe variations in the interplay
or correlation among the three layers of trust —
dispositional, situational, and learned (both initial
and dynamic).

H4: The refined model will significantly improve
the prediction of TMS compared to the initial
model.
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4.1 System description

The system presented in Figure 3 consists of two
modules. The first module is an interactive card
game that generates various situations for partic-
ipants to either trust or distrust the robot. The
second module is a semi-autonomous robot that
plays the game with the participants and assists
them in making decisions. The model is designed
to estimate human trust in the trustworthiness of
the robot, particularly in situations that present
risk and uncertainty. In the Bluff Game, we focus
on key factors that impact trust, such as the
robot’s accuracy in providing advice, the partici-
pant’s control in accepting or rejecting the robot’s
advice, and perceived risk (when the player’s cards
are more than the opponent’s), which is indicated
by the proportion of the participant’s cards to the
opponent’s cards. The main objective of the sys-
tem is to analyze the participants’ reactions to
situations that involve trust with the robot and
how the robot’s behaviour over time impacts their
decisions to trust it.

4.1.1 The Game

We developed the Bluff Game, a Python-based
interactive card system that allows participants
(forming Player 1 with the robot) to play collab-
oratively as a team against an adversary agent
(Player 2). The game consists of 52 cards, includ-
ing four sets of each ace, numbers 1-10, jack,
queen, and king. The interactive interface provides
play and decision buttons (accept and reject),
enabling smooth interaction between the players
and the game. At the beginning of the game,
Player 1 and Player 2 receive 15 cards. The game’s
goal is for players to eliminate all of the cards
before the opponent. Whoever eliminates all their
cards first wins the game. Bluff is a turn-taking
game where Player 1 selects a set of 2-4 cards to
discard, and Player 2 decides whether to accept or
reject the selected cards. If Player 2 accepts, the
turn passes without revealing the cards. If Player
2 challenges the claim and it’s found to be true,
Player 2 must take the discarded cards; if false,
Player 1 takes back the cards. The game aims for
either player to eliminate all their cards, updating
the card list dynamically after each turn. Dur-
ing the game, at each turn, Player 1 discusses
decision-making with the robot on which action
to take with Player 2’s claim (accept or reject). A

message appears asking the participants to start
the discussion. The robot provides suggestions
on decision-making, advising whether to trust or
distrust. These suggestions were based on a pre-
determined strategy that is consistently applied to
all participants in every session. This strategy was
part of the Wizard of Oz (WOz) method used (see
Figure 4), where the robot operator’s decisions
were pre-scripted. If the player takes the robot’s
advice, it is typically considered a trust case. Con-
versely, if the player ignores the robot’s advice,
it is often considered a distrust case, as shown in
various studies [30, 57].

The primary risk in the Bluff Game revolves
around the possibility of losing the game, repre-
senting a challenge to participants’ ability to trust
the robot’s suggestions effectively. While losing
does not carry severe real-world consequences, it
introduces a competitive element that can influ-
ence trust dynamics. Participants who are more
competitive or motivated to win might perceive
the stakes as higher, impacting their decision-
making and trust calibration. In scenarios with
more significant real-world consequences, such as
financial stakes, trust dynamics would likely shift
significantly. However, due to ethical considera-
tions and to avoid unnecessary stress on partic-
ipants, the controlled environment of the Bluff
Game allows us to observe trust behaviours ethi-
cally while maintaining a balance in perceived risk
levels.

The game’s dynamics are specifically designed to
incorporate factors such as risk and ambiguity,
which are integral to the conceptual framework
of trust. Risk in the game arises when a player
has significantly more cards than their opponent.
Additionally, the game involves an element of
uncertainty due to the ambiguity of the robot’s
advice, challenging players to navigate decisions
under ambiguous conditions. This aspect is crucial
for reflecting the complexity and unpredictability
present in HRC, effectively simulating real-world
scenarios where decisions must be made with
incomplete information.

Our selection of the Bluff Game was guided by
the fundamental requirement that trust research
must involve situations of uncertainty where par-
ticipants must rely on an agent despite incomplete
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Fig. 3 System overview

information [45]. This approach aligns with estab-
lished trust research methodologies that employ
uncertainty-based tasks to create conditions where
trust decisions become meaningful [12, 15, 20].

The calculation of experience E(t) and the dynam-
ically learned trust in the game setting hinges on
several key variables. Risk, which can be defined in
HRI as an individual’s perception of the possible
negative consequences associated with interacting
with robots [47]. This perception is based on their
knowledge and experience of the task, regardless of
their personal history or familiarity with the sys-
tem, technology or person that may be involved
in that situation [47]. In this context, Risk was
quantified as the risk index R;. Specifically, R; is
given a value of 1 if Player 2 has more cards than
Player 1, which directly impacts the perceived
likelihood of negative outcomes (losing the game)
if unable to eliminate their cards first. Otherwise,
R; is assigned a value of 0.

The performance P; equates to 1 when the robot’s
advice is accurate or when the user controls
the incorrect robot’s advice. otherwise, P; = 0.
Another variable, control C;, represents the par-
ticipants’ decision to trust the robot, being set to
1 if the user distrusts the robot’s advice and 0 if
they trust. Our decision to represent these factors
as either 0 or 1 was primarily driven by the spe-
cific setup of our study, where the interactions and
decision-making moments were relatively straight-
forward. For example, trust decisions often involve
clear-cut scenarios, such as whether the robot’s
advice is accurate or not. In our context, risk is
assessed by comparing the number of remaining
cards between the participant and the opponent.
These variables, along with the Ambiguity Aver-
sion A(t), were essential in computing the expe-
rience E(t) and dynamically learned trust during
the game.

The term |P;C; — C; R;| will represent the player’s
behaviour by aligning the robot’s performance and
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the participants’ control, and incorporating the
associated risks during the game (see Table 1).
The truth table indicates a value of 1, showing
misalignment, in two scenarios: when performance
is low, but control and risk are high P, = 0,C; =
1, R; = 1, and when performance is high, control
is high, but the risk is low P, =1,C; =1, R; = 0.
A value of 0, indicating alignment or no control by
the user regardless of the risk level, applies in all
other situations. This differentiation is crucial for
accurately calculating the experience E(t) within
various risk contexts.

Ambiguity, in this context, refers to situations
where the outcome of following the robot’s advice
was not immediately clear or predictable. For
example, the robot might suggest accepting the
opponent’s claim, but if that claim turned out
to be false, the cards would be discarded with-
out revealing their true value. Ambiguity aversion
was applied in the following manner: A(t) reflects
the user’s aversion to uncertainty surrounding the
robot’s performance. A difference between K; and
F; in each instance indicates a mismatch between
the expected and actual robot performance, con-
tributing to the overall Ambiguity Aversion A(t).
This metric is important to understand the influ-
ence of the user’s uncertainty on their instanta-
neous trust (experience) in the robot during the
game. (see Table 2).

P, C; R; |PC;—CiRy
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 1 Truth Table for
|P;Ci — C;i Ry

0
1
0

— = ool

1

Table 2 Truth Table
for |K; — Fy|
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4.1.2 Interaction Scenarios

We programmed the Nao robot to interact ver-
bally with participants based on various game
events. The game was controlled using the WOz
method, and participants were kept uninformed
about it to avoid any bias. The interaction was
divided into three phases: welcome and introduc-
tion to the game, gameplay, and ending of the
game.

On the first occasion, the robot welcomed the par-
ticipants by saying, “Hello. I am a Nao robot.
Today, I will assist you in making decisions to
"accept" or "reject" in the card game. ” and “Now,
please get ready and start the game” respectively.
Participants engaged in the game on four differ-
ent occasions. On the second, third, and fourth
occasions, the robot greeted the participants and
reintroduced them to the game by saying, “Hello
again. Thank you for playing; please remember
I am here to assist you in deciding to "accept"
or "reject". Let’s have fun” and “Now, please get
ready and start the game” respectively.

Once the game began, the Nao robot informed the
participants by saying “The game starts now”. Fol-
lowing the game rules, the robot interacted with
the participants during various game events. The
game’s flow involved the robot interacting with the
participants during decisions and other situations
in the game as follows:

1. During the experiment, the robot consistently
followed a predefined protocol and strategy
when participants asked about the decision-
making process in the accept condition. The
robot provided feedback as follows: “Given the
game has just started, I think we could accept
the claim for now; what do you think?”, “I think
we could accept, what do you think?”, “I sug-
gest accept, what do you think?”, or “I think it
seems reasonable to accept the claim, what do
you think?”.

2. In the reject claims condition, the robot said,
“I think they might want to discard non-similar
cards first, what do you think?”, “I think they
are bluffing, what do you think?”, “I suggest
rejecting the claim; what do you think?”

3. If the participants agreed with the robot’s sug-
gestion to accept, the robot said “Okay, let’s
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continue”, “Okay, let’s proceed”, or “Okay, let’s
see how to conclude”.

4. If the participants agreed with the robot’s sug-
gestion of rejecting the claims, the robot said
“Okay, let’s see”.

5. If the participants disagreed with the robot’s
suggestion, the robot said “Okay, it is up to
you”.

6. If the participants asked the robot to repeat the
suggestion, the robot repeated the suggestion
for them.

7. If the robot did not hear the participants, the
robot said “Sorry, I did not hear that, could you
please repeat it”.

8. If the participants seem to have been occupied
with something else, the robot said “You seem
occupied with something else, could you please
focus on the game”.

9. If the participants asked the robot for anything
else during the game, the robot said “I can only
advise you when you are deciding to accept or
reject”.

The robot congratulated or encouraged the partic-
ipants for the next round at each game’s end. If the
participants won the game, the robot expressed:
“Congratulations on your win! Good luck in the
next round”. If the participants lost the game, the
robot said: “Hard luck, good luck in the upcoming
rounds”. In the final session, the robot said good-
bye and hoped to interact with you soon to its
message, announcing the end of the experiment.

4.2 Participants

This study was conducted with 45 participants
aged between 18 and 40 years. The age dis-
tribution averaged 33.13 years with a standard
deviation of 6.22. Out of the 45 participants, 19
were females, 25 were males, and one participant
chose not to disclose their gender. We invited
participants to partake in the study via the univer-
sity’s electronic mailing system and flyers around
the university campus. Participants were able to
book their slots for the study using the online
scheduling platform Calendly'.

We chose a sample size of 45 participants based
on a priori power analysis to ensure sufficient

Yhttps://calendly.com
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power for detecting significant effects in the study.
We conducted the power analysis using G*Power,
which indicated that to achieve 80% power for
detecting a large effect at a significance level of «
= .05, a minimum sample size of 43 participants
was required for a linear multiple regression test
with 2 predictors. Our results showed that R? is
.750, resulting in a large effect size f2 of 3.0.

Our sample size of 45 participants is consistent
with the norms in HRI research. According to a
study by Zimmerman et al. [61], most in-person
HRI studies involve fewer than 50 participants.
This suggests that our sample size is well within
the typical range for studies in this field, pro-
viding a solid basis for our findings while still
acknowledging the need for larger-scale studies in
the future.

To determine the participants’ prior interactions
with robots, we classified them into four tiers:
extensive, moderate, minimal, and none. Those
with a background in robot construction or opera-
tion were considered to have extensive experience,
while individuals who frequently used robots were
classified as moderate. Those who had sporadic
interactions with robots were labelled as having
minimal experience. The breakdown of partici-
pants revealed that 11 had extensive experience,
4 had moderate experience, 22 had minimal expe-
rience, and 8 had never interacted with robots.

4.3 Setup and Materials

In the study, we utilised two separate rooms, as
illustrated in Figure 4. In the first room, the par-
ticipants had a laptop to play the game while the
robot was positioned on the table next to them.
The participants were seated beside the robot.
The participants used a tablet to complete ques-
tionnaires before and after each game round. In
the second room, the experimenter sat in front of
a laptop to control the game, robot, and overall
interaction.

We used the humanoid Nao robot developed
by Aldebaran Robotics. Nao is 58cm in height,
equipped with an inertial sensor, two cameras,
eyes, eight full-colour RGB LEDs, and many other
Sensors.
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Fig. 4 Experiment Setup. An experimenter controls the
robot in one room (left), while the participant is playing
the game with the assistance of the robot in another room
(right).

4.4 Procedure

The study was conducted in the following steps:

1. On entering the lab, participants were greeted
by the researcher and completed the propensity
to trust questionnaire before proceeding with
the study.

2. Participants received the experiment informa-
tion sheet and game instruction sheet and
signed the consent form.

3. Participants completed the demographics ques-
tionnaire, including information about their
experience with the robot.

4. Participants were given a demonstration of the
game and had time to practice, allowing for
a better understanding of the game and the
interaction with the robot.

5. Participants completed the pre-interaction
questionnaire.

6. Participants wore glasses and a wristband, and
the experimenter began recording the data to
be collected from these devices and left the
room.

7. Participants engaged in the game alongside
the Nao robot, with their interactions being
recorded, while the experimenter remotely con-
trolled the gameplay and robot from the other
room.

8. After each game, the experimenter walked into
the room, asked the participants to complete
the post-interaction questionnaire.

9. The rest of the study repeated steps 6, 7, and

8 on three different occasions.

At the end, participants were thanked for their

participation and were told that they would
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receive a £10 Amazon voucher as a token
of appreciation for their participation in the
study.

4.5 Measurements

To accurately assess trust in HRI, we implemented
a comprehensive approach, including question-
naires and empirical data that included observa-
tions of user control, robot performance, risk and
ambiguity aversion. The data was applied to this
model, enabling us to calculate TMS.

® Before participating in any interaction or gain-
ing awareness of the surrounding environment
of the interaction, the participants were asked
to complete a 10-item questionnaire on the
tablet to assess dispositional trust [17]. This
questionnaire utilised a b5-point Likert scale
ranging from "Strongly Agree" to "Strongly
Disagree" for responses. The items on the ques-
tionnaire are detailed in Table 3. This scale was
recently developed specifically for HRI contexts
through the Delphi method with expert input,
the scale offers strong content validity and a
balanced consideration of both trust and dis-
trust. It reflects the understanding, supported
by the Computers Are Social Actors (CASA)
paradigm, that human robot trust shares psy-
chological foundations with interpersonal trust
[24, 48, 55|. Dispositional trust refers to an
individual’s general tendency to trust others,
shaped by personality and previous experi-
ences [25], and this general measure captures
that foundational trait without requiring robot-
specific items, making it suitable for assessing
trust in HRI contexts.

e After becoming aware of the interaction and the
role of the robot, but before the primary inter-
action, participants completed a pre-interaction
questionnaire to assess their situational trust
towards the robot by rating the robot on the
TPS scale from 0 to 100. The scale consists of
40 items and a subscale of 14 items). The items
on the scale are detailed in Table 4. In this
study, we utilised the 14-item subscale since it
helps measure pre-interaction trust and changes
in trust over time and during multiple trials.
Following [55], we determined the trust score
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by first reverse coding the "have errors," "unre- 103

sponsive," and "malfunction" items, and then 1o
computing the average of all 14 items.
® To validate the model’s credibility, we employed 103
TPS subjective measures of trust created by 1o
Schaefer [55]. Participants were asked to rate s
the robot’s performance in the game using the 0
aforementioned TPS scale.
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5 Results

5.1 H1: Predicting TMS with TPS
and Session
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To test H1, we conducted a multiple linear regres- e

sion to predict the Trust Modelled Score (TMS)

. . . . 1047
using two main predictors: Trust Perception

Score (TPS) and Session (time). The TPS is o
a subjective score reflecting participants’ percep-
tion of trust in the robot during different stages of )
interaction, while the Session represents the time
points or phases during the experiment in which oo

trust was assessed.

050

1052
The regression model was found to be highly
significant, F(2,177) = 265.605,p < .001, with 103
R? = 0.750 (Adjusted R? = 0.747), meaning that 1oss
75% of the variance in TMS is explained by TPS 1oss
and Session Variables (see Figure 5). Both TPS iose
and Session Variables were significant predictors ios7
of TMS: 1058
1059
e TPS: b =0.902,¢(177) = 19.986, p < .001, indi- 1050
cating a strong positive relationship between 16
perceived trust and the modelled trust score.
e Session: b = 0.015,¢(177) = 4.825,p < .001, 103
indicating a significant change in trust across
the interactive sessions.

1062

1064
1065
Additionally, a significant correlation was found
between TPS and TMS, r = 0.847,p < .001, 106
emphasizing the close relationship between partic-
ipants’ subjective trust and the trust predicted by
the model (see Figure 6).

1067
1068
1069
To ensure that these findings were robust to the ior
repeated-measures structure of the data, a sup-
plementary mixed-effects regression model with
random intercepts for session was also conducted.
TPS remained a significant positive predictor of

1071
1072

1073
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TMS (8 = 0.133,SE = 0.058,p = .021), and Ses-
sion also remained a significant predictor (8 =
0.028, SE = 0.012,p = .016). The random inter-
cept variance approached zero, indicating that
very little unexplained session-level variability
remained once TPS and Session were included
as fixed effects. The fixed-effects estimates were
highly consistent with the linear regression, con-
firming that the conclusions for H1 are robust.

5.2 H2: The Effect of Interactive
Sessions on TPS and TMS

To test H2, a repeated-measures ANOVA was
conducted to examine the effect of interactive
sessions on TPS and TMS. The analysis demon-
strated significant variation in TPS and TMS
across the four interactive sessions:

e TPS: F(3,42) = 6.994,p < .001
e TMS: F(3,42) = 15.917,p < .001

Post hoc pairwise comparisons (using Bonferroni
correction) showed the following results:

e For TPS, there was a significant increase
between session 1 and session 3 (p = 0.026) and
between session 1 and session 4 (p = 0.007),
while no significant differences were observed
between sessions 2 and 3 or sessions 3 and 4.

e For TMS, significant increases were found
between session 1 and each subsequent session:
session 2 (p < .001), session 3 (p < .001),
and session 4 (p < .001). No significant differ-
ences were observed between sessions 2 and 3 or
sessions 3 and 4.

The mean and standard deviations for TPS and
TMS across sessions are presented in Table 5.

5.3 Hierarchical Regression Analysis

To validate the unique contribution of our Trust
Modelled Score (TMS) beyond temporal effects,
we conducted hierarchical regression analyses pre-
dicting Trust Perception Scores (TPS).

In the first step, TMS was entered as a predictor of
subjective trust ratings, accounting for 6.3% of the
variance, R? = .063, F'(1,182) = 12.28, p < .001.
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Item No. Statement
1 I suspect hidden motives in others.
2 I am suspicious of other people’s intentions.
3 You can’t be too careful in dealing with people.
4 It is better to be cautious with strangers until they have shown they are trustworthy.
5 I feel that other people can be relied upon to do what they say they will do.
6 Most people are honest in their dealings with others.
7 I generally give people the benefit of the doubt when I first meet them.
8 I generally trust other people unless they give me a reason not to.
9 I trust what people say.
10 Trusting another person is not difficult for me.
Response \ Strongly Agree | Agree | Neutral | Disagree | Strongly Disagree
Table 3 Dispositional Trust Questionnaire Items
Item No. Statement
1 Dependable.
2 Reliable.
3 Predictable.
4 Act consistently.
5 Function successfully.
6 Meet the needs of the mission/task.
7 Provide appropriate information.
8 Communicate with people.
9 Provide feedback.
10 Follow directions.
11 Perform exactly as instructed.
12 Have errors.
13 Unresponsive.
14 Malfunction

[ Response | 0% [ 10% [ 20% [ 30% [ 40% | 50% [ 60% | 70% | 80% | 90% | 100% |

Table 4 Trust Perception Scale (TPS) 14-item Subscale

In the second step, interaction session was added 10ss
as an additional predictor, explaining a further g,
4.0% of the variance, AR? = .040, F(1,181) =

8.16, p = .005. This resulted in a total R? of .104. 1%

1088
These results demonstrate that our mathematical

trust model significantly predicts subjective trust ,y,
perceptions and explains unique variance beyond ,y,
temporal effects alone, thereby providing empiri- 4,
cal validation for the utility of the TMS equation
in estimating trust in human-robot interaction

(HRI).
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5.4 H3: Differences Across Trust
Layers

To test H3, a repeated-measures ANOVA was
used to explore the differences in human trust
across the dispositional, situational, and
dynamically learned trust layers. The results
showed significant differences between these trust
layers, F'(5,40) = 58.907,p < .001.

We conducted Pearson correlation tests to assess
the relationships between the different trust lay-
ers:
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¢ Dispositional trust (DT) and Situational
trust (ST) showed a significant positive corre-
lation (r(43) = 0.309,p = 0.039).

e Situational trust (ST) and Dynamically
learned trust (LT) were also positively corre-
lated (r(43) = 0.536,p < .001).

¢ Dispositional trust (DT) and Learned
trust (LT), represented by objective TMS
measurements, were significantly correlated
(r(43) = 0.563,p < .001).

5.5 H4: Comparison of Initial and
Refined Trust Models

To test H4, we compared the initial trust model
and the refined trust model, both applied to the
data collected during the experiment. A regression
analysis was performed for each model to estimate
the Trust Modelled Score (TMS). The results
showed:

e Initial model: F(2,177) = 16.066,p < .001,
R? = 0.154, Adjusted R? = 0.144.

¢ Refined model: F(2,177) = 265.605,p < .001,
R? = 0.750, Adjusted R? = 0.747.

To statistically compare the two models, we
conducted a one-way ANCOVA, which revealed
a significant difference between the models,
F(1,357) 18.893,p < .001. The refined
model demonstrated a stronger predictive capa-
bility, as indicated by the higher R? value, showing
improved fit and predictive power compared to the
initial model (Figure 7).

TPS TMS
Session  Mean SD Mean SD
1 8027  .1322  .6236  .0727
2 .8324 .1163  .6702  .0626
3 .8469  .1035 .6841 .0628
4 8522  .1183  .6910  .0980

Table 5 Means and Standard Deviations
(SD) for TPS and TMS across Sessions

6 Discussion
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This study investigated modelling human trust in 1137

robots during repeated collaborative HRI. In this

1138

section, we discuss how our empirical findings link 1139
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Fig. 5 A regression plot displaying the relationship
between the computed trust modelled score and the pre-
dicted trust modelled score based on the trust perception
score and session variables.
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Fig. 6 Scatter plot depicting the changes in the trust
perception score (in Orange) and trust modelled score (in
Blue) over time.

back to established trust theories and, crucially,
how our refined mathematical model expands the
existing theoretical knowledge of trust.

6.1 Predicting Trust Modelled
Score (TMS)

Our findings confirmed H1, demonstrating that
both the Trust Perception Score (TPS) and the
interaction session (time) are significant predictors
for the Trust Modelled Score (TMS), which was
computed from our model. This marks a notable
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Fig. 7 Comparison of regression lines for the initial (blue)
and refined (green) trust models, illustrating the improved
predictive capability of the refined model in estimating the
TMS.
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expansion of prior work [2] where TPS did not s
emerge as a significant predictor. The enhanced 18
predictive power in this refined model is a direct 119
theoretical advancement stemming from our delib- 19
erate integration of risk and ambiguity aversion 119

into the calculation of the user’s experience, E(t). 19

1194
Theoretically, human trust is not simply a func- )

tion of a system’s objective performance but is
deeply intertwined with psychological factors such )
as the perceived risks involved and one’s comfort
with uncertainty. By mathematically formalis-
ing how these factors influence the "experience" ™
that feeds into trust updates, our model provides 1o
a more granular and psychologically informed 120
understanding of trust formation and dynam- 10
ics. This addresses RQ1, as it demonstrates how 120
the model, by incorporating these nuanced ele- 120
ments that contribute to dispositional, situational, 120
and learned trust, more accurately captures and 12
accounts for their interplay in real-time HRI, thus
expanding our theoretical grasp of multi-layered e
trust dynamics. =

195

197

1208

1209

6.2 Evolution of Dynamic-Learned
Trust Over Time o1t

Regarding H2, our results showed that both TPS ***
and TMS changed significantly over time across'**
the four interactive sessions. This acceptance
of H2 directly addresses RQ2, examining how
dynamic-learned trust evolves in a collaborative

1210

1214
1215

1216

17

HRI setting. These findings strongly align with
experiential learning theories of trust [6, 32], which
posit that trust is a dynamic construct continu-
ously updated by ongoing interactions. Our work
empirically substantiates this by showing quantifi-
able shifts in both perceived and modelled trust
across sessions.

Further enriching this theoretical understanding,
our analysis of the contributing factors revealed
significant, dynamic changes in risk perception
across sessions. The observed decrease in per-
ceived risk from session 2 onwards suggests that
as participants gained familiarity and experience
with the robot’s capabilities within the task, their
assessment of potential negative outcomes shifted.
This highlights that it is not just the occurrence
of experiences, but the recalibration of contex-
tual factors like risk based on these experiences,
that drives trust evolution. Whilst ambiguity aver-
sion did not show significant session-to-session
differences in this specific game context, its inclu-
sion in the experience calculation still contributes
to a more complete instantaneous trust update,
reflecting the user’s comfort with uncertainty. This
demonstrates how our model offers a mechanism
to theoretically explain and quantify how specific
elements within the "experience" feedback loop
contribute to the evolving nature of dynamically
learned trust.

6.3 Interplay Among Trust Layers

Our study confirmed H3, revealing variations and
correlations among the three distinct layers of
trust — dispositional, situational, and learned (ini-
tial and dynamic) — during HRC. This directly
answers RQ3, providing empirical evidence for the
relationships proposed in theoretical frameworks
like that of Hoff, Bashir [25].

We observed a significant positive correlation
between dispositional trust (DT), representing an
individual’s general propensity to trust others [17],
and situational trust (ST), assessed after partici-
pants were introduced to the specific experimental
task [55]. This empirically supports the theoret-
ical notion that a fundamental, inherent trust
propensity can indeed influence an individual’s
initial trust judgement in a novel HRI context.
Whilst some studies, such as Driggs, Vangsness
[18], have found inverse relationships depending
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on task difficulty, our findings suggest that in a 1es
collaborative and moderately challenging game, a 1266
baseline willingness to trust carries over to the 7
initial assessment of a robotic partner. 1268

Furthermore, we found that situational trust was e

positively correlated with dynamically learned i
trust (LT). This empirically established link is 11
crucial as it demonstrates a continuous influ- 12
ence from the initial contextual assessment of the 173
robot to the trust that develops through repeated 1274
interaction. This finding provides a nuanced per- 1215
spective, as it contrasts with some prior research 1
[46] that suggested a potential disconnect between 17
initial and learned trust. Our results imply that in 127
tasks involving sustained collaboration and cumu- 17
lative experience, the initial situational assessment 120
remains a relevant anchor for subsequent trust s
development. The positive correlation between 12
dispositional trust and learned trust (TMS) fur- 12
ther reinforces the theoretical idea that an individ- 12s
ual’s fundamental trust orientation can continue 125
to exert an influence on how trust accumulates and 128
evolves over extended interactions. These empiri- 1287
cal correlations collectively demonstrate that the
distinct layers of trust are interconnected, and
their interplay is modulated by the specific task e
and interaction dynamics, offering a more robust 10
and empirically grounded understanding of Hoff,
Bashir [25]’s framework.

1288

1291
1292
1293

1294

6.4 Superiority of the Refined Trust
Model and Expansion of
Knowledge

1295
1296
1297

The acceptance of H4 demonstrates that our 18

refined model significantly improved the predic- 1
tion of TMS compared to the initial model, ™
directly addressing RQ4. This substantial increase "
in the refined model’s predictive power is not ez
merely a statistical improvement but signifies a ™
profound theoretical and practical advancement in ™"
our understanding and modelling of HRI trust.

9

1305

The key to this enhanced performance, and indeed e

its contribution to the body of knowledge, lies"
precisely in the new equation for the experi- e
ence component, E(t), within our mathemati- "
cal framework. Previous computational models of e
trust in HRI often relied on simpler feedback
loops, perhaps solely based on whether the robot’s
action was "correct" or "incorrect" relative to a

307

1311

18

performance metric. Our refined E(t) equation
(Equation 5), particularly through its integrated
terms, expands our knowledge of trust by for-
malising how crucial psychological nuances are
integrated into its real-time computation.

The term relating to the alignment of perfor-
mance, human control, and risk (derived from
the first part of Equation 5) moves beyond a
binary success/failure. It mathematically captures
the idea that a user’s experience and subsequent
trust update are influenced not just by the robot’s
accuracy, P;, or the user’s decision, C;, but crit-
ically, by how these align with the perceived
risk, R;, of the situation. This formalises the
theoretical understanding that trust is context-
dependent and risk-sensitive; a correct action in
a low-risk scenario might build less trust than
an equally correct action in a high-risk scenario
where the robot’s reliability is truly put to the
test. This provides a computational mechanism for
how risk directly mediates the impact of perfor-
mance on trust, a crucial refinement over simpler
performance-based models.

The inclusion of ambiguity aversion, A(t), as
defined in Equation 6 and derived from the dis-
crepancy between expected, K;, and actual, Fj,
robot failures, is another significant theoretical
expansion. Trust theory recognises that uncer-
tainty (ambiguity) about a system’s reliability
can inhibit trust, even if performance is generally
good. Our equation provides a concrete, mathe-
matical way to integrate this psychological factor,
showing how a user’s aversion to unpredictable
robot behaviour (or unexpected failures) directly
modulates the overall "experience" that feeds into
the trust model. This moves beyond simply react-
ing to observed failures and accounts for the user’s
mental model and expectations of robot fallibil-
ity, thus offering a more complete picture of trust
dynamics under uncertainty.

In essence, this new equation for F(t) allows the
model to become a more psychologically valid and
comprehensive computational model of trust. It
provides a concrete, quantitative mechanism for
understanding how these nuanced factors — risk
perception, ambiguity, and their interaction with
performance and user control — mathematically
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combine to update trust in real-time. This is a sig- 130
nificant leap from descriptive trust models, offer- iz
ing a predictive, quantitative, and implementable 13
framework that aligns more closely with the multi- 1z6
faceted complexities of trust in HRI as described 13
by Hoff, Bashir [25]. 1365

6.5 General Implications and Future
Work

The findings of this study have important impli-
cations for both HRI research and the broader *°
theory of trust. Firstly, our results strongly sug- "
gest that trust in robots is not a static attribute
but a dynamic construct that evolves over time,
heavily influenced by repeated interactions and
changing contextual factors. This underscores the
critical need for more long-term studies in HRI
to fully capture the nuances of trust develop-
ment and decay. Secondly, the enhanced predictive 5,
power of our model, achieved through the explicit .,
incorporation of psychological factors like risk and .,
ambiguity aversion, highlights their theoretical .,
significance in shaping human trust. This provides .,
a more comprehensive understanding of trust and .,
offers a pathway for designing more truly trust- .,
worthy and context-aware robotic systems. Lastly, ;5
the observed correlations between dispositional, .
situational, and learned trust layers suggest that .,
fundamental principles from social psychology and .,
interpersonal trust theories remain highly relevant
and valuable for refining trust models for HRI.
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1372
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1374
1375
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1377

1390

A key limitation of this study is that whilst ™"
we captured participants’ prior experience with ™
robots, we did not conduct a direct correlation

analysis between this experience and the vari- iz
ous trust measures. Prior experience is a well-

documented factor influencing trust in automation 3
and robotics, as individuals with more expo- 3%
sure often calibrate their trust differently. Future 2%
studies should incorporate such an analysis to %
explore how familiarity with technology affects 3

trust development over time. 1399
1400
Additionally, our participant pool was primar-

ily composed of university students. Whilst this
demographic offers advantages such as greater
familiarity and comfort with new technologies [26]
and well-developed cognitive abilities for complex
tasks [13], it may also introduce biases. Univer-
sity students might approach interactions with

1401
1402
1403
1404
1405
1406

1407

19

a more critical mindset, potentially scrutinising
robot performance more rigorously than individu-
als in non-academic environments. This could lead
to different trust dynamics compared to popula-
tions where trust might be more readily given,
such as those in care settings, or where educational
backgrounds and prior technology exposure vary.
Therefore, future research should explore trust
dynamics across more diverse participant groups
to enhance the generalisability of our findings.

Similarly, other binary variables in our model,
such as performance (P;) and control (Cj), could
benefit from continuous representations in future
iterations. For instance, performance could be
measured on a scale reflecting degrees of success
rather than simple success/failure, and control
could represent the degree of intervention rather
than a binary choice to trust or not trust.

A further limitation of this study is the absence
of significant real-world risk in the experimental
design. While the Bluff Game was designed to
create both a collaborative and competitive envi-
ronment that introduced a level of uncertainty, it
did not involve any monetary or other high-stakes
risks for the participants. The concept of trust
is intrinsically linked to the presence of risk, and
the lack of significant consequences for poor deci-
sions may have influenced the participantstrust
behaviours. Future research should aim to incor-
porate more substantial risks, such as financial
incentives or penalties, to create a more ecologi-
cally valid environment for studying human-robot
trust.

7 Conclusion & Future Work

In this paper, we built upon prior work to present
a refined mathematical model that emulates the
three-layered (initial, situational, learned) trust
framework and potentially estimates human trust
in robots in real-time during repeated HRI. The
findings confirmed the model’s validity, with both
TPS and the sessions being significant predic-
tors for the TMS. Notably, the refined model
demonstrated a significant improvement in pre-
dicting the TMS more effectively than the initial
model. This increase in performance validates
the enhancements made to the model, highlight-
ing its increased precision in trust estimation.
The validation of this model can be attributed
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to several enhancements. We integrated addi- s
tional task-dependent factors, such as risk and isss
ambiguity aversion, which significantly refined the 14s
model’s ability to shape the experience. Testing ss
the model in different contexts further highlighted 1456
its adaptability and robustness, demonstrating its s
improved capability to assess human trust in real-
time. The implications of having a validated trust 1
measurement are substantial. This model opens 45
up opportunities for a variety of applications, such 14
as reinforcement learning, where the model can 16
help in shaping reward functions. Consequently, 1462
this facilitates the development of behaviours in 1463
robotic systems that optimise user trust across
various tasks, thereby enhancing the effectiveness
and adaptability of HRI.

1464
1465

1466
In the future, we will primarily focus on applying .,
this validated model’s capabilities within the rein-
forcement learning domain to develop adaptive
robotic systems that can optimise human-robot s
trust. Also, we will undertake further validation o
testing and refinement of the model to enhance i
its adaptability, accuracy, and applicability across
diverse HRI contexts. 1473
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