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Abstract

Due to their superior tensile properties, fiber-reinforced composite (FRC) structures have
been widely applied in modern industries. This study employs phase field modeling to
simulate the process of elastic-plastic fracture in FRC structures. In this study, we first
establish a constitutive model for elastoplastic solids and a phase field model for fracture
in solid materials. By employing the Newton-Raphson iterative method, the displace-
ment field and phase field are solved separately based on an alternating iterative scheme.
Subsequently, we presented three numerical examples to demonstrate the robustness and
accuracy of the proposed model. First, we simulated the elastoplastic fracture response
of isotropic materials and validate the accuracy of the elastoplastic fracture phase field
model. Next, we examined the tensile and fracture behaviors of unidirectional fiber re-
inforced composite plate with a central circular hole and varying fiber angles. Finally,
the influence of curved fiber on the unilateral tensile fracture of FRC plates was inves-
tigated. Considering the pronounced heterogeneity between fibers and matrix materials,

this study assumes that the fibers remain in the linear elastic regime and introduces a
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yield function to describe the matrix behavior. Our computational results demonstrate
that the accuracy and robustness of the proposed model for predicting the elastoplastic
fracture response of FRC structures. Furthermore, we observed that in comparison to the
elastic phase field fracture model, the occurrence of fracture is delayed when an elasto-
plastic phase model is employed due to the complex interactions between the plastic

dissipation energy and the fracture energy.
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1. Introduction

Fiber-reinforced composite (FRC) materials are widely recognized for their superior
stiffness and strength compared to conventional isotropic materials, which allows them
to dissipate more energy during the deformation process [1]. These characteristics make
FRC materials an ideal solution for enhancing structural durability. With ongoing ad-
vancements in contemporary engineering, particularly in the aerospace, automotive and
defence industries, there is an increasing demand for structures that are not only lighter
and stronger but also more durable. This demand has further stimulated the application
and development of FRC materials. However, during the operational lifespan of most
FRC structures, complexities arise due to fracture phenomena resulting from the fail-
ure of both the matrix and fibers, which can be attributed to material defects, design
flaws, and other factors. Consequently, establishing damage models becomes notably
challenging in the context of FRC.

There are generally two approaches to simulating fracture behavior using numerical
methods: the discrete method and the diffusive method. In the discrete method, the
crack is considered a geometric entity or discontinuity within the displacement field.
Since the crack propagates between elements, the accuracy of this approach strongly
depend on the mesh quality. In this regard, Tradegard [2] developed a robust algorithm
that re-partitions the geometry near the crack region at each loading step, although it
requires a significant amount of computational time. As an alternative to avoid mesh
dependency, Belytschko and Black [3] introduced the Extended Finite Element Method



(XFEM). This approach represents discontinuities within the computational domain by
enriching shape functions with discontinuous properties, ensuring that the discontinuous
field remains entirely independent of the mesh boundaries.

However, the aforementioned method becomes extremely costly when dealing with
complex geometric structures, particularly in handling crack propagation paths that in-
clude initiation, merging, and branching. To overcome this limitation, the phase field
method was developed by Bourdin et al.[4]. The phase field method is particularly suited
to tackle such issues and has garnered widespread attention in the academic community
due to the simplicity of its numerical implementation. In the phase field model, smooth
boundaries are used to approximate the internal discontinuous boundary of the crack,
thereby avoiding the complexity of tracking the crack propagation path typically required
in traditional models.

The mathematical formulation of the phase-field method was initially proposed by
Francfort and Marigo [5] for quasi-static elastic brittle fracture. This approach involves
minimizing the total energy with respect to both the phase-field variable and the displace-
ment field, resulting in a system of partial differential equations (PDEs). Subsequently,
Bourdin et al. [4] introduced a regularized phase field method to facilitate numerical im-
plementation. Amor [6] and Miehe [7] proposed anisotropic formulations for phase-field
models, in which the strain energy is divided into positive and negative components. By
appropriately selecting a degradation function that acts on tensile elasticity, the expan-
sion of cracks under compressive stress was prevented.

After years of development and refinement, the phase-field method has significantly
improved. Borden [8] proposed a fourth-order phase-field model for the variational for-
mulation of brittle fracture. Compared to second-order phase-field models, this model
can capture more regularities and produce more accurate numerical solutions. Given
that the failure of fiber-reinforced composites (FRC) may manifest in various modes
driven by different forces, it is inappropriate to simulate their fracture behavior using
a single-phase field model. Wang et al. [9] proposes a unified phase-field model within
the framework of the original phase-field theory. By embedding a universal fracture cri-

terion in the proposed formulation, it can predict tensionshear and compressionshear



fractures under complex stress states, and it introduces a compressive failure strength
to account for fracture under compression. Bleyer et al. [10] proposed an orthotropic
damage model for longitudinally /transversely degraded materials based on a multiphase
field approach, where several distinct degradation mechanisms are described by different
damage variables. Additionally, the dissipated fracture energies of each damage variable
remain independent, and the coupling of all damage mechanisms is achieved through
the degradation of elastic stiffness. The simulation results obtained using their proposed
model show good agreement with theoretical and experimental findings in literature. Fur-
thermore, their model reproduced the characteristics of crack propagation in anisotropic
materials, which cannot be achieved by a standard model employing a single damage
variable.

Despite the advances in multiphase field model of FRC materials, the precision of their
constitutive model could be enhanced by simultaneously considering plasticity since FRC
materials could experience permanent deformation after unloading. Consequently, some
researchers have adopted the combination of phase-field models with plasticity to cap-
ture the elasto-plastic mechanical response of solids. For instance, Miehe et al. [11]
employed phase field models to simulate the transition from ductile to brittle fracture-
fracture models in thermo-elastic-plastic solids such as metals and glassy polymers. They
defined the driving force based on potential functions associated with critical values of
elastic and plastic energy densities, as well as non-elastic state variables. This approach
was applied to simulate the transition from brittle to ductile behavior in the dynamic
failure processes of metals and the quasi-static crack analysis in glassy polymers. The
results obtained from these simulations showed excellent agreement with experimental
observations. Duda [12] proposed a phase field formulation for fracture in small-strain
elastoplastic solids, where the elastic and fracture energies were described using classi-
cal brittle fracture equations, while the plastic energy was represented by accumulated
plastic strain. They examined the problem of Type I crack propagation under yielding
conditions and emphasized the importance of accurately characterizing the length scale
parameter [ when coupling the phase field model with plasticity to ensure the activation

of cracks. This correct characterization of the length scale parameter is crucial for cap-



turing the interaction effects between plasticity and damage mechanisms. Ambati et al.
[13] presented an elasto-plastic phase field model, wherein a notable feature is the intro-
duction of plastic accumulated strain variables into the degradation function of tensile
strain elastic energy, thereby coupling the evolution of the phase field with plastic strain.
Fang et al. [14] proposed a variational formulation for a fracture phase field model con-
sidering multi-surface plasticity. They analyzed the influence of plastic yield functions
and hardening effects on material behavior. Additionally, they implemented phase field
modeling of elasto-plastic solids using the commercial software Abaqus, solving the frac-
ture problem of elasto-plastic solids with phase field through an alternating algorithm
that decouples the phase field and displacement fields.

However, the elasto-plastic fracture phase field models in the above-mentioned stud-
ies are confined to isotropic materials such as metal[15] and soil[16], and have not been
extended to FRC, while a great deal of research has been focused on elastic properties
prediction of FRC[17], as exemplified by the work of Li et al.[18][19], which concentrates
on predicting crack patterns in FRC. The main idea of this paper is to introduce a trans-
versely isotropic elasto-plastic constitutive model [20][21], which describes the yielding
of the matrix in FRC under the assumption that fiber plastic deformation is negligible,
thereby capturing the nonlinear mechanical response of FRC under quasi-static loading
conditions.

To address this gap, we propose a novel multiphase-field model to simulate elasto-
plastic fracture in fiber-reinforced composites under quasi-static loading, focusing on the
distinct failure mechanisms of fibers and matrix while neglecting interfacial effects. The
models core feature lies in the thermodynamically consistent coupling between crack
phase-field evolution and plastic strain accumulation. By employing different driving
forces, the damage evolution equations for each phase field are decoupled, enabling inde-
pendent characterization of fiber and matrix fracture. Numerical examples demonstrate
that this approach accurately captures crack initiation within plastic strain localization
zones and predicts key characteristics of quasi-static ductile fracture, including the crack
nucleation site and trajectory in tensile specimens.

The remainder of the paper is organized as follows. In Section 2, we first provide



a detailed derivation of the multiphase field model for FRC. In Section 3, we discussed
the discretization and numerical implementation of the governing differential equations.
In Section 4, we validate the proposed model by comparing experimental and simu-
lated numerical results, predicting the elasto-plastic fracture behavior of curved FRC.
Furthermore, we investigated the crack evolution behavior of FRC plates with different

topological types. Finally, conclusions are given in Section 5.

2. Phase Field Model

2.1. Multiple Phase Field Model of Elastic Solids Revisited
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Fig. 1. The phase field representation for cracks.

Following Geelen and co-workers’ variational description of a cracked solid [22] de-
picted in Figure 1, the total potential energy of an arbitrary elastic body €2 is formulated

as the sum of the elastic strain energy and the fracture energy.

[I(w,I) :/Qgp(e(u))dQ+/FchF. (1)

where I' represents a set of internal discontinuous cracks, € denotes the strain tensor,
u represents the displacement vector at any location within the domain, ¢ denotes the
elastic strain energy density, and G represents the critical fracture energy release rate.

Talreja and Ramesh [23] advanced a classical laminate theory under plane stress



conditions. The stress tensor of fiber-reinforced composite plate is defined as

g = C() L€, (2)
Ci1Ci2 O
C'0 = 012 022 0 ) (3)
0 0 Gy
with 5 s 5
Ch = —11; Cho = M 22 = L (4)

1= vy T 1= v
where Cj is the stiffness matrix of the elastic material, E}; represents the longitudinal
elastic modulus, Fyy represents the transverse elastic modulus, G5 represents the shear
modulus, v15 represents the in-plane Poisson’s ratios.

In Griffith’s brittle fracture theory, the energy needed to form a unit area of a fracture
surface is equal to the critical fracture energy density GG.. The fracture energy in equation
(1) corresponds to a sharp crack path, which is regularized by a diffusive crack phase field.
We can approximate the crack surface using the phase field variable d. If the material is
in a fully intact state, the phase field variable d = 0, while in the fully fractured state,
d=1.

Through the multiphase field model, the regularized fracture energy can be expressed

as

/F G.dl' = /Q Gy(d, Vd)dQ, (5)

where 7 denotes the density functional of the crack surface. Using the second order

structure tensors [24], the density functional of the crack surface is extended to isotropic

materials 1 1
vy(dy, Vdy) = 2—16@ +50-Vdy - Dy (Vds)" ©
1 1 !
Y (dmy Vi) = Zd; + §l -Vdpy, - D, - (Vd,,)"

where [ is a length scale parameter that determines the width of the smooth transition

of the crack. The value of [ must be at least twice the mesh length, as described in Ref.



[25]. The structure tensors D; and D,, representing fiber failure and matrix failure,

respectively, can be described as:

{ Df = 1Ny X Ny (7)

D,, = an & ng

where m; represents the principal direction of higher material fracture toughness and
strength and the coefficients and are used to determine crack propagation.

To avoid physically inconsistent compressive cracking and to prevent interpenetration
of crack surfaces under compression, the elastic energy density into two parts[7], which
includes a "positive" part associated with tensile damage and a "negative" part associated

with compression, which remains undegraded. For fiber,

pr(e,df) = gldp)e} + o5, (8)

and for matix,
Pm(e; dm) = g(dm)em, + P (9)

where g;(d) represents the degradation function, which can be used to simulate the re-

duction in material stiffness due to crack propagation, and is described as:

The terms ¢} 7, are given by

1
vy = 3 ()" ¢ () an
LT =+ +\T =—
tm =5 (") Cn(E")+(E) Cn(E)
with
Ci10 0 0 Ci2 O
Ci=]1000],Cn=[C320C%n 0 (12)

000 0 0 G



In this approach, only the strain energy generated by tensile stress is allowed to

degrade,

wd) = 3 { [ lstaye e w) +oewn)an+ 3 { [ Gata,vayr},

i:f,m Z:fvm
(13)

According to the principle of maximum thermodynamic dissipation [26], the evolution

equations of the crack phase field is derived as follows

d
2(1 - dy)p} — Gc,f[l—;‘ —1;-Vd; - Dy - (Vdy)"] =0

dy,
2(1 - dm)@:% - Gc,m[_

I

. (14)
—~ I -Vdpy, - Dy, - (Vd,,)'] =0

To simplify the treatment of the phase field equation and ensure the irreversibility of
crack phase field during loading, we introduce the following local historical variables, P

and P,,, by defining a history field function,

{ Py = max ¢} (e(u)) 1)

P,, = max ¢, (e(u)) '

2.2. Phase Field Model of Fracture Coupled with Plasticity

When a solid material undergoes fracture, it is accompanied by significant plastic
deformation. The total strain €., can be decomposed into the elastic strain component

€. and the plastic strain component g,
Eiotal = Ee Tt Ep. (16)

To compute the elastic-plastic fracture response, it is necessary to establish a connection
between the evolution of damage and plastic deformation. To achieve this, the elastic

energy density function ¢. and the plastic energy density function ¢, are defined to
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express the total free energy density of the damaged elastic-plastic material @41,

Ptotal = Soe(seyp) + (pp(77 d) (17>
ool ) = SH(DF, (13)

where 7 represents the equivalent plastic strain, and H denotes the hardening modu-
lus. The dissipative energy of the material includes both plastic dissipation energy and

fracture dissipation energy. The plastic dissipation energy density can be expressed as

op(V,d) = 0y<d)7: (19)

Therefore, the total internal energy density

L, d) = @ulecd) + 7. D) + (7. ) + [ Gorld, Vayas, (20)

Q
The elasto-plastic damage is governed by the same degradation function g(d). To
simplify the treatment of phase field equations and ensure the irreversibility of the crack

phase field during loading, the following history field function

1
P, = max ¢, (e(u)) + §H72 + 0,7. (21)

where o, represents the yield stress. We assume that the material follows an ideal plas-
ticity model and exhibits linear isotropic hardening characteristics. The yield function is
defined as follows

F=f-0,<0. (22)

We assume that the material properties of the fiber reinforced composites are trans-

versely isotropic[20]. Additionally, the following matrix yield criterion is adopted

1
f= \/6(022—033)2+0%2+N033+g(a22+033>7 (23)
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i and N are employed to replace the tensile and compressive yield strengths, as they
provide a more accurate representation of tensile yielding. The numerical value of p

depends on the yield stresses used in the calculation, while N is assumed to be 1 in this
study|[27].

3. Implementation

3.1. Finite Element Implementation

This section presents the finite element discretization procedure for the elasto-plastic
phase field model. During the finite element discretization, the displacement u, damage
parameters dy and d,,, are typically represented using interpolation functions and the
nodal values of displacement and phase field. Each element is defined by four corre-

sponding nodal elements, as shown in equation (24).

( n
u= N e:ZNiuuf
i=1

i=1

m,i = m,i

d,, = N’ = zn: N? dt
=1

\
where N* and N? are the interpolation matrices of shape functions. The displacement
and phase field damage parameters in this study adopt the same shape functions. The
parameters u®, d%, and df, represent the nodal values of displacement and phase field
within the element, where n denotes the number of nodes within the element. B* and
B! (i = f,m) are differential matrices for displacement and phase field, as given in the
form of equation (25).
e = B"u®

Vd; = B/d; . (25)
vd,, = B"d;,
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The residual vector R, corresponding to the stress equilibrium at the element level
and the evolution of the phase field, can be expressed using the following combination
equation, as shown in the form of (26). Additionally, to prevent crack healing that
violates physical laws, the maximum history functions P; (i = f,m) are introduced in

this context.

(

R:/B“adQ—/N“fdQ
Q Q

d
- /Q{[za —df) Py — l—j:]Nd — ;- BY% . Dy -Vds}dQ (26)

— /Q{[za —dp)P,, — Cli—m]Nd —ly, - B™ - D, - Vd,,}d

It is evident that the governing system is a coupled problem. To address this issue, re-
searchers have proposed and employed two methods: staggered iteration and monolithic
computation. In this study, we use the staggered iteration algorithm to improve con-
vergence speed. In this approach, multiple iterations are performed for each small load
increment, resulting in higher efficiency compared to purely staggered methods. The
main process of the iterative staggered algorithm is shown in Algorithm 1. Due to the
adoption of the staggered method, the linear system of the displacement increment step
equations are formulated as follows.

By introducing the finite element discretization above, where K represents the stiff-
ness matrix, Ky and K,, denote the phase field matrices, and E®° is the elasto-plastic
Jacobian matrix, as given in (27). Due to the nonlinear property of the system of equa-

tions, an incremental iterative scheme is employed for computation.

)
K-8 _ (1 —d)? + k|(BY)" E*B“dQ
811,8 Q
OR G.
K; = a dg‘ / {GUBY) + [ +2P)(NT) N'}paa (27)
m GC m\T ntm
& ade /{GZB [ 4 ap, (N TN

To decouple the phase field and displacement field, the programming procedure shown
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in Algorithm 1 is employed. For the plane stress model studied in this paper, the dis-
placement w has two degrees of freedom in two directions, while the damage variables ds
and d,, for the phase field have one degree of freedom.

Firstly, we initialize the phase field scalar variables dso and d,, o, as well as the
maximum history functions P; (i = f,m) at each node element. We set the initial nodal
displacement values uy = 0, and adopt the staggered iteration algorithm in each iteration.
Specifically, in each iteration, the history field function P is updated based on the current
displacement field and phase field values. The displacement increment is added to the
current displacement value to update the displacement field u,_;. Using the updated
displacement field, the phase field variables d;,, and d,, , are computed. Then, utilizing
the updated phase field values, the displacement increment system of equations is solved
using the staggered iteration method. Finally the displacement field u,, is calculated and
updated and the convergence criteria are checked. Through these steps, the algebraic

equations (28) are solved.

K(“’nu df,n7 dm,n)un+1 = Fu,n-{—l
Kf(un—i—la df,n)df,n—H - Ff,n+1 . (28)
Km(un—i—la dm,n)dm,n—H = Fm,n—i—l

3.2. Plastic Return Mapping Implementation

The core of the material model’s numerical implementation is the stress update pro-
cedure, known as the return mapping algorithm. It operates on the principle of an elastic
predictor and a plastic corrector. The algorithm proceeds as follows:

The process begins with an elastic predictor step, where a trial stress state is computed
assuming purely elastic behavior:

Orial = C° : (s — eOld) . (29)

p

A yield condition check is then performed:

ftrial = F(o-triahg;ld)- (30)
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Algorithm 1 Solution Procedure for the Elasto-plastic Phase Field Model

Intitialize w,d;, d,,, 7, teps = 1074 deps = 1073, kg, [, 043
for n =1 to nototal (loop loading steps) do
k=0;
while f > o, do
Compute 7;
end while
while u® > u,ps or et > Aeps, g OF ™ > depsm O k < kppop do
Update integration counter: k = k + 1;
Computer u*, d*/, d*™ P by solving (28);
Evaluate the residuals u¢ = ||u* — u*~|/||[u*7Y, dF = ||d*T — d¥=17 || /|| A5,
dem = ”dk,m _ dk—l,mH/Hdk—l,mH;

end while
Set u,, = u”, d, ;= dh7f, dpm = dkm:
end for

If fii < 0,the step is elastic, and the trial state is accepted:o e, = Ftriat I firiar > 0,
plastic deformation occurs, necessitating a plastic correction. For associative plasticity,

the plastic flow rule is:
OF

The updated stress and equivalent plastic strain are then:
O new = Otrial — (OX Agp’gzew = ézld + A’Y (32)

The plastic multiplier Avis found iteratively to satisfy the consistency condition (o pew, €,°) =

0. The consistent tangent modulus, crucial for the global Newton-Raphson method, is

derived from the linearization of this algorithm:

_ 0 O new

ep
cr = =2 (33)
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4. Model validation with experimental results

4.1. Tensile Tests of Axisymmetrically Notched Specimen

Firstly, in order to verify the effectiveness of this method, we designed two cases to
study the fracture behavior of isotropic materials using the elasto-plastic fracture phase
field method. In the first case study which involves an asymmetrical notch specimen, we
studied the influence of the coupling between the phase field and equivalent plastic strain
under unidirectional tensile load on the numerical results. Furthermore, we investigated
the the ability of our proposed model to detect and track crack initiation and subsequent

crack growth.

B L

( R2.5

50

18 |

Fig. 2. Axisymmetrically notched specimen. All dimensions are given in mm.

The computational model, as shown in Figure 2, has dimensions of 1.0 mmx18
mmx50 mm with a hole radius of 2.5 mm. The center of the hole is located 20 mm
away from the edge. The material properties of the specimen are as follows: Elastic
modulus £ = 71.48 GPa, Poisson’s ratio v = 0.3, initial yield stress o, = 345 MPa,
critical fracture energy density G, = 9.31 MPa/mm, hardening modulus H = 714.8 MPa
[28]. The mesh is refined in areas where cracks may occur, and the phase field crack width
parameter [ is set to 0.2 mm. To facilitate convergence, the paper adopts a displacement

increment of 3.0 x 10™° mm.
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As illustrated in Figure 3, the crack initially appears at two asymmetric notche in the
elastic phase field model and begins to propagate in parallel. These notches are locations
of elastic stress concentration. Then the crack gradually extends towards the center of
the specimen, creating a crack path that does not conform to physical principles as well

as real-world observations.

Crack evolution process

Fig. 3. Phase-field fracture simulation uncoupled from plastic strain

The results of the aforementioned model overlook the plastic deformation occurring
at the crack tip. However, the evolution of the phase field’s shape, position, and size is
related to the plastic zone. Therefore, it is essential to incorporate the equivalent plastic
strain and include the plastic crack driving force in the total energy equation. In contrast,
according to our model, the evolution of the crack phase field is driven by the plastic
strain localization occurring at the asymmetric notch of the specimen. Unlike uncoupled
models, the proposed model accurately captures the fracture evolution process governed
by realistic physical laws as shown in Figure 4, which are highly consistent with the
numerical results of Ambati [13] and Fang et al. [29]. When the displacement increment
is accumulated close to 0.19 mm, the specimen structure is fractured.

The excellent agreement between our simulation and the reference data validates
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the effectiveness of the proposed elasto-plastic phase field model. More importantly, it
demonstrates the core coupling mechanism: the evolution of the crack phase field is
driven by plastic strain localization. The plastic dissipation energy competes with the
fracture energy, which delays crack initiation and alters the propagation path significantly
compared to the uncoupled elastic model. This underscores the necessity of incorporating

plasticity to accurately capture the ductile fracture behavior in solids.

1 T 1 1 1 1 T
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~ 5000 |- T
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S5
« 4000 - 7
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F= 3000 - T
o]
2
= ;
&:2000 % —0— Ambati et al.[13] 7]
< ! —7— Present
1000 | & —O—Fang et al.[29]
0 1 1 1 1 1 1 1

00 01 02 03 04 05 06 07
Displacement, u(mm)

Fig. 4. Elasto-plastic deformation force-displacement curve under uniaxial tension.

Figure 5 illustrates the comparison between the crack propagation process obtained
in this study and the one reported in reference [29]. The model successfully predicts
the initiation of cracks at the notch, and it is evident that the initial crack nucleates
at the stress concentration points of the two circular notches. Due to the influence of
plastic hardening modulus, the crack path initially expands horizontally and then extends
diagonally along the diagonal direction, ultimately resulting in the complete failure of the
specimen structure. The above data and comparison of crack propagation demonstrate
the effectiveness of the model and algorithm described in this paper.

Subsequently, we will validate the elastoplastic fracture phase field model presented
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Fig. 5. Schematic illustration of the phase-field crack propagation process in a specimen using the
proposed model. (a) load step 50, (b) load step 73, (c) load step 80, (d) Comparison with Fang’s
results[29].

in this paper by comparing it with the experimental and simulation data results by Pillai
et al. [30]. In the computational model shown in Figure 6, a prescribed open crack is
placed horizontally in the plate. The size of the model are 1.0 mmx65 mmx60 mm.
The material properties of the plate are as follows: Elastic modulus £ = 61400 MPa,
Poisson’s ratio v = 0.042, critical fracture energy density G, = 65.4 MPa/mm, shear
modulus p19 = 3782 MPa.

The final damage contour of the simulation sample and the predicted stress-strain
response are compared with the experimental results shown in Figures 7 and 8. From the
force-displacement response, it can be observed that after entering plastic deformation,
the model yields with the accumulation of strain increments and exhibits significant
plastic deformation prior to fracture. From Figure 8, it can be observed that once the
strain load reaches its peak, the simulated response shows destabilization and unstable

crack propagation.
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Fig. 6. Schematic illustration of the plate with precribed open crack.

(@

Fig. 7. (a) Photograph of the crack path in the specimen. (b) CT scan image of the crack in the specimen.
(c) Comparison of crack paths obtained from the cohesive phase-field model. (d) Crack evolution process
based on the proposed model.
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Fig. 8. The experimental data compared to the fracture phase-field model algorithm.

4.2. Tensile Tests of Unidirectional Fiber Reinforced Composite Material Laminae

In this section, we investigate the tensile behavior of unidirectional FRC plates. By
performing fracture analysis on FRC plate with a central circular hole, we further demon-
strate the capability of the elastic-plastic phase field model in simulating fracture of FRC.

The specimen for this section is illustrated in Figure 9, in size of 1.0 mmx 18 mmx
80 mm. The radius of the hole is 2.5 millimeters, and its distance from the edge is 20
mm. The material parameters are as follows: the longitudinal elastic modulus Fy; is
26.5 GPa, the transverse elastic modulus Fs, is 2.6 GPa, the shear modulus G5 is 1.3
GPa, the Poisson’s ratio v is 0.35, the longitudinal fracture energy G, s is 31.1 N/mm,
the transverse fracture energy G.,, is 0.622 N/mm, and the shear fracture energy G. s
is 0.472 N/mm. The transverse tensile strength of this material is o9 = 20.25 and the
phase field crack width parameter [ is set to 0.4 mm. The displacement loading increment
is set to 3.0 x 107° mm. These material properties were taken from Ref.[30]

As shown in Figure 10, the predicted strengths by the proposed method show good
agreement with the results from [30], Zhang [31], and Moodniks [32]. This consistency
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Fig. 9. FRC plate with a central circular hole. All dimensions are given in mm.
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Fig. 10. Comparison of fracture strength at different fiber angles.



lends support to the reliability of the present approach.

Furthermore, this study predicts the initiation and propagation paths of cracks in
FRC plates with circular holes. The fracture simulations of straight fibers with fiber
angles of 30° are shown in Figure 11, while those with fiber angles of 45° are shown in
Figure 12, and the simulations for fiber angles of 60° are presented in Figure 13. We
observe that for materials with three different fiber angles, the initial crack nucleates at
stress concentration points and subsequently propagates diagonally along the respective

fiber angles, ultimately resulting in the complete failure of the specimen structure during

the tensile test.
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Fig. 11. Phase-field simulation of crack evolution in a 30° straight fiber-reinforced composite plate: (a)

load step 90, (b) load step 99, (c) load step 100.

5 0 5

(©

0.9

0.8

0.7

0.6

0.5

0.4

5 0.3

0.2

0.1



23

0.9
08
o7
06
05
04
0.3
0.2

0.1

0
5 0 5 5 0 5 5 0 5

(2) (b) (c)

Fig. 12. Phase-field simulation of crack evolution in a 45° straight fiber-reinforced composite plate: (a)
load step 100, (b) load step 115, (c) load step 120.
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Fig. 13. Phase-field simulation of crack evolution in a 30° straight fiber-reinforced composite plate: (a)
load step 80, (b) load step 86, (c) load step 120.

These results collectively demonstrate the dominant influence of fiber architecture
on the fracture behavior of unidirectional composites. The simulations confirm that the
fiber orientation is the primary factor controlling both the crack path and the structural
strength. Cracks initiate at stress concentration points and propagate strictly along

the fiber direction. A larger fiber angle, which aligns the fibers closer to the tensile
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loading direction, results in a higher effective stiffness and, consequently, a greater peak
load capacity. This is because the fibers bear the tensile load more efficiently when
their alignment is more parallel to the applied force. The observation that cracks lose
initiation symmetry at irregular pores and preferentially nucleate at locations with the
highest local curvature further validates the model’s capability to capture the complex

physical interactions between the transverse isotropy and geometric defects of FRC.

4.3. Modeling the Failure Behaviors of Curved Fiber Reinforced Composite Material

In this section, we systematically investigates the unilateral tensile fracture of curved
FRC plates and explores the influence of fiber path design variables on crack propagation
paths and strength.

B L

—_1

Fig. 14. Unilateral tensile plate with a pre-existing crack.

The model for this section is illustrated in Figure 14, with size of 1.0 mmx1 mmx2
mm. A pre-existing crack with a length of 0.5 mm is introduced in the plate. The
model parameters are as follows[33]: the longitudinal elastic modulus Fy; is 114.8 GPa,
the transverse elastic modulus FEs is 11.7 GPa, the shear modulus G5 is 9.6 GPa,
the Poisson’s ratio v is 0.21, the longitudinal fracture energy G.s is 106.3 N/mm, the
transverse fracture energy G, is 0.2774 N/mm, and the shear fracture energy G. s
is 0.7879 N/mm. The phase field crack width parameter [ is set to 0.02 mm. The

displacement loading increment is set at 3.0 x 107° mm.
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We employs mathematical formulas to generate curved fiber paths to ensure the con-
tinuity. The schematic illustration of fiber paths is shown in Figure 15 [34], where the fiber

orientation # can be expressed as

2Ty — T, L L
Q+M|x’—iL0]—I—TD, — 22 4Ly’ < 2 4L
O(x,y) = 2(TLjT) L2 L2 , 1=0,1,2,...
a4+ L i+ Ty, — 22 —iLga’ < =2 — i,
Lo 2 2 5

where = and y are global coordinates, ' and 3/ are reference coordinates, « is the angle
between the two coordinate systems, Ty and 77 represent the trajectory directions at the

fiber center and edge, respectively, and Ly is the reference length.

Fig. 15. Tllustration of fiber paths.

No fiber fracture was observed after the matrix underwent plastic deformation failure.

Therefore, unless otherwise specified in this study, the term failure refers to matrix failure.

To study the influence of the curved fiber angle on plastic deformation, we used
the framework proposed in this paper to calculate the crack propagation and force-
displacement relationship of the plate at three different angles. As shown in Figure
16, fiber-reinforced composite materials yield under higher strain conditions as the fiber

angle increases and exhibit significant plastic deformation before fracture. This suggests
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Fig. 16. (a): Crack propagation mode in [30,0] curved FRC plate; (b): Crack propagation mode in
[45, 0] curved FRC plate; (¢): Crack propagation mode in [60,0] curved FRC plate.

that fibers play a pivotal role in controlling the material’s fracture behavior. Further-
more, the crack propagation mode is no longer linear but instead consistently extends
along the direction of the curved fiber.

This curved crack path, dictated by the spatially varying fiber orientation, is a key
finding. It indicates that damage does not accumulate along a single dominant direction.
Compared to straight-fiber composites, this leads to a more progressive failure process and
enhanced post-peak structural stability, as evidenced by the more gradual load decrease
in the force-displacement response.

This highlights the potential of fiber path design as an effective means of tailoring
stable and damage-tolerant failure modes. Due to the continuously changing crack prop-
agation path within the plate, the damage does not propagate in a specific direction along
the FRC plate. Therefore, its strength is more designable compared to that of composites
with straight fibers.

In this study, FRCs are simplified as homogenized transversely isotropic materials.
Based on this simplification, the study considers the influence of plastic deformation on
the displacement of the matrix phase and its progressive failure. Compared to the elastic

phase field model for curved fiber composites, this approach more accurately reflects the
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real physical processes of fracture.
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Fig. 17. Force-displacement diagram of curved FRC plate.

The load-displacement curve of the curved fiber-reinforced composite plate is shown in
Figure 17. It shows that the increase of the initial angle of the fibers leads to an increase
in the maximum tensile load, but also leads an earlier crack initiation. It also shows that
as the angle of the curved fibers increases, the fibers bear a greater proportion of the load.
And with the displacement load increasing, the matrix enters the plastic stage later. In
fiber-reinforced composite materials, fibers are primarily responsible for bearing tensile
loads, while the matrix mainly transmits shear and compressive forces. When external
loads apply on the material, the fibers initially experience stress, which then subsequently
transfer throughout the material via the matrix. With a larger fiber angle approaching
90 degrees, the fibers align nearly parallel to the direction of the load, enabling them
to effectively withstand tensile forces. As a result, the stress on the matrix is relatively
minor, requiring greater loads for the matrix to undergo plastic deformation.

It is evident that, compared to elastic phase field simulations, the phase field model

incorporating matrix plasticity demonstrates superior load-bearing capacity in curved
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fiber-reinforced composite plates. This is attributed to the accumulation of plastic strain
at the crack tip location with increasing displacement. Additionally, the plastic dissi-
pation energy resulting from plastic damage delays the accumulation of fracture energy
required for fracture initiation. The interplay between these two factors significantly
impacts the initiation and propagation of cracks in the FRC material.

This enhanced performance is attributed to the interplay between plastic and fracture
dissipation. The accumulation of plastic strain at the crack tip consumes a portion of
the external work that would otherwise contribute directly to crack propagation. This
competition mechanism delays the accumulation of fracture energy required for crack
initiation, thereby increasing the overall load-bearing capacity and stabilizing the failure

process.

5. Conclusions

In this work, we have developed a phase field fracture model for transversely isotropic
fiber-reinforced composites (FRC) with elasto-plastic matrix. The main findings can be
summarized as follows:

A coupled phase field fracture model incorporating transversely isotropic plasticity
has been successfully established, enabling independent description of fiber and matrix
damage evolution. Model validation demonstrates that considering matrix plasticity leads
to more physically realistic crack initiation locations and propagation paths, showing
significant differences from pure elastic predictions.

Fiber orientation and path significantly influence the fracture behavior of FRC plates:
straight fibers with larger angles exhibit higher load-carrying capacity, while curved fibers
guide cracks along curved paths, enhancing damage tolerance.

Matrix plastic dissipation competes with fracture energy, delaying crack propagation
and resulting in superior load-carrying capacity of curved fiber plates under elasto-plastic
conditions compared to elastic predictions.

The proposed model provides a robust numerical tool for predicting complex fracture
processes in FRC structures, offering valuable insights for material design and structural

optimization.
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