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Abstract
We obtain generally covariant operator-valued geodesic equations on a pseudo-
Riemannian manifold M as part of the construction of quantum geodesics on the
algebra D(M) of differential operators. Geodesic motion arises here as an associativ-
ity condition for a certain form of first-order differential calculus on this algebra in the
presence of curvature. The corresponding Schrödinger picture has wave functions on
spacetime and proper time evolution by the Klein–Gordon operator, with stationary
modes being solutions of the Klein–Gordon equation. As an application, we describe
gravatom solutions of theKlein–Gordon equations around a Schwarzschild black hole,
i.e. gravitationally bound states which far from the event horizon resemble atomic
states with the black hole in the role of the nucleus. The spatial eigenfunctions exhibit
probability density banding as for higher orbital modes of an ordinary atom, but of a
fractal nature approaching the horizon.

Keywords Noncommutative geometry · Quantum mechanics · Black holes ·
Quantum spacetime · Quantum geodesics · Quantum gravity

Mathematics Subject Classification Primary 83C65 · 83C57 · 81S30 · 81Q35 · 81R50

1 Introduction

Noncommutative geometry [3, 13], and in particular the theory of quantum geodesics
[2, 8, 9, 27], was recently applied in [7] to the Heisenberg algebra A in quantum
mechanics viewed as a noncommutative phase space. This work equipped A with a
certain carefully chosen exterior algebra of differential forms �A defined by a choice
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of Hamiltonian, and a certain generalised quantum metric in �1 ⊗A �1 such that
quantum geodesic flow with parameter t recovers the standard Schrödinger equation.
A generalised quantum metric here means we assume neither symmetry nor nonde-
generacy, and indeed, the one in [7] was antisymmetric in the � → 0 limit (so more
like a symplectic or contact structure) and also had a kernel (due to having one dimen-
sion more in the calculus) which encodes the Hamilton–Jacobi equations of motion.
Differential forms mean that as well as the Heisenberg algebra generators xμ, pν , we
also have their differentials dxμ, dpν (and an unexpected additional 1-form θ ′) and
all the tools of noncommutative differential geometry. The work included also the
relativistic case where now the geodesic time parameter is an external proper time,
and extended it to an electromagnetic Heisenberg algebra applicable to spacetime
with a background U (1)-gauge field. We will say later what we mean by a quantum
geodesic, but in practical terms it amounts to a flow generated by the (minimally cou-
pled) Klein–Gordon operator, and in the electromagnetic case we saw how the Lorentz
force law appears naturally at this level. Although we did not claim new physics from
such constructions, they provided a novel perspective using new tools.

In the present sequel, we now aim to extend these ideas to the generally covariant
setting where the Heisenberg algebra is, we propose, replaced by the algebraD(M) of
differential operators on a smooth manifold M and we aim to obtain geodesic motion
rather than the Lorentz force, as a flow on this algebra. For our purposes, we consider
D(M) as the algebra generated by functions f and vector fields X with cross-relations
[X , f ] = λ X( f ), where λ = −i� for the application we have in mind, hence looks
like the usual Heisenberg algebra in any local coordinates. We will explain in the
preliminaries, see Sect. 2.1, how this is equivalent to the usual definition of D(M).
Recent interest in this algebra lies in the fact that it forms a Hopf algebroid, see
[41] where further deformed versions of it were introduced. It is also used in algebraic
geometry and homological approaches to physics [24]. Importantly for us, even though
it is noncommutative, this algebra is defined globally, and when taken in the above
form, we canworkwith it using the same tools of tensor calculus as familiar in General
Relativity (GR), allowing us to build structures on it in a globally definedmanner when
M is equipped with a Riemannian or pseudo-Riemannian metric g. Thus, although,
as is standard practice in GR, we will frequently write down expressions in a local
coordinate chart with coordinates xμ and coordinate vector fields ∂μ, this is mainly
for convenience and we do not assume a global coordinate chart. Indeed, xμ, ∂μ are
not precisely elements of D(M) but merely locally defined representatives and the
relevant equations can be rewritten in terms of global quantities. Although standard
in GR, such methods are not standard in quantum mechanics, which normally goes
via the theory of linear operators on Hilbert spaces. The two are connected via a
canonical Schrödinger representation ρ : D(M) → Lin(L2(M)) in which functions
act by multiplication and vector fields act by λ times differentiation along the vector
field, as defined on the smooth functions of compact support C∞

c (M) ⊂ L2(M). By
Lin(L2(M)), we mean possibly unbounded operators with associated domains, but
the ones arising in our case all have domains containing at least C∞

c (M). Moreover,
we work with complexified functions and vector fields, then D(M) is a ∗-algebra,
and the ∗-operation is required to map to the adjoint of the associated operator in the
sense (φ, ρ(a)ψ) = (ρ(a∗)φ,ψ) for all φ,ψ ∈ C∞

c (M), where a ∈ D(M) and ( , )
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denotes the L2(M) inner product. The basic idea of the paper is to transfer quantum
mechanical ideas from the operator side in the image of ρ to the smooth geometric side
of D(M) where we can aim to use tools of (noncommutative) differential geometry.
We view this as motivation for our definitions on D(M), with the further study of
their connection to the operator side a topic for further work, as it would need rather
different tools of functional analysis.

In the case where M is space and time is external, the picture we have in mind does
appear to be in line with the time-independent case of what is usually called quantum
mechanics on curved spacetime in the sense of [14], except that this is usually done
as a Schrödinger equation, whereas we lift the evolution to theD(M) level. But when
M is spacetime, the physical interpretation of our results is less clear for two reasons,
both of which we start to look at in examples and applications towards the end of the
paper. The first is that ‘wave functions’ ψ on spacetime are not something usually
considered in physics. The second is that whereas the concept of one particle moving
along a geodesic entails a proper time s as geodesic parameter, we are effectively
extending this to some kind of collective proper time with respect to which evolution
take places. Hence, our quantum mechanics-like evolution with respect to s is not
actual quantum mechanics in any conventional sense, although it has parallels. What
has sometimes also been referred to as quantum mechanics in curved spacetime is
fields obeying the minimally coupled Klein–Gordon or Dirac equation viewed, where
possible, as quantum mechanics-like with respect to a global time coordinate. See,
for example, [15] for an early work on this view around a Schwarzschild black hole.
There are issues in the Dirac case about what is left of coordinate invariance, see [1]
and related works. In our case, by focusing on stationary states under s we arrive at
a similar point of considering solutions of the Klein–Gordon equation (but not for a
particle of fixed mass) which is then comparable to these works. Finally, this circle of
ideas should not be confused with quantum field theory on curved spacetime, which
is quite well understood using operator algebra methods at least when M is globally
hyperbolic (the main issue in general is lack of a unique vacuum state), see [19, 22]
for relatively recent reviews. We do, however, obtain classical geodesic motion in the
� → 0 commutative limit, and hence, with the above caveats, the present work fills a
certain quantum mechanics level gap between classical geodesics on M as in GR, and
quantum field theory on spacetime M using operator algebra methods.

We turn now to the principal results of the paper and where they can be found. In
order not to overpromise, let us say right away that the key thing we find, in Sect. 4, is a
curvature obstruction to an associative differential exterior algebra�D(M) onD(M) of
the type needed. This obstruction, which appears in a breakdown of Jacobi identities at
order λ2, is in line with curvature obstructions in [5] in a different context. It is also at
this order that we see the appearance of the Ricci tensor in our resulting commutation
relations

[X ,̂ξ ] = λ (∇̂Xξ) − λ

m
θ ′ (gμν ξμ ∇ν X) − λ2

2m
θ ′(Xρ ξμ gμν Rνρ + gμν Xρ ;ν ξμ;ρ

)

.

(1.1)
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Here, X is a vector field, ξ is a 1-form on M , ξ̂ is its image as a 1-form in �1
D(M)

,
∇ is the Levi-Civita connection, also indicated by a semicolon, and Rμν is the Ricci
curvature. The parameter m will play the role of a particle mass, and the element θ ′
is a central 1-form on D(M) as in [7, 30] which will be understood as a proper time
interval. The way that these commutators emerge is that we ask that the Schrödinger
representation extends to a representation of the whole exterior algebra

ρ : �D(M) → Lin(L2(M)) (1.2)

still typically with unbounded operators. Since the composition of operators (where
their domains allow) is necessarily associative, �D(M) would also have to be associa-
tive if ρ were to be injective. However, this is not the case, and instead, all the terms
that lead to nonassociativity of the calculus are in the kernel of ρ. On the other hand,
searching for ρ to the extent possible does lead to a full set of commutation relations,
of which (1.1) is one, between elements of D(M) and their differentials in �1

D(M)
.

This step-by-step derivation of a generally covariant set of commutation relations is
achieved in Sect. 3. The method used is the same as in [7], namely to write down a
natural (covariant) form of Hamiltonian h and ask that evolution given by commutator
with this matches up with what we expect for the quantum geodesic flow. The Jacobi
identity issue is then covered in Sect. 4.

To complete the noncommutative geometry behind the quantum geodesic requires
a technical component of a suitable ‘bimodule connection’ ∇ with respect to which
our geodesic velocity field X on D(M) in Proposition 5.5 should be autoparallel.
This appears to be rather complicated and is deferred to further work. It is expected
to exist at least to order λ2 as a globalisation of the one in [7] for the flat case, but
meanwhile the geodesic flow itself is still defined in line with X found to this order
in Sect. 5. Section 4 also identifies natural elements of �1

D(M)
that are in the kernel

(and likely span it over the algebra, although we do not prove this). In the relativistic
case without external potential V , and working to order λ2 and (for convenience) with
local coordinates, these are

dxμ − θ ′

m

(

gμν pν − λ

2
�μ

)

, (1.3)

dpμ − θ ′

m

(

�ν
μσ gσρ(pν pρ − λ�τ

νρ pτ ) + λ

2
gαβ �ν

βα,μ pν − V,μ

)

, (1.4)

where pμ = ∂μ as a local vector field when viewed locally in D(M) and mapping
to λ ∂

∂xμ in the Schrödinger representation, and �μ = �μ
νρgνρ is a contraction of

the Christoffel symbols. Therefore, if we set (1.3)–(1.4) to zero in order to kill the
nonassociativity in the calculus, and if we interpret θ ′ = ds as ‘proper time’ s then we
can interpret (1.3) as definition of pμ in terms of dxμ

ds , in which case (1.4) becomes

d2xμ

ds2
= −�μ

νρ

dxν

ds

dxρ

ds
+ λ

2m
Cμ

ν

dxν

ds
+ O(λ2) (1.5)
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(the order λ2 term can also be computed), where

Cμν = −gαβ(gμγ �ν
γα,β + gνγ �μ

γα,β) + gμ j �ν ;β − gνβ�μ;β + �αβμ�ν
αβ − �αβν�μ

αβ,

see Proposition 5.3. The combination of derivatives here is different from that in the
curvature, and indeed, Cμν does not transform as a tensor (it could possibly be better
understood in terms of jets, although we have not done this). Moreover, (1.5) becomes
an operator equation in the ‘Heisenberg picture’ when viewed in the Schrödinger
representation, where these relations hold. The equations (1.5) are coordinate invariant
and can be computed in any coordinates, but the separate terms in isolation do not
transform simply, both because of�μ

νρ andCμν , and because the dxμ

ds do not commute
with functions. In the non-relativistic version where M is space and θ ′ = dt for an
external time s = t , and with an external potential V in the Hamiltonian, we similarly
recover noncommutative versions of Hamilton–Jacobi equations of motion on the
curved space with order λ corrections. Also note that real vector fields are not invariant
under ∗ due to a divergence correction (see Sect. 2.3) but can be corrected so as to
be invariant. Doing this to the pi associated with local vector fields ∂i and applying
the representation ρ then recovers the hermitian momenta in (5.31) of [14] in the case
where M is space.

From (1.5), we can see as promised that geodesic motion as in conventional GR
is contained in our algebraic set-up at zeroth order. Indeed, for λ = 0, (1.3)–(1.4)
are a standard cotangent bundle approach to geodesics flows as used, for example, in
[12]. The difference is that we ‘quantise’ this picture by providing order λ corrections
needed for a coordinate-invariant ‘Heisenberg picture’ onD(M) as the global version
of the Heisenberg algebra. We shall see that order λ is also relevant to the Schrödinger
representation andKlein–Gordon operator on ‘wave functions’.We also explained that
while the differential calculus on D(M) is nonassociative at order λ2, the equations
setting (1.3)–(1.4), i.e. the geodesic equations, are required to kill this associativity
obstruction in presence of generic curvature. This is a new ‘anomaly cancellation’
derivation of classical geodesic motion (rather different from the principle of least
action) and is a conceptual outcome of the paper even at the zeroth order. As explained,
the physical meaning of the order λ level is less clear not least due to the interpretation
of the time parameter s. On the other hand, some kind of proper time parameter like
this would seem to be unavoidable it we want to ‘quantise’ geodesic motion.

At a more practical level, Sect. 6 computes the main elements of the formalism for
some important special cases: (a) the flat case but now in any coordinate system due to
our geometric approach (here the differential calculus is strictly associative as usual),
(b) the case of a compact Lie group such as SU (2) = S3 computed in a left-invariant
basis, and (c) a Schwarzschild black hole background with its usual coordinates. This
provides a sanity check on the general results in earlier sections. Section 7 consid-
ers applications of the formalism, focussing on the case where M is spacetime and
without an external potential. This section can be understood directly from (1.3)–(1.4)
as derived in the preceding sections of the paper. We look at these operator geodesic
equations and an Ehrenfest theorem for their expectation values. On the other hand,
our ‘Heisenberg picture’ flow on D(M) has a corresponding ‘Schrödinger picture’
evolution on ‘wave functions’ ψ but now on spacetime with the Klein–Gordon opera-
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tor in place of the spatial Laplacian, and with respect to this external geodesic time s,
as a less conventional outcome of our approach. However, when the spacetime admits
a time-like Killing vector, we can restrict as for flat space in [7] to (non-normalisable)
modes of a fixed frequency e−iωt with respect to the preferred time direction. On such
modes, the Klein–Gordon flow reduces to what we call ‘pseudo-quantum mechanics’,
which resembles ordinary quantum mechanics for wave functions defined on space
but still has evolution with respect to geodesic time s. Using this formalism around
a Schwarzschild black hole, we look in Sect. 7.2.1 at an initial Gaussian bump wave
function and see in detail how this gets absorbed by the black hole through the emer-
gence of modes created at the horizon that eventually replace it. At least in examples
of the type we looked at, the classical entropy of the probability density ρ = |ψ |2
increases throughout this process.

Finally, Sect. 7.2.2 constructs exact stationary states for pseudo-quantummechanics
around a black hole, i.e. non-normalisable modes for the Klein–Gordon flow of the
form

ψ(s, t, x) = e−i
EK G

�
sφ(t, x), φ(t, x) = e−iωtψE (x)

for spatial eigenfunctions ψE (x) which resemble those of a hydrogen atom of energy
E far from the event horizon. Here φ(t, x) is an exact solution of the Klein–Gordon
equation of square-mass proportional to EK G . Even though the Klein–Gordon equa-
tion is 2nd order in t rather than 1st order as for the usual Schrödinger equation, this
is irrelevant for stationary modes provided we specify, say, negative frequencies by
ω ≥ 0 as here. Considering the ordinary Klein–Gordon equation as an extension of
actual quantum mechanics with respect to t is not new, see for example [15] around
a black hole, but we arrive at it differently and with somewhat more detailed results.
The spectrum of the gravatom that we describe, in the sense of gravitationally bound
quantum states [36], is not quantised due to an open boundary at the horizon, but
the radial wave functions are not unlike higher orbital modes of a hydrogen atom,
albeit with a fractal banding in probability density, i.e. crossing zero infinitely often
approaching the horizon.

Section 2 provides some preliminary elements of noncommutative geometry of
the particular ‘quantum Riemannian’ flavour [3] that we use (as opposed to Connes
earlier approach [13] coming out of operator algebras). This grew out of the quantum
spacetime hypothesis that spacetime is better modelled as noncommutative due to
quantum gravity effects [16, 20, 29, 33], as used in works such as [4, 26, 31, 32].
Likewise, quantumgeodesics [2, 7–9, 27] have been introduced as awayof formulating
geodesics on such quantum spacetimes. For the intuitive picture here, the reader should
imagine a dust of particles each moving on geodesics and then replace the flow of a
density ρ of such particles by the flow of a wave function ψ such that ρ = |ψ |2 as
in quantum mechanics. At the density level, there are also similarities with optimal
transport [28] and there could be applications to relativistic fluid dynamics as in [37],
but whenweworkwith complexwave functionsψ , the theory acquires a very different
and more quantum-mechanics like character. This is not our topic in the present paper,
however, where we rather apply the formalism to D(M) and then transfer the flow
of its elements to L2(M). The paper concludes in Sect. 8 with some remarks about
directions for further work. We note that a literature search since the preprint version
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turned up [18] where a probabilistic view with respect to an external time s was
also proposed, and [23] where applying noncommutative geometry of some form to
quantise geodesics was also proposed, albeit different from our approach.

We work in units of c = 1 and signature − + ++ in the spacetime case. In what
follows, we will distinguish between the real coordinate vector fields ∂μ as locally
defined elements of D(M) and their image pμ = ρ(∂μ) as the corresponding local
momentum operators. In the classical limit λ = 0 of this algebra, the ∂μ map to pμ as
the real classical locally-defined momentum of a single particle moving on a geodesic
as explained above. This gives continuity with usual notations in physics, extended to
D(M) via noncommutative geometry.

2 Preliminaries

Here we recap some basic preliminaries from conventional Riemannian geometry in
the notations we need, and elements of noncommutative geometry from [3, 7].

2.1 Background and notation

In the general theory, we will write ∂a for a local-coordinate vector field on the man-
ifold, whereas ∂

∂xa will be a partial derivative as an operator when we later consider
vector fields acting as λ ∂

∂xa on wave functions (in the Schrödinger representation ρ).
This imaginary constant λ obeys λ∗ = −λ and in quantum mechanics has value −i �.
We take it to be ‘small’ in that we count orders of λ and take lower orders to be more
significant.

By working to order λ2, we mean discarding λ3 in geometric constructions on
the manifold M . Vector fields here will typically be denoted X , Y , Z and functions
typically f , h etc. and will be taken to have order zero. The real parameter m has
dimensions of mass, and we will similarly not count its order or make assumptions on
its size.We take gab to be a (possibly Lorentzian) Riemannianmetric on the connected
manifold M , and ∇ to be its Levi-Civita connection with Christoffel symbols �a

bc.
Unless otherwise stated we assume that the vector fields X , Y , Z and functions f , h
are real, though D(M) below will be taken as a complex algebra with a ∗-operation
that picks out the real geometry as invariant under it.

We will use a semicolon to denote covariant differentiation of tensors, e.g.

Ha
b;c = Ha

b,c + Hd
b �a

dc − Ha
d �d

bc,

where comma denotes partial differentiation. We repeat the semicolon for succes-
sive covariant differentiation, including previous derivative indices. For example the
differential of f,a = f;a is

f,a;b = f;a;b = f,a,b − f,c �c
ab .
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The curvature on 1-forms and vector fields is

([∇a,∇b]ξ)a = −Rd
cab ξd , ([∇a,∇b]X)d = Rd

cab Xc

in the case of a coordinate basis where [∂a, ∂b] = 0.More generally, as the Levi-Civita
connection is torsion free, we can write the Lie bracket of vector fields as

[Y , X ]Lie = ∇Y X − ∇X Y . (2.1)

We will also have recourse to the standard measure of integration

∫

f (x1, . . . , xn)
√| det(g)| dx1 . . . dxn

on a coordinate patch, where g is the matrix gab for the metric in the coordinate basis.
Finally, for our purposes, we consider a complex version of the algebra of differential
operators.

Definition 2.1 Let D(M) be the algebra generated by complex valued smooth func-
tions C∞(M) and complex smooth vector fields, with commutation relations

[Y , X ] = λ[Y , X ]Lie, [X , f ] = λ X( f ) , [ f , g] = 0. (2.2)

We also set

f .X = f X , (2.3)

where f X denotes the vector field given by multiplying a function and a vector field
to get a vector field as usual. Moreover, D(M) acts on C∞(M) (and on C∞

c (M)) by
ρ( f )g = f g and ρ(X) = λX(g) for all vector fields X and functions f , g.

Here λ at this point could be any nonzero parameter. It simply scales our generators
in such a way as to have a commutative algebra as λ → 0, in line with our view of
the algebra as a quantisation of a classical geometry. There is also a � operation when
λ is imaginary, which we discuss in Sect. 2.3 and which is the case we will need.
Although we take this as a definition of D(M), we now outline its equivalence with
the usual description of the algebra of finite-degree differential operators on a smooth
connected manifold M . Here, differential operators of degree ≤ n are linear maps
C∞(M) → C∞(M) which in every coordinate chart on an open set U of any atlas of
the manifold can be written as a sum of terms of the form

vi1,...,ik

∂

∂xi1
· · · ∂

∂xik
. (2.4)

Here, xim are local coordinates, vi1,...,ik ∈ C∞(U ) and 0 ≤ k ≤ n. Where charts
overlap, the different coordinate descriptions will be related via the chain rule since
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the operator is the same.We first observe that such operators can be described in global
terms as the action (in the usual way, without λ) of sums of terms of the form

fk X1 · · · Xk (2.5)

for smooth functions fk , smooth vector fields Xi and 0 ≤ k ≤ n. In one direction,
this is obvious as any (in our case, complex) vector field can be expanded in local
coordinates and all the coefficients moved to the left via the product rule. Conversely,
every differential operator D in the usual sense can be obtained this way, see e.g. [35,
Thm 9.62]. To see this, one can multiply D by 1 as a partition of unity for a finite
atlas of M to convert the local form of type (2.4) into a global one of type (2.5). It
means that the usual algebra of finite-degree differential operators can be identified
with the image of ρ in Definition 2.1. Next, we note that both D(M) and the usual
algebra of differential operators are filtered algebras according to the degree and have
‘associated graded’ algebras in which one works modulo smaller degree. For D(M),
this is Sym(M), the algebra of symmetric tensors (i.e. symmetric tensor products over
C∞(M) of the space Vect(M) of vector fields) because the commutators are of lower
degree. But this is also the associated graded algebra of the usual algebra of differential
operators via the symbol of the differential operator. The inducedmap at the associated
graded level is therefore an isomorphism to its image and by homological algebra, so
is ρ itself (i.e. one can see this by looking at the top degree). Hence, D(M) as we
defined it is isomorphic to the usual definition of finite-degree differential operators.

This completes the background from classical geometry. For noncommutative
geometry, we use an approach that works over an algebra A, in our case a ∗-algebra
working over C (namely, we take A = D(M)). A ‘differential calculus’ means to
specify an A-A-bimodule �1 and a map d : A → �1 that obeys the Leibniz rule and
where every element of �1 is a finite sum of terms adb for a, b ∈ A. In principle
this should be extended to an ‘exterior algebra’ (�, d) of all differential forms, but
there is always a ‘maximal prolongation’ way to do this by applying d to the degree 1
relations. In the ∗-algebra case, we require that this extends to a ∗ operation on � as
a graded-involution that commutes with d. A left bimodule connection [3, 17, 34] on
�1 (or similarly for some other bimodule) is a pair of maps

∇ : �1 → �1 ⊗A �1, σ : �1 ⊗A �1 → �1 ⊗A �1

obeying the Leibniz rules

∇(aξ) = da ⊗ ξ + a∇(ξ), ∇(ξa) = σ(ξ ⊗ da) + ∇(ξ)a

for all ξ ∈ �1 and with a ∈ A acting on the right hand side on the nearest copy of �1.
The map σ if it exists is determined by ∇, i.e. is not additional data but a restriction
in ∇. One can apply a right module map ‘right vector field’ �1 → A to the left factor
to turn ∇ into something more like a covariant derivative. One also has a right handed
version of these conditions, a right bimodule connection. The goal of the paper from a
mathematical perspective is to find as best we can such a natural differential calculus
on A = D(M).
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2.2 The Schrödinger representation and quantum geodesics flows

We consider the Hilbert space H = L2(M) of square integrable functions on M ,
using the standard measure. The algebra D(M) acts on L2(M) in a representation
ρ : D(M) → Lin(L2(M)) as possibly unbounded operators by

ρ( f )(ψ) = f ψ, ρ(X)(ψ) = λ Xa ∂ψ

∂xa
,

for ψ ∈ L2(M), f ∈ C∞(M) and a vector field X . We use the coordinate for-
mula for the standard differentiation of a function in the direction of a vector field.
We use ρ explicitly to avoid confusion with powers of λ. We extend this to time
dependent wave function ψ(s) ∈ L2(M) for some external ‘time’ parameter s i.e.
ψ ∈ E = L2(M)⊗̄C∞(R), where the overline is to remind us that we do not mean
here the algebraic tensor product. Although one could make a completed tensor prod-
uct to make E a Hilbert module, what we mean more precisely by this in the present
context is smooth L2(M)-valued functions on R. The tensor notation is rather more
convenient for the description of the algebraic side of the constructions, so we retain
this as a notational device. We next fix a Hermitian operator ρ(h) acting on a suitable
domain of L2(M) as our Hamiltonian and presented as the image in the Schrödinger
representation of an element h ∈ D(M).

We now recap how this data, familiar from quantum mechanics (but we will also
apply it to M spacetime) relates to quantum geodesics flows on an algebra A.We recall
[3] that a right A − B bimodule connection means an A − B bimodule E (so one can
multiply elements of E by elements of A from the left and of B from the right) and
linear maps

∇E : E → E ⊗B �1
B, σE : �1

A ⊗A E → E ⊗B �1
B

such that the Leibniz rules

∇E (eb) = e ⊗ db + ∇E (e)b, ∇E (ae) = σE (da ⊗ e) + a∇E (e)

hold for all e ∈ E, a ∈ A, b ∈ B. This is a ‘polarised’ version of a right A − A
bimodule connection on E . In our case, A = D(M) with a differential calculus �1

A to
be determined and B = C∞(R) is the geodesic time parameter s coordinate algebra
with its classical differential calculus and E = L2(M)⊗̄C∞(R) (or C∞(R, C∞

c (M))

prior to completion of C∞
c (M) to L2(M)). As in [7], we make a right A− B bimodule

connection
∇E (ψ) = (ψ̇ + λ−1ρ(h) ψ) ⊗ ds (2.6)

at least for a suitable domain (such as ψ ∈ C∞(R, C∞
c (M))), where dot denotes

partial derivative with respect to s. The quantum geodesic flow of ψ ∈ E is given by
∇Eψ = 0, i.e. a version of Schrödinger’s equation for the observer of the quantum
geodesic. We also have

σE (da ⊗ ψ) = ∇E (ρ(a) ψ) − ρ(a)∇E (ψ) = ρ(X(da))ψ ⊗ ds, (2.7)
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where X : �1
A → A is the geodesic velocity vector also to be determined and again,

for example, ψ ∈ C∞(R, C∞
c (M))). As in [7], the composite ρ ◦X is determined by

(2.6) as

ρ(da) := ρ(X(da)) = λ−1[ρ(h), ρ(a)] (2.8)

and amounts to an extension of the Schrödinger representation of da on L2(M), for
a ∈ D(M). We will focus on Hamiltonian ρ(h) defined by the Laplacian and an
optional external real potential V ,

ρ(h) ψ = λ2

2m
�ψ + V ψ, �ψ = gab ψ,a;b = gab ψ,a,b − �cψ,c

or equivalently by the element

h = 1

2m
(gab∂a∂b − λ�c∂c) + V ∈ D(M),

where �c := gab�c
ab.

All of this depends on defining the differential calculus onD(M), at least to degree
1, for the notion of a connection to make sense. After that the main part of the details
for a quantum geodesic in the above case amounts to extending the Schrödinger rep-
resentation as in (1.2). This is our main focus in the paper, with a little more about the
underlying noncommutative geometry in Sect. 5.

2.3 The star operation

In particular, we use the Schrödinger representation to motivate the definition of a
∗-operation on D(M) as follows, for λ imaginary. For a function f on the manifold
M , we let f ∗ be simply the complex conjugate of f . For a real vector field X we set

X∗ := X + λ div(X),

wherewe use the divergence defined by the connection, div(X) = Xa ;a . This is needed
for ∗ to correspond to the adjoint operator in the representation in the sense explained
in the introduction (i.e. for inner products with elements fromC∞

c (M) ⊂ L2(M)). The
same principle applies to products of vector fields and makes D(M) into a ∗-algebra
with ∗ corresponding to adjoints in the sense discussed. Moreover, the operators in
D(M) leave the dense subset C∞

c (M) of L2(M) invariant, as do their images under
∗. (This means that we have an example of an O∗ algebra in the sense of [40].) For
example in degree 2:

Lemma 2.2 Let the operator T be defined by T (ψ) = λ2 Mi j ψ,i; j where Mi j is a
matrix of real functions. Then

T ∗(ψ) = T (ψ) + λ Mi j ;i ψ, j + λ2 Mi j ; j ψ,i + Mi j ;i; jψ .
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Proof We prove this for Mi j = Xi Y j and then use linear combinations for general
Mi j . First, for vector fields X = Xi ∂i and Y = Y j ∂ j

T (ψ) = (Y X − λ∇Y X)ψ.

We then use (Y X − λ∇Y X)∗ = X∗Y ∗ + λ(∇Y X)∗. Moreover, (φ, ρ(XY )ψ) =
(φ, ρ(X)ρ(Y )ψ) = (ρ(X∗)φ, ρ(Y )ψ) = (ρ(Y ∗)ρ(X∗)φ,ψ) = (ρ((XY )∗))φ,ψ)

holds automatically for all φ,ψ ∈ C∞
c (M). 
�

Also note that in the case of a single vector field X , we can subtract half the
divergence correction. Then X + λ

2 div(X) is invariant under ∗. In the case of a local
coordinate vector field ∂i , the self-adjoint version in the above sense is

∂i + λ

2
� j

i j .

But in the case where M is space, � j
i j = 1

2
∂

∂xi ln
√
det(g) so that the image of the

self-adjoint version under ρ is −i�( ∂
∂xi + 1

4
∂

∂xi ln
√
det(g)), which agrees with the

proposed momenta (5.31) in [14], except that in that context spacetime is globally
hyperbolic and the spatial metric on each time-slice can vary in the time t .

3 Differential calculus onD(M)

In this section, we construct a natural differential calculus on D(M) to the extent
possible such as to obtain Schrödinger’s equation as a quantum geodesic flow, i.e.
the method used in [7] in the flat spacetime case. The idea there, and here, is to
work backwards to arrive at what we propose as set of relations for �1

D(M)
up to and

including order λ2 andwhich define a first order calculus to order λ. Higher differential
forms will not be needed but their relations are in principle implied by application of
d to give an exterior algebra again to order λ. One can formally declare that λ2 = 0
and then consider this as an actual calculus c.f. [5], although we do not do so here. We
make no claim as to the axioms obeyed at order λ2 due to failure of Jacobi identities
in Sect. 4 at that order.

3.1 Centrally extended one forms onM

We start with the differentials for f ∈ C∞(M) ⊂ D(M). For the chosen form of h,
we calculate

m [ρ(h), ρ( f )] = λ2

2

(

gi j f,i, j − gi j f,k �k
i j

) + λ2 gi j f, j
∂

∂xi ,

and hence from (2.8), we have

m ρ(d f ) = λ
(1

2
gi j ( f,i ); j + gi j f, j

∂
∂xi

)

, m [ρ(dh), ρ( f )] = λ gi j h, j f,i
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for all f , h ∈ C∞(M). As [dh, f ] should be a 1-form on D(M), we adjoin an extra
1-form θ ′ ∈ �1

D(M)
which commutes with elements of D(M) and obeys

σE (θ ′ ⊗ ψ) = ψ ⊗ ds.

Then we set

m [dh, f ] = λ gi j h, j f,i θ ′, ρ(θ ′) = 1

which then has the right image under ρ.
We still have to be careful about defining a product between 1-forms and functions

as part of�D(M), rather than just a commutation relation, which we do symmetrically.
Thus, for such a product • on the calculus which is consistent with the representation,
we look at more general 1-forms than d f while being careful about this lack of
commutation. For ηp ∈ C∞(M), we set η̂ = 1

2 (ηp • dx p + dx p • ηp). Then

2m ρ(̂η) = 2mηpρ(dx p) + m[ρ(dx p), ηp] = λ
(

gi j ηi; j + 2 gi j η j
∂

∂xi

)

. (3.1)

We can now define the centrally extended 1-formŝ�1(M) to consist of η̂+ f θ ′, where
η ∈ �1(M) and f ∈ C∞(M). The product is given by

f • η̂ = ̂f η − λ

2m
gi j f,i η j θ ′ , η̂ • f = ̂f η + λ

2m
gi j f,i η j θ ′ , (3.2)

where f η is the usual classical product of a function f and 1-form η. This gives a
commutator which is consistent with the formula above,

m [̂η, f ] = λ gi j η j f,i θ ′. (3.3)

This also means that θ ′ is in the algebra generated by functions and their differentials
provided λ �= 0, as for the flat case in [7]. To see this, note that since �1(M) is
finitely generated and projective as an A = C∞(M) module, there is is a ‘dual basis’
coev = ∑

α Xα ⊗A ξα with vector fields Xα and 1-forms ξα obeying Xα(ξβ) = δα,β .
Writing ξα = ∑

I cα Id fα I for some functions cα I and fα I and letting ηα I be the 1-
form corresponding to the vector field Xαcα I via the metric isomorphism #, we have
coev = ∑

α,I (ηα I )
# ⊗A d fα I . Applying (3.3) to pairs (ηα I , fα I ) and summing over

(α, I ) gives the evaluation of coev, which as constant, in front of θ ′. This expresses
the latter in the required form. Moreover, having specified (3.3), we will omit writing
the bullet product on the left in (3.2) and consider the right bullet product there as
defined by this commutator. The differential on D(M) is given by setting d f = ̂d f .
This has a standard central extension form as in [3, Prop. 1.22] except that we have
chosen to do the product symmetrically.

We observe that the 1-form

m̂ξ − gi j ξ j θ ′ ∂i − λ

2
gi j ξi; j θ ′ (3.4)
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is in the kernel of the Schrödinger representation ρ for all ξ ∈ �1
M . We regard ∂i

(locally) as an element of D(M) or 0-form. In particular, the elements

m ̂dxi − gi j θ ′ ∂ j + λ

2
g pq �i

pq θ ′

are in the kernel to order λ2. This means that the representation alone cannot uniquely
determine the relations of �D(M) even in degree 1; we need additional information.

3.2 Commutator of differentials of functions and vector fields

We next find the commutator [̂ξ, X ] for ξ ∈ �1(M) and a vector field X . First we
apply the representation and calculate

m [ρ(̂ξ), ρ(X)] = −λ2

2
Xa (gi j ξi; j ),a + λ2 gip (

gbj ξ j Xq ;b gpq − ξp;a Xa)

∂i

= −λ2

2
Xa gi j (ξi; j );a + λ2 gip (

gbj ξ j Xq ;b gpq − ξp;a Xa)

∂i .

(3.5)

In addition, the relation (2.3) gives

m [ f X ,̂ξ ] − m f [X ,̂ξ ] = m [ f ,̂ξ ] X = −λ gi jξi f, jθ
′ X . (3.6)

Using (3.1), we have

m ρ(∇̂Xξ) = λ

2
gi j (Xa ξi;a); j + λgip Xa ξp;a ∂

∂xi ,

and from this we propose the following to satisfy both (3.5) and (3.6):

m [X ,̂ξ ] = m λ (∇̂Xξ) − λ θ ′ (gi j ξi ∇ j X) − λ2

2
θ ′(Xa ξp g pq Rqa + gi j Xa ; j ξi;a

)

(3.7)

Proposition 3.1 The commutation relation in (3.7) preserves the star operation.

Proof For real X and ξ we apply ∗ to find, on the assumption that the commutators
are respected by the star operation,

m [̂ξ, X + λ div(X)] = −m λ (∇̂Xξ) + λ θ ′ (∇ j X) gi j ξi + λ2 θ ′ gi j ξi div(∇ j X)

− λ2

2
θ ′(Xa ξp g pq Rqa + gi j Xa ; j ξi;a

)

.

(3.8)
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So we require to show

m [̂ξ, λ div(X)] = λ θ ′ [∇ j X , gi j ξi ] + λ2 θ ′ gi j ξi div(∇ j X)

− λ2 θ ′(Xa ξp g pq Rqa + gi j Xa ; j ξi;a
)

(3.9)

and this is equivalent to

gi j ξi div(X), j = −Xa ; j gik � j
ak ξi + gik ξi div(∇k X) − Xa ξp g pq Rqa

= gik ξi Xa ;k;a − Xa ξp g pq gik Riqka

= gik ξi
(

Xa ;k;a − Xb gnm Rnkmb
)

= gik ξi
(

Xa ;k;a + Xb gna Rnbka
)

, (3.10)

which holds as required. 
�

3.3 Commutator of functions and differentials of vector fields

From our previous calculations we have an immediate result to order λ2

Proposition 3.2 We have

m [dX , f ] = m λ (Xa ;i f,a dxi
∧

) + λ θ ′ (gi j f,i ∇ j X)

+ λ2

2
θ ′(Xa f,p g pq Rqa + gi j Xa ; j f,i;a

)

and this preserves the star operation.

Proof We use Sect. 3.2 and differentiate the relation [X , f ] = λ Xi f,i . To check the
star property, we need to show that, for real f , X ,

m([dX , f ] + [dX , f ]∗) = λ m [ f , d div(X)]. (3.11)

The LHS of (3.11) is

λ θ ′ [gi j f,i ,∇ j X ] − λ2 θ ′ gi j f,i div(∇ j X) + λ2 θ ′(Xa f,p g pq Rqa + gi j Xa ; j f,i;a
)

= −λ2 θ ′ Xa ; j (gi j f,i ),a − λ2 θ ′ gi j f,i div(∇ j X)

+ λ2 θ ′(Xa f,p g pq Rqa + gi j Xa ; j f,i;a
)

= −λ2 θ ′ Xa ; j (−gik f,i � j
ka + gi j f,i;a) − λ2 θ ′ gi j f,i div(∇ j X)

+ λ2 θ ′(Xa f,p g pq Rqa + gi j Xa ; j f,i;a
)

= −λ2 θ ′ gi j f,i Xa ; j;a + λ2 θ ′ Xa f,i gi j R ja

= −λ2 θ ′ gi j f,i Xa ;a; j ,

which is equal to the RHS as required. 
�
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3.4 The form of commutator of vector fields and their differentials

Proposition 3.3 The commutation relations (2.2) and (2.1) imply commutation rela-
tions for dX of the form

[Y , dX ] = λ d(∇Y X) + λ P(X , Y ),

where P(X , Y ) = P(Y , X). Assuming associativity to order λ, the relation f .X =
( f X) implies to order λ

λ P( f X , Y ) − λ f P(X , Y ) = −λ (Y a ;i f,a dxi
∧

) X

− λm−1 θ ′ (gi j f,i ∇ j Y ) X − λ d f ∇X Y .

Proof We have [Y , X ] = λ(∇Y X − ∇X Y ), and applying the derivation d gives

[Y , dX ] − λ d(∇Y X) = [X , dY ] − λ d(∇X Y ),

and we label this λ P(X , Y ). Next, d( f X) = d f .X + f dX and then, assuming
associativity to order λ in what follows

[Y , d( f X)] = [Y , d f ] X + d f [Y , X ] + [Y , f ] dX + f [Y , dX ] + O(λ2)

which gives

λ d(∇Y ( f X)) + λ P( f X , Y ) = [Y , d f ] X + d f [Y , X ] + [Y , f ] dX

+ λ f d(∇Y X) + λ f P(X , Y ).

Now

λ d(∇Y ( f X)) = λ d
(

Y (d f ) X + f ,∇Y (X)
)

so we get

λ P( f X , Y ) − λ f P(X , Y ) = ([Y , d f ] − λ d(Y (d f ))
)

X − λ d f ∇X Y

= −[dY , f ] X − λ d f ∇X Y ,

giving the answer. 
�
Proposition 3.4 The reality condition [Y , dX ]∗ = −[Y ∗, dX∗] for real vector fields
X , Y , assuming that d(X∗) = (dX)∗ and using X∗ = X +λ div(X) for real X, is that
for real X , Y (we name the expression N (X , Y ) to use it later)

N (X , Y ) = P(X , Y ) − P(X , Y )∗ = λ m−1 θ ′ gi j div(Y ),i ∇ j X

+ λ m−1 θ ′ gi j div(X),i ∇ j Y + λ
(

d
(

Xq Y p Rpq

+ Y p;q Xq ;p
) + dxi (Y p;idiv(X);p + X p;idiv(Y );p

))
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Proof We have, to order λ2

(

λ d(∇Y X) + λ P(X , Y )
)∗ = −[Y + λ div(Y ), dX + λ d div(X)],

which gives

−λ (d(∇Y X))∗ − λ P(X , Y )∗ = −λ d(∇Y X) − λ P(X , Y ) − [λ div(Y ), dX ]
− [Y , λ d div(X)],

which gives, to order λ

P(X , Y ) − P(X , Y )∗ = λ d div(∇Y X) − [div(Y ), dX ] − [Y , d div(X)].

Then using Proposition 3.2 and (3.7), we have, to order λ

P(X , Y ) − P(X , Y )∗ = λ d div(∇Y X) + λ Xa ;i div(Y ),a dxi

+ λ m−1 θ ′ gi j div(Y ),i ∇ j X

− λ ∇Y (d div(X)) + λ m−1 θ ′ gi j div(X),i ∇ j Y

and then use standard differential geometry calculations. 
�

3.5 Schrödinger representation of the differential of a vector field

Proposition 3.5 The representation of dX for a vector field X is

mρ(dX)(ψ) = λ2 gi j Xa ;i (ψ,a); j + λ2

2
((�X)a + Xa gi j R ja)ψ,i − m V,a Xa ψ ,

where Rqr is the Ricci tensor and � is the Laplace–Beltrami operator on vector fields.
This corresponds to

m dX − θ ′
(

gi j Xa ;i (∂a∂ j − λ�k
a j ∂k) + λ

2
(�X + Xa gi j R ja ∂i ) − m X(V )

)

being in the kernel of the Schrödinger representation to order λ2.

Proof From (2.8)

2m ρ(dX)(ψ) = 2m λ−1[ρ(h), ρ(X)]ψ
= λ2 gi j ((Xa ψ,a),i ); j + 2m V Xa ψ,a − Xa ∂a(λ2 gi j (ψ,i ); j + 2m V ψ)

= λ2 gi j Xa (((ψ,a);i ); j − ((ψ,i ); j );a) + 2λ2 gi j Xa ;i (ψ,a); j

+ λ2 gi j (Xa ;i ); j ψ,a − 2m V,a Xa ψ

= λ2 gi j Xa (((ψ,i );a); j − ((ψ,i ); j );a) + 2λ2 gi j Xa ;i (ψ,a); j
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+ λ2 gi j (Xa ;i ); j ψ,a − 2m V,a Xa ψ

= 2λ2 gi j Xa ;i (ψ,a); j + λ2 gi j (

(Xa
,i ); j − Xr Ra

i jr
)

ψ,a − 2m V,a Xa ψ ,

giving the answer. 
�
In particular, the elements

d∂i − θ ′

m

(

� j
id gdc(∂ j∂c − λ�e

jc∂e) + λ

2
�(∂i ) + λ

2
R ji g

jc∂c − mV,i

)

are in the kernel to order λ2.

Proposition 3.6

m λ−2ρ(P(X , Y ))ψ + m λ−2Y b Xa V,a;b ψ

= 1

2

(

Y b Xc (−gaq gi j (Rqi jc;b + Rqcib; j )) − gcq Rqb (Xb Y a ;c + Y b Xa ;c)

− 2gi j Y b;i Xa ;b; j − 2 gi j Xc;i Y a ;c; j − (∇�(X)Y )a − (∇�(Y ) X)a)

ψ,a

− gi j Xa ;i Y b;a ψ,b; j − gi j Y b;i Xa ;b ψ,a; j − gi j Xa ;i Y b; j ψ,b;a
+ gi j Y b Xc Recbi gaeψ,a; j .

Proof By definition of P(X , Y ),

λ ρ(P(X , Y ))ψ = ρ([Y , dX ])ψ − λ ρ(d(∇Y X))ψ

= λ Y a ∂a ρ(dX)ψ − λ ρ(dX)(Y a ψ,a) − λ ρ(d(∇Y X))ψ,

and using Proposition 3.5, we have

2m ρ(P(X , Y ))ψ = 2m Y a ∂a ρ(dX)ψ − 2m ρ(dX)(Y a ψ,a) − 2m ρ(d(∇Y X))ψ

= Y b ∂b
(

2λ2 gi j Xa ;i (ψ,a); j + λ2 �(X)a ψ,a + λ2 Xr gaq Rqr ψ,a − 2m V,a Xa ψ
)

− (

2λ2 gi j Xa ;i ((Y b ψ,b),a); j + λ2 �(X)a (Y b ψ,b),a + λ2 Xr gaq Rqr (Y b ψ,b),a

− 2m V,a Xa Y b ψ,b
)

− (

2λ2 gi j (∇Y X)a ;i (ψ,a); j + λ2 �(∇Y X)a ψ,a + λ2 (∇Y X)r gaq Rqr ψ,a

− 2m V,a (∇Y X)a ψ
)

,

which we simplify as

2m λ−2(ρ(P(X , Y )) + Y b Xa V,a;b
)

ψ =
= Y b ∂b

(

2 gi j Xa ;i (ψ,a); j + �(X)a ψ,a + Xr gaq Rqr ψ,a
)

− (

2 gi j Xa ;i ((Y b ψ,b),a); j + �(X)a (Y b ψ,b),a + Xr gaq Rqr (Y b ψ,b),a
)

− (

2 gi j (∇Y X)a ;i (ψ,a); j + �(∇Y X)a ψ,a + (∇Y X)r gaq Rqr ψ,a
)
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= Y b ∂b
(

2 gi j Xa ;i (ψ,a); j + �(X)a ψ,a
) + Y b Xr gaq Rqr;b ψ,a + Y b Xr gaq Rqr ψ,a;b

− (

2 gi j Xa ;i ((Y b ψ,b),a); j + �(X)a (Y b ψ,b),a + Xr gaq Rqr (Y b ψ,b),a
)

− (

2 gi j (∇Y X)a ;i (ψ,a); j + �(∇Y X)a ψ,a
)

= Y b ∂b
(

2 gi j Xa ;i (ψ,a); j + �(X)a ψ,a
) + Y b Xr gaq Rqr;b ψ,a

− (

2 gi j Xa ;i ((Y b ψ,b),a); j + �(X)a Y b ψ,b;a + �(X)a Y b;a ψ,b

+ Xr gaq Rqr Y b;a ψ,b
)

− (

2 gi j (∇Y X)a ;i (ψ,a); j + �(∇Y X)a ψ,a
)

= Y b (

2 gi j Xa ;i ψ,a; j;b + 2 gi j Xa ;i;b (ψ,a); j + �(X)a ;b ψ,a
)

+ Y b Xr gaq Rqr;b ψ,a

− (

2 gi j Xa ;i ((Y b ψ,b),a); j + �(X)a Y b;a ψ,b + Xr gaq Rqr Y b;a ψ,b
)

− (

2 gi j (∇Y X)a ;i (ψ,a); j + �(∇Y X)a ψ,a
)

= 2 gi j Y b Xa ;i ψ,a; j;b + 2 gi j Y b Xa ;i;b (ψ,a); j + Y b �(X)a ;b ψ,a

+ Y b Xr gaq Rqr;b ψ,a

− 2 gi j Xa ;i ((Y b ψ,b),a); j − �(X)a Y b;a ψ,b − Xr gaq Rqr Y b;a ψ,b

− 2 gi j (∇Y X)a ;i (ψ,a); j − �(∇Y X)a ψ,a

= 2 gi j Y b Xa ;i (ψ,a; j;b − ψ,b;a; j ) + 2 gi j Y b Xa ;i;b ψ,a; j

+ Y b �(X)a ;b ψ,a + Y b Xr gaq Rqr;b ψ,a

− 2 gi j Xa ;i Y b;a; j ψ,b − 2 gi j Xa ;i Y b;a ψ,b; j − 2 gi j Xa ;i Y b; j ψ,b;a
− �(X)a Y b;a ψ,b − Xr gaq Rqr Y b;a ψ,b − 2 gi j (Y b Xa ;b);i ψ,a; j − �(∇Y X)a ψ,a

= 2 gi j Y b Xa ;i (ψ,a; j;b − ψ,a;b; j ) + 2 gi j Y b Xc Ra
cbi ψ,a; j + Y b �(X)a ;b ψ,a

+ Y b Xr gaq Rqr;b ψ,a

− 2 gi j Xa ;i Y b;a; j ψ,b − 2 gi j Xa ;i Y b;a ψ,b; j − 2 gi j Xa ;i Y b; j ψ,b;a
− �(X)a Y b;a ψ,b − Xr gaq Rqr Y b;a ψ,b − 2 gi j Y b;i Xa ;b ψ,a; j − �(∇Y X)a ψ,a

= 2 gi j Y b Xa ;i ψ,c Rc
ajb + 2 gi j Y b Xc Recbi gaeψ,a; j + Y b �(X)a ;b ψ,a

+ Y b Xr gaq Rqr;b ψ,a

− 2 gi j Xa ;i Y b;a; j ψ,b − 2 gi j Xa ;i Y b;a ψ,b; j − 2 gi j Xa ;i Y b; j ψ,b;a
− �(X)a Y b;a ψ,b − Xr gaq Rqr Y b;a ψ,b − 2 gi j Y b;i Xa ;b ψ,a; j − �(∇Y X)a ψ,a

= (

2 gi j Y b Xe;i Ra
ejb + Y b �(X)a ;b + Y b Xr gaq Rqr;b

− 2 gi j Xc;i Y a ;c; j − �(X)e Y a ;e − Xr gcq Rqr Y a ;c − �(∇Y X)a)

ψ,a

− 2 gi j Xa ;i Y b;a ψ,b; j − 2 gi j Xa ;i Y b; j ψ,b;a + 2 gi j Y b Xc Recbi gaeψ,a; j

− 2 gi j Y b;i Xa ;b ψ,a; j .

We check that

(

�(∇Y X) − ∇�Y X − ∇Y (�X)
)a
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= 2gi j Y b;i Xa ;b; j + 2gi j Y b Xc; j Ra
cib + gi j Y b Xc Ra

cib; j + gi j Y b Xa ;p R p
ibj

and then in our last expression for 2m λ−2
(

ρ(P(X , Y )) + Y b Xa V,a;b
)

ψ , the coeffi-
cient of ψ,a can be rewritten as

2 gi j Y b Xe;i Ra
ejb + Y b Xr gaq Rqr;b

− 2 gi j Xc;i Y a ;c; j − (∇�(X)Y )a − (∇�(Y )X)a − Xr gcq Rqr Y a ;c
− (

2gi j Y b;i Xa ;b; j + 2gi j Y b Xc; j Ra
cib + gi j Y b Xc Ra

cib; j + gi j Y b Xa ;p R p
ibj

)

= Y b Xc (gaq Rqc;b − gi j Ra
cib; j ) − Xb gcq Rqb Y a ;c − gi j Y b Xa ;c Rc

ibj

− 2gi j Y b;i Xa ;b; j − 2 gi j Xc;i Y a ;c; j − (∇�(X)Y )a − (∇�(Y )X)a .

Here,

gaq Rqc;b − gi j Ra
cib; j = gaq gi j (Riq jc;b − Rqcib; j )

= −gaq gi j (Rqi jc;b + Rqcib; j )

= gaq gi j (Rqicb; j + Rqibj;c + Rqibc; j + Rqbci; j )

= gaq gi j (Rqibj;c + Rqbci; j )

= −gaq gi j (Rqi jb;c + Rqbic; j ) ,

which is symmetric in b, c, so the total is symmetric in swapping X and Y , as required.

�

3.6 Commutator of a vector field and the differential of one

We begin by writing P(X , Y ) = P0(X , Y ) + λ P1(X , Y ) to order λ, where P0(X , Y )

has been chosen to satisfy the lowest order requirements in λ. Of course, this decom-
position of P(X , Y ) is not unique, rearranging the order within a term of P0(X , Y )

will change its value while introducing higher order termswhich can go into P1(X , Y ).
However, there is one principle we can use to try to solve this problem; if our func-
tions and vector fields are real then, to O(λ0), terms formed from them are Hermitian.
The only source of complex numbers (ignoring the Hilbert space) is the imaginary
λ. In other words, we expect λ P1(X , Y ) to be anti-Hermitian to order λ. Then from
Proposition 3.4 we expect to have to order λ,

2 P(X , Y ) = P0(X , Y ) + P0(X , Y )∗ + N (X , Y ) . (3.12)

We set
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P0(X , Y ) = − ̂dxi
(∇∇i X Y + ∇∇i Y X

) − (2m)−1gi j θ ′(∇i X ∇ j Y + ∇i Y ∇ j X
)

− θ ′ Y b Xa V,a;b + m−1gi j θ ′ Y b Xc Recbi gae(∂ j∂a − λ�k
a j∂k),

(3.13)

which gives the order two derivatives of ψ (and therefore the lowest order terms in
the algebra of differential operators) in Proposition 3.6, and satisfies the condition in
Proposition 3.3.

Lemma 3.7 To order λ,

P0(X , Y )∗ + N (X , Y ) − P0(X , Y )

= λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

dxi

+ λm−1θ ′ gi j (

(∇ j ∇i X)u ∇uY + Xu ;i ∇ j ∇uY + (∇ j ∇i Y )u ∇u X + Y u ;i ∇ j ∇u X
)

+ λm−1θ ′ gi j ((Y b Xc + Xb Y c)Recbi ); j gae ∂a

− λ m−1 θ ′ gi j Y p Rpi ∇ j X − λ m−1 θ ′ gi j Xq Rqi ∇ j Y .

Proof Working to order λ,

P0(X , Y )∗ = − (∇∇i X Y + ∇∇i Y X
)∗

̂dxi

− (2m)−1θ ′((∇i X)∗ (∇ j Y )∗ + (∇i Y )∗ (∇ j X)∗
)

gi j

− θ ′ Y b Xa V,a;b + m−1θ ′ (∂a
∗∂ j

∗ + λ ∂k
∗�k

a j ) gi j Y b Xc Recbi gae

= − (∇∇i X Y + ∇∇i Y X
)

̂dxi − (2m)−1θ ′((∇i X) (∇ j Y ) + (∇i Y ) (∇ j X)
)

gi j

− θ ′ Y b Xa V,a;b + m−1θ ′(∂a∂ j + λ ∂k�k
a j ) gi j Y b Xc Recbi gae

− λ div
(∇∇i X Y + ∇∇i Y X

)

̂dxi

− m−1θ ′λ
(

div(∇i X) (∇ j Y ) + div(∇i Y ) (∇ j X)
)

gi j

+ λm−1θ ′ (� p
ap∂ j + � p

jp∂a) gi j Y b Xc Recbi gae, (3.14)

where we use div(∂ j ) = � p
jp. If we add the last two lines of (3.14) to N (X , Y ), we

get, to order λ,

+ λ dxi (Y p;idiv(X);p + X p;idiv(Y );p
) − λ div

(∇∇i X Y + ∇∇i Y X
)

̂dxi

+ λ d
(

Xq Y p Rpq + Y p;q Xq ;p
)

+ λ m−1 θ ′ gi j div(Y ),i ∇ j X + λ m−1 θ ′ gi j div(X),i ∇ j Y

− m−1θ ′λ
(

div(∇i X) (∇ j Y ) + div(∇i Y ) (∇ j X)
)

gi j

+ λm−1θ ′ (� p
ap∂ j + � p

jp∂a) gi j Y b Xc Recbi gae

= λ dxi ( − Y p;i Xq Rqp − Y p;i;q Xq ;p − Y p; j Xq ;p�
j
iq − Xq ;i Y p Rpq

− Xq ;i;pY p;q − Xq ; j Y
p;q� j

i p
)

+ λ d
(

Xq Y p Rpq + Y p;q Xq ;p
)
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− λ m−1 θ ′ gi j (Y p Rpi + �u
pi Y

p;u)∇ j X

− λ m−1 θ ′ gi j (Xq Rqi + �u
qi Xq ;u)∇ j Y

+ λm−1θ ′ (� p
ap∂ j + � p

jp∂a) gi j Y b Xc Recbi gae

= λ dxi (Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip

− Y p; j Xq ;p�
j
iq − Xq ; j Y

p;q� j
i p

)

− λ m−1 θ ′ gi j (Y p Rpi + �u
pi Y

p;u)∇ j X

− λ m−1 θ ′ gi j (Xq Rqi + �u
qi Xq ;u)∇ j Y

+ λm−1θ ′ (� p
ap∂ j + � p

jp∂a) gi j Y b Xc Recbi gae. (3.15)

We use (3.7) to rewrite the first two lines of the final expression for P0(X , Y )∗ in
(3.14) to order λ as

− (∇∇i X Y + ∇∇i Y X
)

̂dxi − (2m)−1θ ′((∇i X) (∇ j Y ) + (∇i Y ) (∇ j X)
)

gi j

− θ ′ Y b Xa V,a;b + m−1θ ′(∂a∂ j + λ �k
a j∂k) gi j Y b Xc Recbi gae

= − ̂dxi
(∇∇i X Y + ∇∇i Y X

) − (2m)−1θ ′gi j ((∇i X) (∇ j Y ) + (∇i Y ) (∇ j X)
)

− θ ′ Y b Xa V,a;b + m−1θ ′ gi j Y b Xc Recbi gae(∂a∂ j + λ �k
a j∂k)

+ λ
(∇∇i X Y + ∇∇i Y X

)p
�i

pjdx j + λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

+ λm−1θ ′(�i
au gu j + � j

au giu)(Xa ;i ∇ j Y + Y a ; j ∇i X)

+ m−1θ ′ [∂ j , gi j Y b Xc Recbi gae] ∂a + m−1θ ′ [∂a , gi j Y b Xc Recbi gae] ∂ j

= − ̂dxi
(∇∇i X Y + ∇∇i Y X

) − (2m)−1θ ′gi j ((∇i X) (∇ j Y ) + (∇i Y ) (∇ j X)
)

− θ ′ Y b Xa V,a;b + m−1θ ′ gi j Y b Xc Recbi gae(∂a∂ j + λ �k
a j∂k)

+ λ
(∇∇i X Y + ∇∇i Y X

)p
�i

pjdx j + λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

+ λm−1θ ′(�i
au gu j + � j

au giu)(Xa ;i ∇ j Y + Y a ; j ∇i X)

+ λm−1θ ′ gi j (Y b Xc Recbi ); j gae ∂a + λm−1θ ′ gi j (Y b Xc Recbi );a gae ∂ j

− λm−1θ ′ Y b Xc Recbi (giu gae� j
ua + gi j gue�a

ua) ∂ j

− λm−1θ ′ Y b Xc Recbi (giu gae� j
u j + gi j gue�a

u j ) ∂a

= − ̂dxi
(∇∇i X Y + ∇∇i Y X

) − (2m)−1θ ′gi j ((∇i X) (∇ j Y ) + (∇i Y ) (∇ j X)
)

− θ ′ Y b Xa V,a;b + m−1θ ′ gi j Y b Xc Recbi gae(∂a∂ j − λ �k
a j∂k)

+ λ
(∇∇i X Y + ∇∇i Y X

)p
�i

pjdx j + λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

+ λm−1θ ′(�i
au gu j + � j

au giu)(Xa ;i ∇ j Y + Y a ; j ∇i X)

+ λm−1θ ′ gi j (Y b Xc Recbi ); j gae ∂a + λm−1θ ′ gi j (Y b Xc Recbi );a gae ∂ j

− λm−1θ ′ Y b Xc Recbi gi j gue�a
ua ∂ j − λm−1θ ′ Y b Xc Recbi giu gae� j

u j ∂a .

We recognise the first two lines of the last expression as P0(X , Y ), and hence

123



Generally covariant quantum mechanics Page 23 of 65     9 

P0(X , Y )∗ + N (X , Y ) − P0(X , Y )

= λ
(∇∇i X Y + ∇∇i Y X

)p
�i

pjdx j + λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

+ λm−1θ ′(�i
au gu j + � j

au giu)(Xa ;i ∇ j Y + Y a ; j ∇i X)

+ λm−1θ ′ gi j (Y b Xc Recbi ); j gae ∂a + λm−1θ ′ gi j (Y b Xc Recbi );a gae ∂ j

− λm−1θ ′ Y b Xc Recbi gi j gue�a
ua ∂ j − λm−1θ ′ Y b Xc Recbi giu gae� j

u j ∂a

+ λ dxi (Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p ;w Rw

qip − Y p ; j Xq ;p�
j
iq − Xq ; j Y

p ;q� j
i p

)

− λ m−1 θ ′ gi j (Y p Rpi + �u
pi Y

p ;u) ∇ j X − λ m−1 θ ′ gi j (Xq Rqi + �u
qi Xq ;u) ∇ j Y

+ λm−1θ ′ (� p
ap∂ j + � p

jp∂a) gi j Y b Xc Recbi gae

= λ (Y p ;q Xq ; j + X p ;q Y q ; j ) � j
pidxi + λm−1θ ′ gi j ∇ j

(∇∇i X Y + ∇∇i Y X
)

+ λm−1θ ′(�i
au gu j + � j

au giu)(Xa ;i ∇ j Y + Y a ; j ∇i X)

+ λm−1θ ′ gi j (Y b Xc Recbi ); j gae ∂a + λm−1θ ′ gi j (Y b Xc Recbi );a gae ∂ j

+ λ dxi (Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p ;w Rw

qip − Y p ; j Xq ;p�
j
iq − Xq ; j Y

p ;q� j
i p

)

− λ m−1 θ ′ gi j (Y p Rpi + �u
pi Y

p ;u) ∇ j X − λ m−1 θ ′ gi j (Xq Rqi + �u
qi Xq ;u) ∇ j Y

= λ dxi (Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p ;w Rw

qip
)

+ λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

+ λm−1θ ′(�i
au gu j + � j

au giu)(Xa ;i ∇ j Y + Y a ; j ∇i X)

+ λm−1θ ′ gi j (Y b Xc Recbi ); j gae ∂a + λm−1θ ′ gi j (Y b Xc Recbi );a gae ∂ j

− λ m−1 θ ′ gi j (Y p Rpi + �u
pi Y

p ;u) ∇ j X − λ m−1 θ ′ gi j (Xq Rqi + �u
qi Xq ;u) ∇ j Y

= λ dxi (Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p ;w Rw

qip
)

+ λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

+ λm−1θ ′ �i
au gu j Y a ; j ∇i X + λm−1θ ′ � j

au giu Xa ;i ∇ j Y

+ λm−1θ ′ gi j (Y b Xc Recbi ); j gae ∂a + λm−1θ ′ gi j (Y b Xc Recbi );a gae ∂ j

− λ m−1 θ ′ gi j Y p Rpi ∇ j X − λ m−1 θ ′ gi j Xq Rqi ∇ j Y

= λ dxi (Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p ;w Rw

qip
)

+ λm−1θ ′ gi j ∇ j
(

Xu ;i ∇uY + Y u ;i ∇u X
)

+ λm−1θ ′ �u
ai gi j Y a ; j ∇u X + λm−1θ ′ �u

aj gi j Xa ;i ∇uY

+ λm−1θ ′ gi j (Y b Xc Recbi ); j gae ∂a + λm−1θ ′ gi j (Y b Xc Recbi );a gae ∂ j

− λ m−1 θ ′ gi j Y p Rpi ∇ j X − λ m−1 θ ′ gi j Xq Rqi ∇ j Y

which gives the result stated. 
�
Proposition 3.8 We have

P(X , Y ) = −̂dxi
(∇∇i X Y + ∇∇i Y X

) + λ

2m
θ ′ gi j ∇ j

(∇∇i X Y + ∇∇i Y X
)

− θ ′ Y b Xa V,a;b + m−1gi j θ ′ Y b Xc Recbi gae(∂ j ∂a − λ�k
a j ∂k)

− (2m)−1gi j θ ′(∇i X ∇ j Y + ∇i Y ∇ j X
)

+ λ

2m
gi j θ ′ �k

q j
(

Xq ;i ∇kY + Y q ;i ∇k X
)

123



    9 Page 24 of 65 E. Beggs, S. Majid

+ 1
2 λ

(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

(dxi − m−1θ ′ gi j ∂ j )

+ λ

2m
θ ′ (Y p Xq (Rpi;q + Rqi;p − Rqp;i ) − Y p;w Xq Rw

piq

− Xq ;w Y p Rw
qip

)

g ji ∂ j

− λ

2m
θ ′ gi j Y p Rpi ∇ j X − λ

2m
θ ′ gi j Xq Rqi ∇ j Y .

Together with Proposition 3.3, this gives the commutator as

[Y , dX ] = λ d(∇Y X) + λ P(X , Y ) .

Proof Weuse equation (3.13) for P0(X , Y ) andLemma3.7 for P0(X , Y )∗+N (X , Y )−
P0(X , Y ). Then from Proposition 3.4, we have

2 P(X , Y ) = P0(X , Y ) + P0(X , Y )∗ + N (X , Y )

= 2 P0(X , Y ) + P0(X , Y )∗ + N (X , Y ) − P0(X , Y )

giving

2P(X , Y ) = −2̂dxi
(∇∇i X Y + ∇∇i Y X

) − m−1gi j θ ′(∇i X ∇ j Y + ∇i Y ∇ j X
)

− 2θ ′ Y b Xa V,a;b + 2m−1gi j θ ′ Y b Xc Recbi gae(∂ j∂a − λ�k
a j∂k)

+ λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip
)

dxi

+ λm−1θ ′ gi j (

(∇ j∇i X)u ∇uY + Xu ;i ∇ j∇uY

+ (∇ j∇i Y )u ∇u X + Y u ;i ∇ j∇u X
)

+ λm−1θ ′ gi j ((Y b Xc + Xb Y c)Recbi ); j gae ∂a

− λm−1 θ ′ gi j Y p Rpi ∇ j X − λm−1 θ ′ gi j Xq Rqi ∇ j Y . (3.16)

We split this first result for P(X , Y ) into well defined bits:

2P(X , Y ) = −2̂dxi
(∇∇i X Y + ∇∇i Y X

) + λm−1 θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

− 2θ ′ Y b Xa V,a;b + 2m−1gi j θ ′ Y b Xc Recbi gae(∂ j ∂a − λ�k
aj ∂k)

− m−1gi j θ ′(∇i X ∇ j Y + ∇i Y ∇ j X
) + λm−1gi j θ ′(∇∇i X ∇ j Y + ∇∇i Y ∇ j X

)

+ λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p ;w Rw

qip
)

dxi

− λm−1gi j θ ′(∇∇i X ∇ j Y + ∇∇i Y ∇ j X
)

− λm−1 θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

+ λm−1θ ′ gi j (

(∇ j ∇i X)u ∇uY + Xu ;i ∇ j ∇uY + (∇ j ∇i Y )u ∇u X + Y u ;i ∇ j ∇u X
)

+ λm−1θ ′ gi j ((Y b Xc + Xb Y c)Recbi ); j gae ∂a

− λm−1 θ ′ gi j Y p Rpi ∇ j X − λm−1 θ ′ gi j Xq Rqi ∇ j Y .
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The last five lines of this are

− λm−1gi j θ ′(∇∇i X ∇ j Y + ∇∇i Y ∇ j X
) + λm−1θ ′ gi j (

�k
u j Xu ;i ∇kY + �k

u j Y u ;i ∇k X
)

+ λm−1θ ′ gi j ((Y b Xc + Xb Y c)Recbi ); j gae ∂a − λm−1 θ ′ gi j Y p Rpi ∇ j X

− 2λm−1 θ ′ gi j Xq Rqi ∇ j Y

= −λm−1gi j θ ′(∇∇i X ∇ j Y + ∇∇i Y ∇ j X
) + λm−1θ ′ gi j (

�k
u j Xu ;i ∇kY + �k

u j Y u ;i ∇k X
)

+ λm−1θ ′ gi j ((Y b Xc + Xb Y c)Recbi ); j gae ∂a − λm−1 θ ′ gi j Y p Rpi ∇ j X

− 2λm−1 θ ′ gi j Xq Rqi ∇ j Y

= −λm−1gi j θ ′(Xq ;i Y p ; j;q ∂p + Y p ;i Xq ; j;p ∂q
)

+ λm−1θ ′ gi j ((Y b Xc + Xb Y c)Recbi ); j gae ∂a

− λm−1 θ ′ gi j Y p Rpi ∇ j X − λm−1 θ ′ gi j Xq Rqi ∇ j Y .

Then

2P(X , Y ) = −2̂dxi
(∇∇i X Y + ∇∇i Y X

) + λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

− 2θ ′ Y b Xa V,a;b + 2m−1gi j θ ′ Y b Xc Recbi gae(∂ j ∂a − λ�k
a j ∂k)

− m−1gi j θ ′(∇i X ∇ j Y + ∇i Y ∇ j X
) + λm−1gi j θ ′(∇∇i X ∇ j Y + ∇∇i Y ∇ j X

)

+ λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

dxi

− λm−1gi j θ ′(Xq ;i Y p; j;q ∂p + Y p;i Xq ; j;p ∂q
)

+ λm−1θ ′ guw (Y p Xq Riqpu + Xq Y p Ripqu);w g ji ∂ j

− λm−1 θ ′ gi j Y p Rpi ∇ j X − 2λ m−1 θ ′ gi j Xq Rqi ∇ j Y .

We can rewrite the fourth and sixth lines as

λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip
)

dxi

+ λm−1θ ′ guw (Y p Xq Riqpu + Xq Y p Ripqu);w g ji ∂ j

= λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip
)

dxi

+ λm−1θ ′ (−Y p Xq Rw
piq − Xq Y p Rw

qip);w g ji ∂ j

= λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip
)

(dxi − m−1θ ′ gi j∂ j )

+ λm−1θ ′ (Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip

+ (−Y p Xq Rw
piq − Xq Y p Rw

qip);w
)

g ji ∂ j

= λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip
)

(dxi − m−1θ ′ gi j∂ j )

+ λm−1θ ′ (Y p Xq Rqp;i − Y p;w Xq Rw
piq − Y p Xq Rw

piq;w
− Xq ;w Y p Rw

qip − Xq Y p Rw
qip;w

)

g ji ∂ j ,

and we note that

−Rw
piq;w = Rw

pqw;i + Rw
pwi;q = −Rpq;i + Rpi;q ,
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so the above fourth and sixth lines become

= λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

(dxi − m−1θ ′ gi j ∂ j )

+ λm−1θ ′ (Y p Xq (Rpi;q + Rqi;p − Rqp;i ) − Y p;w Xq Rw
piq − Xq ;w Y p Rw

qip
)

g ji ∂ j ,

which gives

2P(X , Y ) = −2̂dxi
(∇∇i X Y + ∇∇i Y X

) + λm−1θ ′ gi j ∇ j
(∇∇i X Y + ∇∇i Y X

)

− 2θ ′ Y b Xa V,a;b + 2m−1gi j θ ′ Y b Xc Recbi gae(∂ j ∂a − λ�k
a j ∂k)

− m−1gi j θ ′(∇i X ∇ j Y + ∇i Y ∇ j X
) + λm−1gi j θ ′(∇∇i X ∇ j Y + ∇∇i Y ∇ j X

)

+ λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

(dxi − m−1θ ′ gi j ∂ j )

− λm−1gi j θ ′(Xq ;i Y p; j;q ∂p + Y p;i Xq ; j;p ∂q
)

+ λm−1θ ′ (Y p Xq (Rpi;q + Rqi;p − Rqp;i ) − Y p;w Xq Rw
piq

− Xq ;w Y p Rw
qip

)

g ji ∂ j

− λm−1 θ ′ gi j Y p Rpi ∇ j X − λm−1 θ ′ gi j Xq Rqi ∇ j Y .

Finally, we combine the last part of the third line with the fifth line to give the stated
answer. 
�
Remark 3.9 The formula for P(X , Y ) is written in a coordinate basis but is both coor-
dinate invariant and applies in any (local) basis. To see this, we set a new basis of
1-forms and vector fields

∂i = �a
i ∂a , dxi = �−1i

b f b .

For the purposes if this remark only, we use a, b, c for the new basis labels and i, j, k
for the coordinate basis. Then, for Ei dxi a 1-form valued in a vector bundle (for which
we do not write indices),

̂dxi Ei − λ

2m
θ ′ gi j ∇ j Ei = ̂(�−1i

c f c)�b
i Eb − λ

2m
θ ′ �−1i

c gca ∇a(�b
i Eb)

= ̂f c �b
i �−1i

c Eb − λ

2m
θ ′ g pq∂q (�−1i

c) �c
p �b

i Eb − λ

2m
θ ′ �−1i

c gca ∇a(�b
i Eb)

= ̂f c Ec − λ

2m
θ ′ gac∂a(�−1i

c) �b
i Eb − λ

2m
θ ′ �−1i

c gca ∇a(�b
i Eb)

= ̂f c Ec − λ

2m
θ ′ gac∂a(�−1i

c �b
i ) Eb − λ

2m
θ ′ �−1i

c gca �b
i ∇a(Eb)

= ̂dxi Ei − λ

2m
θ ′ gab ∇a Eb .

This equation serves two purposes. First, change to another coordinate basis shows the
coordinate independence of the expression on the noncommutative algebra. Second,
it provides a formula in a more general context than a coordinate basis, which will be
useful later. Next we define the Christoffel symbols for any basis. To do this, calculate
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∇b∂a = �−1p
b ∇p(�

−1 j
a ∂ j ) = �−1p

b ∂p(�
−1 j

a) ∂ j + �−1p
b �−1 j

a �k
pj ∂k

= ∂b(�
−1 j

a)�c
j ∂c + �−1p

b �−1 j
a �k

pj �c
k ∂c

= −�−1 j
a ∂b(�

c
j ) ∂c + �−1p

b �−1 j
a �k

pj �c
k ∂c ,

as �−1 j
a �c

j = δc
a . We define �c

ab in the new basis by ∇b∂a = �c
ab ∂c. Then

∂ j ∂i − λ�k
i j ∂k = �a

j ∂a �b
i ∂b − λ�k

i j �c
k ∂c

= �a
j �b

i ∂a ∂b + λ �a
j ∂a(�c

i ) ∂c − λ�k
i j �c

k ∂c

= �a
j �b

i
(

∂a ∂b + λ (�−1p
b ∂a(�c

p) − �−1p
b �−1q

a �k
pq �c

k) ∂c
)

= �a
j �b

i
(

∂a∂b − λ�c
ab∂c

)

.

The last of the expressions we need to consider for 2m P(X , Y ) is

− gi j θ ′ ∇i X ∇ j Y + λgi j θ ′ �k
q j Xq ;i ∇kY

= −gi j θ ′ ∇i X (�a
j ∇aY ) + λgi j θ ′ �k

q j Xq ;i ∇kY

= −gi j θ ′ �a
j ∇i X (∇aY ) − λgi j θ ′ Xq ;i ∂q(�a

j )∇aY + λgi j θ ′ �k
q j Xq ;i∇kY

= −gab θ ′ ∇b X ∇aY + λθ ′ (−∂q(�c
j ) + �k

q j �c
k) gi j Xq ;i ∇cY

= −gab θ ′ ∇b X ∇aY + λθ ′ (�c
ab �b

q�a
j ) gi j Xq ;i ∇cY

= −gab θ ′ ∇b X ∇aY + λgda θ ′ �c
ba Xb;d∇cY

and so the first three lines of the formula for P(X , Y ) in Proposition 3.8 are coordinate
independent and true in more general bases (given the formula for the Christoffel sym-
bols used here). The remaining lines are manifestly coordinate invariant by standard
differential geometry.

3.7 Check of Schrödinger representation of differential of a vector field

It remains to check an identity used in the derivation that amounts to consistency of
the proposed Schrödinger representation of differentials of vector fields.

Proposition 3.10

ρ(P(X , Y ) − 1
2 P0(X , Y ) − 1

2 P0(X , Y )∗ − 1
2 N (X , Y ))ψ

= λ2

4m
gab �i

ab
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + XqY p;w Rw

qip
)

ψ.

Proof First we calculate

2mρ(̂dxi
(∇∇i X Y + ∇∇i Y X

)

)ψ + gi j ρ
(∇i X ∇ j Y + ∇i Y ∇ j X

)

ψ

= 2mλρ(̂dxi ) (Xb;i Y a ;b + Y b;i Xa ;b) ψ,a + λgi j (

ρ(∇i X) Y a ; j ψ,a + ρ(∇i Y ) Xa ; j ψ,a
)

= λ2(2 gic ∂
∂xc − g pq �i

pq ) (Xb;i Y a ;b + Y b;i Xa ;b) ψ,a
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+ λgi j (

ρ(∇i X) Y a ; j ψ,a + ρ(∇i Y ) Xa ; j ψ,a
)

= λ2(−g pq �i
pq ) (Xb;i Y a ;b + Y b;i Xa ;b) ψ,a + λ2(2 gic) (Xb;i Y a ;b + Y b;i Xa ;b) ψ,a;c

+ λ2(2 gic) (Xb;i;c Y a ;b + Y b;i;c Xa ;b + Xb;i Y a ;b;c + Y b;i Xa ;b;c) ψ,a

+ λ2gi j (

Xb;i Y a ; j + Y b;i Xa ; j
)

ψ,a;b + λ2gi j (

Xb;i Y a ; j;b + Y b;i Xa ; j;b
)

ψ,a

+ λ2(2 gic) (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
ic

+ λ2gi j (

Xb;i Y a ;k ψ,a + Y b;i Xa ;k ψ,a
)

�k
bj .

Now from Proposition 3.6,

2m λ−2ρ(P(X , Y ) − P0(X , Y ))ψ

= (

Y b Xc (−gaq gi j (Rqi jc;b + Rqcib; j )) − gcq Rqb (Xb Y a ;c + Y b Xa ;c)
− 2gi j Y b;i Xa ;b; j − 2 gi j Xc;i Y a ;c; j − (∇�(X)Y )a − (∇�(Y )X)a)

ψ,a

+ 2 gi j (Xb;i; j Y a ;b + Y b;i; j Xa ;b + Xb;i Y a ;b; j + Y b;i Xa ;b; j ) ψ,a

+ gi j (

Xb;i Y a ; j;b + Y b;i Xa ; j;b
)

ψ,a

+ gi j (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
i j

+ gi j (

Xb;i Y a ;k ψ,a + Y b;i Xa ;k ψ,a
)

�k
bj

= ( − Y b Xc gaq gi j (Rqi jc;b + Rqcib; j ) − gcq Rqb (Xb Y a ;c + Y b Xa ;c)
)

ψ,a

+ gi j (Xb;i; j Y a ;b + Y b;i; j Xa ;b) ψ,a + gi j (

Xb;i Y a ; j;b + Y b;i Xa ; j;b
)

ψ,a

+ gi j (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
i j + gi j (

Xb;i Y a ;k + Y b;i Xa ;k
)

ψ,a �k
bj .

We use the symmetries of the Riemann tensor

gi j Rqi jc;b = gi j R jcqi;b = −gi j R jcbq;i − gi j R jcib;q = gi j Rqbic; j − Rcb;q

to rewrite this as

2m λ−2ρ(P(X , Y ) − P0(X , Y ))ψ

= (

(Y b Xc + Xb Y c) gae gi j Recbi; j + Y b Xc gaq Rcb;q
− g ji Rib (Xb Y a ; j + Y b Xa ; j )

)

ψ,a

+ gi j (Xb;i; j Y a ;b + Y b;i; j Xa ;b) ψ,a + gi j (

Xb;i Y a ; j;b + Y b;i Xa ; j;b
)

ψ,a

+ gi j (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
i j + gi j (

Xb;i Y a ;k + Y b;i Xa ;k
)

ψ,a �k
bj .

Next we calculate

ρ(P0(X , Y )∗ + N (X , Y ) − P0(X , Y ))(ψ)

= λ
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ρ(dxi )(ψ)

+ λm−1 gi j ρ
(

(∇ j ∇i X)u ∇uY + Xu ;i ∇ j ∇uY + (∇ j ∇i Y )u ∇u X + Y u ;i ∇ j ∇u X
)

(ψ)

+ λm−1 gi j ((Y b Xc + Xb Y c)Recbi ); j gae ρ(∂a)(ψ)

− λ m−1 gi j Y p Rpi ρ(∇ j X)(ψ) − λ m−1 gi j Xq Rqi ρ(∇ j Y )(ψ) ,
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and then

m λ−2ρ(P0(X , Y )∗ + N (X , Y ) − P0(X , Y ))(ψ)

= − 1
2 gab �i

ab
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ

+ gai (

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ,a

+ gi j (

(∇ j ∇i X)u Y a ;u + Xu ;i (∇ j ∇uY )a + (∇ j ∇i Y )u Xa ;u + Y u ;i (∇ j ∇u X)a)

ψ,a

+ gi j ((Y b Xc + Xb Y c)Recbi ); j gae ψ,a

− gi j Y p Rpi Xa ; j ψ,a − gi j Xq Rqi Y a ; j ψ,a .

Hence,

2m λ−2ρ(P(X , Y ) − 1
2 P0(X , Y ) − 1

2 P0(X , Y )∗ − 1
2 N (X , Y ))ψ

= 1
2 gab �i

ab
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ

+ gi j (Xb;i; j Y a ;b + Y b;i; j Xa ;b) ψ,a + gi j (

Xb;i Y a ; j;b + Y b;i Xa ; j;b
)

ψ,a

+ gi j (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
i j + gi j (

Xb;i Y a ;k + Y b;i Xa ;k
)

ψ,a �k
bj

− gai (

Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ,a

− gi j (

(∇ j ∇i X)u Y a ;u + Xu ;i (∇ j ∇uY )a + (∇ j ∇i Y )u Xa ;u + Y u ;i (∇ j ∇u X)a)

ψ,a

− gi j (Y b Xc + Xb Y c); j Recbi gae ψ,a

= 1
2 gab �i

ab
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ

+ gi j ((Xb;i; j − (∇ j ∇i X)b) Y a ;b + (Y b;i; j − (∇ j ∇i Y )b) Xa ;b) ψ,a

+ gi j (

Xb;i (Y a ; j;b − (∇ j ∇bY )a) + Y b;i (Xa ; j;b − (∇ j ∇b X)a)
)

ψ,a

+ gi j (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
i j + gi j (

Xb;i Y a ;k + Y b;i Xa ;k
)

ψ,a �k
bj

− gai (

Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ,a

− gi j (Y b Xc + Xb Y c); j Recbi gae ψ,a

= 1
2 gab �i

ab
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ

+ gi j ((Xb;i; j − (∇ j ∇i X)b) Y a ;b + (Y b;i; j − (∇ j ∇i Y )b) Xa ;b) ψ,a

+ gi j (

Xb;i (Y a ; j;b − (∇b∇ j Y )a) + Y b;i (Xa ; j;b − (∇b∇ j X)a)
)

ψ,a

+ gi j (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
i j + gi j (

Xb;i Y a ;k + Y b;i Xa ;k
)

ψ,a �k
bj

− gae gi j (Xq ;i Y p R jpeq + Xq Y p;i R jqep
)

ψ,a

− gi j (Xb;i Ra
pjbY p + Y b;i Ra

pjb X p)

ψ,a

− gi j (Y b Xc + Xb Y c);i Recbj gae ψ,a

= 1
2 gab �i

ab
(

Y p Xq Rqp;i + Xq ;wY p Rw
piq + Xq Y p;w Rw

qip
)

ψ

+ gi j (−Xb;k�k
i j Y a ;b − Y b;k�k

i j Xa ;b) ψ,a

+ gi j ( − Xb;i Y a ;k�k
jb − Y b;i Xa ;k�k

jb
)

ψ,a

+ gi j (Xb;k Y a ;b + Y b;k Xa ;b) ψ,a �k
i j + gi j (

Xb;i Y a ;k + Y b;i Xa ;k
)

ψ,a �k
bj
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and the Christoffel symbols in the last three lines cancel. We see that the result is given
by the action of an algebra element as stated of order λ2 and which therefore vanishes
at order λ as in (3.12). 
�

3.8 Differential calculus to order �

Finally, while we have a set of commutation relations for �1
D(M)

to order λ2, we
should complete its specification. The model for how this data extends to a product
was explained below (3.3) in the case of functions and differentials of functions. For
the other products one can proceed case by case, but here we note that since our
proposed relations are invariantly defined, it is sufficient to define the products in a
local coordinate chart. In this case, we take dxμ, dpν, θ

′ as locally a basis over the
algebra from the left, and define products of these from the right via the commutation
relations. More generally, we define (adxμ).b := a(dxμb) and (adpν).b := a(dpνb)

for a, b inD(M). There are no issues for θ ′ as our construction has this central, but for
this procedure to specify a right action, we need [dxμ, ] and [dpν, ] to be derivations.
Our relations tell us what these are on functions and vector fields but that they extend
as derivations is not automatic. Indeed, requiring this on [a, b] = ab − ba is just
the Jacobi identity. We will see in the next section that this holds to order λ (but not
necessarily at order λ2), hence we have a bimodule at least to order λ. That d is a
derivation was part of our construction to find the relations, but can also be verified
explicitly to order λ.

4 Jacobiators

We define the Jacobiator

J (x, y, z) := [x, [y, z]] + [z, [x, y]] + [y, [z, x]] (4.1)

for x, y, z elements of the algebra or its 1-forms. Note that applying a permutation
to x, y, z simply multiplies the Jacobiator by the sign of the permutation. If we have
associativity then all the Jacobiators will vanish.

Proposition 4.1 For all functions f , h ∈ C∞(M), 1-forms ξ ∈ �1(M) and vector
fields X , Y , to order λ2, we have

J ( f , h,̂ξ) = 0 , J ( f , Y ,̂ξ) = 0,

J (Y , X ,̂ξ) = λ2 Y a Xc ξi Ri
jca

(

d̂x j − m−1θ ′ gej ∂e
)

.

Proof The first calculation is omitted as easier, and known since we have a (symmetric
version of) a standard centrally extended calculus on amanifold. For the second result,

J ( f , Y ,̂ξ) = [ f , [Y ,̂ξ ]] − λ [̂ξ, Y ( f )] + [Y , [̂ξ, f ]]
= [ f , λ (∇̂Y ξ)] + (2m)−1[ f ,−2λ θ ′ (gi j ξi ∇ j Y )] − λ2m−1 gi j ξ j (Y ( f )),i θ ′
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+ λm−1 [Y , gi j ξ j f,i θ ′]
= −λ2m−1gi j f,i (∇Y ξ) jθ

′ + λ2 m−1θ ′ gi j ξi (∇ j Y )a f,a

− λ2m−1 gi j ξ j (Y ( f )),i θ ′ + λ2m−1 Y a gi j (ξ j f,i ),a θ ′

= λ2 m−1θ ′ gi j ( − f,i (∇Y ξ) j + ξi (∇ j Y )a f,a − ξ j (Y ( f )),i + Y a (ξ j f,i ),a
)

,

which vanishes. For the third result, by definition,

J (X , Y ,̂ξ) = [X , [Y ,̂ξ ]] − [Y , [X ,̂ξ ]] + λ[̂ξ, [X , Y ]Lie] .

We begin with

m [Y , [X , ξ ]] = [

Y , m λ (∇̂X ξ) − λ θ ′ (gi j ξi ∇ j X) − λ2

2
θ ′(Xa ξp g pq Rqa + gi j Xa ; j ξi;a

)

= m λ
[

Y , (∇̂X ξ)
] − λ θ ′ [Y , gi j ξi

]∇ j X − λ θ ′ gi j ξi
[

Y , ∇ j X
]

= m λ2 (∇̂Y ∇X ξ) − λ2 θ ′ gi j (∇X ξ)i ∇ j Y − λ2 θ ′ Y a (gi j ξi ),a ∇ j X

− λ2 θ ′ gi j ξi [Y , ∇ j X ]Lie
= m λ2 (∇̂Y ∇X ξ) − λ2 θ ′ gi j Xa ξi;a Y b; j ∂b − λ2 θ ′ Y a gi j ξi;a ∇ j X

+ λ2 θ ′ Y a gik ξi �
j
ka ∇ j X − λ2 θ ′ gi j ξi [Y , ∇ j X ]Lie

= m λ2 (∇̂Y ∇X ξ) − λ2 θ ′ gi j ξi;a (Xa ∇ j Y + Y a ∇ j X)

+ λ2 θ ′ Y a gik ξi �
j
ka ∇ j X − λ2 θ ′ gi j ξi Y a ∇a∇ j X + λ2 θ ′ gi j ξi Xb; j ∇bY

= m λ2 (∇̂Y ∇X ξ) − λ2 θ ′ gi j ξi;a (Xa ∇ j Y + Y a ∇ j X)

+ λ2 θ ′ gi j ξi
(

Y a �c
ja ∇c X − Y a ∇a∇ j X + Xb; j ∇bY

)

= m λ2 (∇̂Y ∇X ξ) − λ2 θ ′ gi j ξi;a (Xa ∇ j Y + Y a ∇ j X)

+ λ2 θ ′ gi j ξi
( − Y a (Xe; j );a + Xb; j Y e;b

)

∂e

= m λ2 (∇̂Y ∇X ξ) − λ2 θ ′ gi j ξi;a (Xa ∇ j Y + Y a ∇ j X)

+ λ2 θ ′ gi j ξi
( − Y a (Xe;a); j + Xb; j Y e;b

)

∂e − λ2 θ ′ gi j ξi
(

Y a Re
caj Xc)∂e

so

m [Y , [X , ξ ]] − m [X , [Y , ξ ]] − λ m [̂ξ, [X , Y ]Lie]
= m λ2 (∇̂Y ∇X ξ) − m λ2 (∇̂X ∇Y ξ)

+ λ2 θ ′ gi j ξi
( − Y a (Xe;a); j + Xb; j Y e;b

)

∂e − λ2 θ ′ gi j ξi Y a Xc Re
caj ∂e

− λ2 θ ′ gi j ξi
( − Xa (Y e;a); j + Y b; j Xe;b

)

∂e + λ2 θ ′ gi j ξi Xa Y c Re
caj ∂e

− λm [[Y , X ]Lie,̂ξ ]
= m λ2 (∇̂Y ∇X ξ) − m λ2 (∇̂X ∇Y ξ) − m λ2 ( ̂∇[Y ,X ]Lieξ)

+ λ2 θ ′ gi j ξi
( − Y a (Xe;a); j + Xb; j Y e;b

)

∂e − λ2 θ ′ gi j ξi Y a Xc Re
caj ∂e

− λ2 θ ′ gi j ξi
( − Xa (Y e;a); j + Y b; j Xe;b

)

∂e − λ2 θ ′ gi j ξi Xc Y a Re
ajc ∂e
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+ λ2 θ ′ gi j ξi ∇ j [Y , X ]Lie
= λ2 θ ′ gi j ξi Xc Y a Re

jca ∂e − m λ2 Y i X j Rb
ai j ξb d̂xa

= λ2 θ ′ gi j ξi Xc Y a Re
jca ∂e − m λ2 Y a Xc Rb

jac ξb
̂dx j

= λ2m Y a Xc (

m−1θ ′ gi j ξi gep Rpjca ∂e − Ri
jac ξi

̂dx j
)

= λ2m Y a Xc ξi
( − m−1θ ′ gi j gep R jpca ∂e + Ri

jca
̂dx j

)

= λ2m Y a Xc ξi
( − m−1θ ′ gep Ri

pca ∂e + Ri
jca

̂dx j
)

= λ2m Y a Xc ξi
(

Ri
jca

̂dx j − m−1θ ′ gej Ri
jca ∂e

)

= λ2m Y a Xc ξi Ri
jca

(

̂dx j − m−1θ ′ gej ∂e
)

,

giving the answer. 
�
Hence the calculus is not associative at order λ2. Note that we assumed associativity

in deriving (3.6), however this only required the vanishing of the Jacobi relation for
two functions and a vector field, which we see does hold.

Proposition 4.2 We have J ( f , h, dX) = 0 and

J ( f , Y , dX) = λ2 dxi Y b Xc Ra
cbi f,a − λ2m−1gae θ ′ Y b Xc R j

bce f,a∂ j

= λ2 Y b Xc f,a
(

Ra
cbi dxi − m−1gae θ ′ gi j Ribce∂ j

)

= λ2 Y b Xc f,a Ra
cbi

(

dxi − m−1 θ ′ gi j ∂ j
)

to order λ2.

Proof Begin with

J ( f , h, dX) = [ f , [h, dX ]] + [dX , [ f , h]] + [h, [dX , f ]]
= [ f , [h, dX ]] − [h, [ f , dX ]] ,

J ( f , Y , dX) = [ f , [Y , dX ]] + [dX , [ f , Y ]] + [Y , [dX , f ]]
= [ f , [Y , dX ]] − λ [dX , Y (d f )] + [Y , [dX , f ]] . (4.2)

We only need the commutators to first order in λ for this, so set

[dX , f ] = λ (X̂a ;i f,a) + λm−1 θ ′ (gi j f,i ∇ j X)
)

,

[[dX , f ], h] = λ [(X̂a ;i f,a), h] + λm−1 θ ′ [(gi j f,i ∇ j X), h]

and then from (3.3),

[[dX , f ], h] = λ2m−1 gi j Xa ; j f,a θ ′h,i + λ2m−1 θ ′ gi j f,i Xa ; j h,a,

which is symmetric in f , h so J ( f , h, dX) = 0. Next
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J ( f , Y , dX) = [ f , λ d(∇Y X)] + [ f , λ P0(X , Y )] − λ [dX , Y (d f )] + [Y , [dX , f ]]
= −λ2 (∇Y X)a ;i f,a dxi − λ2m−1 θ ′ gi j f,i ∇ j ∇Y X

− λ
[

f , ̂dxi
(∇∇i X Y + ∇∇i Y X

)] − λ(2m)−1gi j θ ′[ f ,
(∇i X ∇ j Y + ∇i Y ∇ j X

)]

+ λm−1gi j θ ′ Y b Xc Recbi gae[ f , ∂ j ∂a]
− λ2 Xa ;i (Y (d f )),a dxi − λ2m−1 θ ′ gi j (Y (d f )),i ∇ j X

+ λ
[

Y , Xa ;i f,a dxi + m−1 θ ′ gi j f,i ∇ j X
]

= −λ2 (∇Y X)a ;i f,a dxi − λ2m−1 θ ′ gi j f,i ∇ j ∇Y X

+ λ2m−1 gi j f, j θ ′(∇∇i X Y + ∇∇i Y X) + λ2̂dxi (∇∇i X Y + ∇∇i Y X)a f,a

+ λ2m−1gi j θ ′ f,a(Xa ;i ∇ j Y + Y a ;i ∇ j X) + λm−1gi j θ ′ Y b Xc Recbi gae[ f , ∂ j ∂a]
− λ2 Xa ;i (Y (d f )),a dxi − λ2m−1 θ ′ gi j (Y (d f )),i ∇ j X

+ λ2∇Y (Xa ;i f,a dxi ) − λ2m−1 θ ′ gi j Xa ;i f,a ∇ j Y

+ λ2m−1 θ ′ Y a(gi j f,i ),a ∇ j X + λ2m−1 θ ′ gi j f,i [Y , ∇ j X ]Lie
= −λ2m−1 θ ′ gi j f,i [∇ j , ∇Y ]X + λ2m−1 gi j f, j θ ′ ∇∇i Y X

+ λ2 dxi (Xb;i Y a ;b − Y b Xa ;b;i ) f,a

+ λ2m−1gi j θ ′ f,a(Xa ;i ∇ j Y + Y a ;i ∇ j X) + λm−1gi j θ ′ Y b Xc Recbi gae[ f , ∂ j ∂a]
− λ2 Xb;i (Y a ;b f,a + Y a f,a;b) dxi − λ2m−1 θ ′ gi j (Y a ;i f,a + Y a f,a;i ) ∇ j X

+ λ2∇Y (Xa ;i f,a dxi ) − λ2m−1 θ ′ gi j Xa ;i f,a ∇ j Y + λ2m−1 θ ′ Y a(gi j f,i ),a ∇ j X

= −λ2m−1 θ ′ gi j f,i [∇ j , ∇Y ]X + λ2m−1 gi j f, j θ ′ ∇∇i Y X + λ2 dxi (−Y b Xa ;b;i ) f,a

+ λm−1gi j θ ′ Y b Xc Recbi gae[ f , ∂ j ∂a] − λ2 Xb;i (Y a f,a;b) dxi

+ λ2∇Y (Xa ;i f,a dxi ) − λ2m−1 θ ′ Y a gip � j
ap f,i ∇ j X

= λ2m−1 θ ′ gi j f,i [∇Y , ∇ j ]X + λ2m−1 gi j f, j θ ′ ∇∇i Y X + λ2 dxi Y b(Xa ;i;b − Xa ;b;i ) f,a

+ λm−1gi j θ ′ Y b Xc Recbi gae[ f , ∂ j ∂a] − λ2m−1 θ ′ Y a gip � j
ap f,i ∇ j X

= λ2m−1 θ ′ gi j f,i R(Y , ∂ j )X

+ λ2 dxi Y b Xc Ra
cbi f,a + λm−1gi j θ ′ Y b Xc Recbi gae[ f , ∂ j ∂a]

= λ2 dxi Y b Xc Ra
cbi f,a − λ2m−1gae θ ′ Y b Xc R j

bce f,a∂ j ,

as required. 
�
Proposition 4.3 We have

J (X , Y , dZ) = λ2 d(R(X , Y )Z) − λ2 dxi ∇i (R(X , Y )Z) + λ2 θ ′ (R(X , Y )Z)k V,k

+ λ2
(

Rb
rqp;i XqY p Zr ∂b − Ra

rqi Xq Zr∇aY − Ra
ripY p Zr ∇a X

− Ra
iqp XqY p ∇a Z

)

(dxi − m−1gi j θ ′∂ j )

to order λ2.
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Proof Begin with

J (X , Y , dZ) = [X , [Y , dZ ]] − [Y , [X , dZ ]] − λ [[X , Y ]Lie, dZ ]
= λ [X , d(∇Y Z)] + λ [X , P(Z , Y )] − λ [Y , d(∇X Z)] − λ [Y , P(Z , X)]

− λ2 d(∇[X ,Y ]Lie Z) − λ2 P(Z , [X , Y ]Lie)
= λ2 d(∇X∇Y Z) + λ2 P(∇Y Z , X) + λ [X , P(Z , Y )]

− λ2 d(∇Y ∇X Z) − λ2 P(∇X Z , Y ) − λ [Y , P(Z , X)]
− λ2 d(∇[X ,Y ]Lie Z) − λ2 P(Z , [X , Y ]Lie)

= λ2 d(R(X , Y )Z) + λ2 P(∇Y Z , X) + λ [X , P(Z , Y )]
− λ2 P(∇X Z , Y ) − λ [Y , P(Z , X)] − λ2 P(Z , [X , Y ]Lie),

which gives

J (X , Y , dZ) = λ2 d(R(X , Y )Z)

+ λ [X , P0(Z , Y )] − λ2 P0(∇X Z , Y ) − λ2 P0(Z ,∇X Y )

− λ [Y , P0(Z , X)] + λ2 P0(∇Y Z , X) + λ2 P0(Z ,∇Y X) . (4.3)

Now we use, to order λ,

[X ,P0(Z , Y )] = − [X , ̂dxi ] (∇∇i Z Y + ∇∇i Y Z
) − ̂dxi [X ,

(∇∇i Z Y + ∇∇i Y Z
)]

− (2m)−1θ ′[X , gi j (∇i Z ∇ j Y + ∇i Y ∇ j Z
)]

− θ ′ [X , Y b Za V,a;b] + m−1θ ′ [X , gi j Y b Zc Recbi gae(∂ j∂a)]
= λ(Xa�i

ak dxk + m−1 θ ′ gi j ∇ j X)
(∇∇i Z Y + ∇∇i Y Z

)

− dxi [X ,
(∇∇i Z Y + ∇∇i Y Z

)] − (2m)−1θ ′[X , gi j (∇i Z ∇ j Y + ∇i Y ∇ j Z
)]

− θ ′ [X , Y b Za V,a;b] + m−1θ ′ [X , gi j Y b Zc Recbi gae(∂ j∂a)] .

(4.4)

Now write to order λ2 the terms containing dxi in second line of (4.3) as

λ2 Xa�s
ai dxi (∇∇s Z Y + ∇∇s Y Z

) − λ dxi [X ,
(∇∇i Z Y + ∇∇i Y Z

)]
+ λ2 dxi (∇∇i ∇X Z Y + ∇∇i Y ∇X Z) + λ2 dxi (∇∇i Z∇X Y + ∇∇i ∇X Y Z)

= λ2 Xa�s
ai dxi (∇∇s Z Y + ∇∇s Y Z

) + λ2 dxi (∇∇∇i Z Y X + ∇∇∇i Y Z X
)

+ λ2 dxi (∇∇i ∇X Z Y + [∇∇i Y ,∇X ]Z) + λ2 dxi ([∇∇i Z ,∇X ]Y + ∇∇i ∇X Y Z)

= λ2 Xa�s
ai dxi (∇∇s Z Y + ∇∇s Y Z

) + λ2 dxi (∇∇∇i Z Y X + ∇∇∇i Y Z X
)

+ λ2 dxi (∇∇i ∇X Z Y + R(∇i Y , X)Z + ∇[∇i Y ,X ]Lie Z)

+ λ2 dxi (R(∇i Z , X)Y + ∇[∇i Z ,X ]LieY + ∇∇i ∇X Y Z)

= λ2 Xa�s
ai dxi (∇∇s Z Y + ∇∇s Y Z

) + λ2 dxi (∇∇∇i Z Y X + ∇∇∇i Y Z X
)
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+ λ2 dxi (∇[∇i ,∇X ]Z Y + R(∇i Y , X)Z + ∇∇∇i Y X Z)

+ λ2 dxi (R(∇i Z , X)Y + ∇∇∇i Z X Y + ∇[∇i ,∇X ]Y Z) . (4.5)

Now using [ ∂
∂xi , X ]Lie = ∇i X − Xa�s

ia
∂

∂xs , this is

= λ2 dxi (∇∇∇i Z Y X + ∇∇∇i Y Z X
)

+ λ2 dxi (∇R( ∂

∂xi ,X)Z Y + ∇∇∇i X Z Y + R(∇i Y , X)Z + ∇∇∇i Y X Z)

+ λ2 dxi (R(∇i Z , X)Y + ∇∇∇i Z X Y + ∇∇∇i X Y Z + ∇R( ∂

∂xi ,X)Y Z) , (4.6)

so we get the total dxi contribution to the Jacobi operator as

= λ2 dxi (∇R( ∂

∂xi ,X)Z Y + R(∇i Y , X)Z + R(∇i Z , X)Y + ∇R( ∂

∂xi ,X)Y Z)

− λ2 dxi (∇R( ∂

∂xi ,Y )Z X + R(∇i X , Y )Z + R(∇i Z , Y )X + ∇R( ∂

∂xi ,Y )X Z) . (4.7)

Now we write to order λ2 the terms not containing dxi and not containing V in the
second line of (4.3), using (4.4), as

λ2m−1 θ ′ gi j ∇ j X
(∇∇i Z Y + ∇∇i Y Z

) − λ(2m)−1θ ′[X , gi j (∇i Z ∇ j Y + ∇i Y ∇ j Z
)]

+ λm−1θ ′ [X , gi j Y b Zc Recbi gae(∂ j ∂a)]
+ λ2(2m)−1gi j θ ′(∇i ∇X Z ∇ j Y + ∇i Y ∇ j ∇X Z

) − λ2m−1gi j θ ′ Y b (∇X Z)c Recbi gae∂ j ∂a

+ λ2(2m)−1gi j θ ′(∇i Z ∇ j ∇X Y + ∇i ∇X Y ∇ j Z
) − λ2m−1gi j θ ′ (∇X Y )b Zc Recbi gae∂ j ∂a

= λ2m−1 θ ′ gi j ∇ j X
(∇∇i Z Y + ∇∇i Y Z

) − λ(2m)−1θ ′[X , gi j ] (∇i Z ∇ j Y + ∇i Y ∇ j Z
)

− λ2(2m)−1θ ′gi j ([X ,∇i Z ]Lie ∇ j Y + [X ,∇i Y ]Lie ∇ j Z

+ ∇i Z [X ,∇ j Y ]Lie + ∇i Y [X ,∇ j Z ]Lie
)

+ λm−1θ ′ [X , gi j Y b Zc Recbi gae] ∂ j ∂a + λm−1θ ′ gi j Y b Zc Recbi gae[X , ∂ j ∂a]
+ λ2(2m)−1gi j θ ′(∇i ∇X Z ∇ j Y + ∇i Y ∇ j ∇X Z

) − λ2m−1gi j θ ′ Y b (∇X Z)c Recbi gae∂ j ∂a

+ λ2(2m)−1gi j θ ′(∇i Z ∇ j ∇X Y + ∇i ∇X Y ∇ j Z
) − λ2m−1gi j θ ′ (∇X Y )b Zc Recbi gae∂ j ∂a

= λ2m−1 θ ′ gi j ∇ j X
(∇∇i Z Y + ∇∇i Y Z

) − λm−1θ ′[X , gi j ] ∇i Z ∇ j Y

− λ2m−1θ ′gi j ([X ,∇i Z ]Lie ∇ j Y + [X ,∇i Y ]Lie ∇ j Z
)

+ λm−1θ ′ [X , gi j Y b Zc Recbi gae] ∂ j ∂a + λm−1θ ′ gi j Y b Zc Recbi gae[X , ∂ j ∂a]
+ λ2m−1gi j θ ′∇i ∇X Z ∇ j Y − λ2m−1gi j θ ′ Y b (∇X Z)c Recbi gae∂ j ∂a

+ λ2m−1gi j θ ′∇i Z ∇ j ∇X Y − λ2m−1gi j θ ′ (∇X Y )b Zc Recbi gae∂ j ∂a

= λ2m−1 θ ′ gi j ∇ j X
(∇∇i Z Y + ∇∇i Y Z

) − λm−1θ ′[X , gi j ] ∇i Z ∇ j Y

+ λ2m−1θ ′gi j (∇∇i Z X ∇ j Y + ∇∇i Y X ∇ j Z
)

+ λ2m−1θ ′ Xq gi j Y b Zc Recbi;q gae ∂ j ∂a − λ2m−1θ ′ Xq � j
kq gik Y b Zc Recbi gae ∂ j ∂a

− λ2m−1θ ′ Xq �a
kq gi j Y b Zc Recbi gke ∂ j ∂a + λm−1θ ′ gi j Y b Zc Recbi gae[X , ∂ j ∂a]

+ λ2m−1gi j θ ′[∇i ,∇X ]Z ∇ j Y + λ2m−1gi j θ ′∇i Z [∇ j ,∇X ]Y
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= λ2m−1 θ ′ gi j ∇ j X
(∇∇i Z Y + ∇∇i Y Z

) + λ2m−1θ ′ Xq (gkj �i
qk + gik � j

qk) ∇i Z ∇ j Y

+ λ2m−1θ ′gi j (∇∇i Z X ∇ j Y + ∇∇i Y X ∇ j Z
)

+ λ2m−1θ ′ Xq gi j Y b Zc Recbi;q gae ∂ j ∂a − λ2m−1θ ′ gi j Y b Zc Recbi gae(∇ j X ∂a + ∇a X ∂ j )

+ λ2m−1gi j θ ′(R(∂i , X)Z ∇ j Y + ∇[∂i ,X ]Lie Z ∇ j Y + ∇i Z R(∂ j , X)Y + ∇i Z ∇[∂ j ,X ]LieY
)

= λ2m−1 θ ′ gi j (∇∇i Z Y ∇ j X + ∇∇i Y Z ∇ j X

+ ∇∇i Z X ∇ j Y + ∇∇i Y X ∇ j Z + ∇∇ j X Y ∇i Z + ∇∇i X Z ∇ j Y
)

+ λ2m−1θ ′ Xq gi j Y b Zc Recbi;q gae ∂ j ∂a

− λ2m−1θ ′ gi j Y b Zc Recbi gae(∇ j X ∂a + ∇a X ∂ j )

+ λ2m−1gi j θ ′(R(∂i , X)Z ∇ j Y + ∇i Z R(∂ j , X)Y
)

= λ2m−1 θ ′ gi j (∇∇i Z Y ∇ j X + ∇∇i Y Z ∇ j X

+ ∇∇i Z X ∇ j Y + ∇∇i Y X ∇ j Z + ∇∇ j X Y ∇i Z + ∇∇i X Z ∇ j Y
)

+ λ2m−1θ ′ Xq gi j Y b Zc Recbi;q gae ∂ j ∂a

+ λ2m−1gi j θ ′(R(∂i , X)Z ∇ j Y + R(∂ j , X)Y ∇i Z + R(∂i , Y )Z ∇ j X + R(∂i , Z)Y ∇ j X
)

.

So the total θ ′ contribution to the Jacobi operator from terms not containing V is

λ2m−1θ ′ Xq gi j Y b Zc(Recbi;q − Recqi;b) gae ∂ j ∂a

+ λ2m−1gi j θ ′(R(∂ j , X)Y ∇i Z + R(∂i , Z)Y ∇ j X − R(∂ j , Y )X ∇i Z − R(∂i , Z)X ∇ j Y
)

.

The terms containing V are easily computed separately. Then

J (X , Y , dZ) = λ2 d(R(X , Y )Z) + λ2 θ ′ Xq Y b Za Rk
aqb V,k

+ λ2 dxi (∇R( ∂

∂xi ,X)Z Y + R(∇i Y , X)Z + R(∇i Z , X)Y + ∇R( ∂

∂xi ,X)Y Z)

− λ2 dxi (∇R( ∂

∂xi ,Y )Z X + R(∇i X , Y )Z + R(∇i Z , Y )X + ∇R( ∂

∂xi ,Y )X Z)

+ λ2m−1θ ′ Xq gi j Y b Zc(Recbi;q − Recqi;b) gae ∂ j ∂a

+ λ2m−1gi j θ ′(R(∂ j , X)Y ∇i Z + R(∂i , Z)Y ∇ j X − R(∂ j , Y )X ∇i Z − R(∂i , Z)X ∇ j Y
)

= λ2 d(R(X , Y )Z) + λ2 θ ′ Xq Y b Za Rk
aqb V,k + λ2m−1θ ′ Xq gi j Y b Zc Recbq;i gae ∂ j ∂a

+ λ2 dxi (Ra
riq Xq Y b;a Zr ∂b + Ra

r pi Xb;aY p Zr ∂b + Rb
r pq Xq ;i Y p Zr ∂b

+ Rb
r pq Xq Y p;i Zr ∂b + Rb

r pq Y p Xq Zr ;i ∂b + Ra
ipq Xq Y p Zb;a ∂b)

+ λ2m−1gi j θ ′(Rb
jpq Xq Y p ∂b ∇i Z + Rb

pir Zr Y p ∂b ∇ j X − Rb
qir Zr Xq ∂b ∇ j Y

)

= λ2 d(R(X , Y )Z) + λ2 θ ′ Xq Y b Za Rk
aqb V,k + λ2m−1θ ′ gi j Xq Y p Zr Ra

r pq;i ∂ j ∂a

+ λ2 dxi (Ra
riq Xq Y b;a Zr ∂b + Ra

r pi Xb;aY p Zr ∂b + ∇i (Rb
r pq Xq Y p Zr ∂b)

− Rb
r pq;i Xq Y p Zr ∂b + Ra

ipq Xq Y p Zb;a ∂b)

+ λ2m−1gi j θ ′(Rb
jpq Xq Y p ∂b ∇i Z + Rb

pir Zr Y p ∂b ∇ j X − Rb
qir Zr Xq ∂b ∇ j Y

)

= λ2 d(R(X , Y )Z) − λ2 dxi ∇i (R(X , Y )Z) + λ2 θ ′ (R(X , Y )Z)k V,k

+ λ2 Rb
rqp;i Xq Y p Zr ∂b (dxi − m−1θ ′ gi j ∂ j )

+ λ2 dxi Ra
riq Xq Zr ∇aY − λ2m−1gi j θ ′ Rb

qir Zr Xq ∂b ∇ j Y

123



Generally covariant quantum mechanics Page 37 of 65     9 

+ λ2 dxi Ra
r pi Y p Zr ∇a X + λ2m−1gi j θ ′ Rb

pir Zr Y p ∂b ∇ j X

+ λ2 dxi Ra
ipq Xq Y p ∇a Z + λ2m−1gi j θ ′ Rb

jpq Xq Y p ∂b ∇i Z ,

which gives the result stated. 
�
Corollary 4.4 The images of all the Jacobiators above are in the kernel of ρ, in fact in
the space spanned by elements of the form (3.4) and the expressions in Proposition 3.5.

Proof This is by inspection of most of the terms except for the last case where, if
we write U = R(X , Y )Z then the −λ2dxi terms in the first line can be replaced
by −(dxi − m−1θ ′∂ j )∇iU − m−1θ ′∂ jU a ;i∂a and the second term here combines
with the other terms on the right to give an expression in the kernel of the form in
Proposition 3.5 applied to U . 
�

5 Operator geodesic equations from associativity

Wehave constructed the calculus in the previous sectionsmotivated by the Schrödinger
representation and a chosen Hamiltonian. This calculus as we have seen has a Jacobi-
ator (it is not associative) even between 0-forms and 1-forms i.e. �1

D(M)
is not quite

a bimodule over D(M) if there is sufficiently nontrivial curvature. We can, however,
impose relations that kill the non-associativity if we want. Indeed, the Schrödinger
representation maps to an associative operator algebra and hence all the Jacobiators
must have their image in its kernel, hence it is natural to kill this kernel. We keep the
option of a potential V in the choice of h, although in our spacetime application, we
will set this V = 0.

Corollary 5.1 The quotient of �1
D(M)

by elements of the form (3.4) and the expres-
sions in Proposition 3.5 (including with potential V ) in the kernel of the Schrödinger
representation is a first order differential calculus to order λ2.

Proof As explained in Sect. 3.8, it is enough to work in local coordinates where we
can take dxμ, dpν, θ

′ as a left basis over the algebra. After quotienting, we therefore
obtain θ ′ as basis over the algebra and this was taken as central and associative with
respect to products by D(M), so we have a bimodule to the stated order. Moreover,
writing da = D(a)θ ′ for a ∈ D(M), it is also part of the construction in Sect. 3 that
this D is a derivation to the stated order (we will shortly interpret it as d

ds ), but we
check this explicitly. From (3.4) and Prop 3.5, respectively,

m D( f ) = gi j f, j ∂i + λ

2m
gi j f,i; j

m D(X) = gi j Xa ;i (∂a∂ j − λ�k
a j ∂k) + λ

2
(�X + Xa gi j R ja ∂i ) − m X(V ).

Hence, for functions f , h,

m D( f )h + m f D(h) = gi j ( f, j (∂i )h + λ

2
f,i; j h + f h, j ∂i + λ

2
f h,i; j

)

= gi j (( f h), j∂i + λ f, j h,i + λ

2
f,i; j h + λ

2
f h,i; j

) = m D( f h).
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Next, we already used in Proposition 3.3 that d( f X) = d f .X + f dX in obtaining the
relations, but proceeding directly,

m D( f X) − m f D(X) = gi j f,i Xa (∂a∂ j − λ�k
a j ∂k) + λ

2
(2 gi j f,i Xa ; j ∂a + gi j f,i; j X)

= gi j f,i X ∂ j − gi j f,i Xa λ�k
a j ∂k + λ

2
(2 gi j f,i Xa ; j ∂a + gi j f,i; j X),

so

m (D( f X) − f D(X) − D( f ) X) = gi j f,i [X , ∂ j ] − gi j f,i Xa λ�k
a j ∂k + λ gi j f,i Xa ; j ∂a

which gives zero by the commutation relations between vector fields. X f is defined
by f X and the commutator [ f , X ] and that this is compatible with d a derivation is
Proposition 3.2. Finally, for products of vector fields, we extend D as a derivation on
the tensor product of vector fields tensor over the field (which is automatic) and show
that this is well defined once we introduce the relations on the algebra. One relation
is (X . f )Y = X( f Y ) for functions f , which we have dealt with. The other nontrivial
relation is XY −Y X = [X , Y ]where [X , Y ] is a single vector field. In Proposition 3.3,
we obtained the relations there from d applied to the commutator of vector fields and
one can check explicitly that this can be pushed the other way to D well-defined by
the derivation rule. 
�

Next, moving towards applications, it will be convenient to say what D looks like
on local coordinate vector fields ∂i . For this, we need the following lemma.

Lemma 5.2 The Laplace–Beltrami operator on coordinate basis vector fields is

�∂i = (−g jk Rki + gab � j
ab,i )∂ j .

Proof The general formula for the Laplacian on a vector field reduces to �(∂i ) =
(gab(� j

ia,b + � j
cb�

c
ia) − � j

ic�
c)∂ j , which we then identify in terms of the Ricci

tensor as stated. 
�
Finally, we write θ ′ = ds, where s will have the interpretation as a ‘geodesic time’

variable but for the moment this is just some central 1-form. Dividing through by this
and using the preceding lemma, the quotient relations as in Corollary 5.1 become

m
dxi

ds
= gi j∂ j − λ

2 �i , (5.1)

m
d∂i

ds
= � j

iagab(∂ j∂b − λ�k
jb∂k) + λ

2
gab � j

ab,i ∂ j − mV,i (5.2)

to order λ2, where �i = �i
abgab and d

ds denotes the coefficient of ds on applying d,
i.e. what we called D in the proof of the corollary. We view these quotient relations as
a first order formalism for noncommutative geodesic equations due to the following:
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Proposition 5.3 Eliminating ∂i in terms of dxi

ds , we obtain to order λ

d2xi

ds2
+ �i

jk
dx j

ds

dxk

ds
+ gi j

m
V, j = λ

2m
Ci

j
dx j

ds
,

Ci j = −gab(gic� j
ca,b + g jc�i

ca,b) + gib� j ;b − g jb�i ;b + �abi� j
ab − �abj�i

ab,

where we use the notation �i ; j := �i
, j + �i

k j�
k .

Proof We use T for the operation that extracts the coefficient of θ ′, so

mT (̂d f ) = gbc f,c ∂b + λ

2
gbc f,b;c,

mT (d∂i ) = gbc �a
bi (∂a∂c − λ�k

ac ∂k) + λ

2
gab � j

ab,i∂ j − m V,i (5.3)

for any function f on M , using Lemma 5.2. Then applying d to (5.1),

m2 d
2xi

ds2
= m T (dgi j ) ∂ j + m gi j T (d∂ j ) − λ

2 m T (d�i )

= (

gab gi j
,b ∂a + λ

2
gab gi j

,a,b − λ

2
�k gi j

,k
)

∂ j

+ gi j (

�c
jagab(∂c∂b − λ�d

cb∂d) + λ

2
gab �c

ab, j ∂c − m

2
V, j

)

− λ
2

(

gab �i
,b ∂a + λ

2
gab �i

,a,b − λ

2
� j �i

, j

)

to which we add

m2�i
ab

dxa

ds

dxb

ds
= �i

ab

(

gaj∂ j − λ
2 �a

) (

gbc∂c − λ
2 �b

)

.

The quadratic in ∂’s is order zero and this vanishes after matching indices and using an
identity of the form gi j

,k = −�i
pk g pj −� j

pk g pi . In doing so, we pick up a derivative
of g from moving a ∂ j to the right. The resulting order λ terms are ∂ j times

Ci j = gab gi j
,a,b − �k gi j

,k + gik ( − 2�c
kagab � j

bc + gab � j
ab,k

) − g jb �i
,b

+ �i
ab

(

2 gak gbj
,k − gaj �b − �agbj )

= gab gi j
,a,b − �b gi j

,b − g jb �i
,b + gik( − 2�c

kagab � j
bc + gab � j

ab,k
)

+ �i
ab

(

2 gak gbj
,k − 2gaj �b)

= −gab (� j
pag pi + �i

pag pj ),b + �a (� j
pag pi + �i

pag pj ) − g jb �i
,b

+ gik ( − 2�c
kagab � j

bc + gab � j
ab,k

)

+ �i
ab

( − 2 gak(�b
pk g pj + � j

pk g pb) − 2gaj �b),
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where at the end, we expanded out three derivatives of the metric tensor in terms
of Christoffel symbols using the identity above. Similarly expanding the remaining
derivative and making a lot of cancellations gives the result stated after replacing ∂ j

by m dx j

ds and a lowered index. 
�
The matrix Ci j with indices raised has the first term symmetric and the remaining

terms antisymmetric. It is not a tensor and indeed we do not want it to transform as
one due to the noncommutative nature of the coordinates and calculus onD(M). Also
note that since our results are valid to order λ2, one can also similarly determine the
order λ2 correction. Next, the Hamiltonian h ∈ D(M) is necessarily constant under
these equations.

Corollary 5.4 Let

h = 1

2m
gi j (∂i∂ j − λ�k

i j ∂k) + V ∈ D(M).

Then dh = 0 in the quotient bimodule, i.e. dh
ds = 0 at least to order λ.

Proof This follows in principle from the way d was defined via the Schrödinger rep-
resentation and [ρ(h), ], if we assume that (5.1)–(5.2) generate the whole kernel so
that ρ becomes injective on the quotient. Here we just check it directly. We have

2m dh = gi j (d∂i ∂ j + ∂i d∂ j − λd�t
i j ∂t − λ�t

i j d∂t )

+ d(gi j ) (∂i∂ j − λ�t
i j ∂t ) + 2m dV .

Using (5.3), we have

4m2 T (dh) = gi j (

2 gbc �a
bi (∂a∂c − λ�k

ac ∂k) + λgab�k
ab,i∂k − 2m V,i

)

∂ j

+ gi j ∂ j
(

2 gbc �a
bi (∂a∂c − λ�k

ac ∂k) + λgab�k
ab,i∂k − 2m V,i

)

− λgi j (

2gbc (�t
i j ),c ∂b + λ gbc (�t

i j ),b;c
)

∂t

− λgkj �i
k j

(

2 gbc �a
bi (∂a∂c − λ�k

ac ∂k) + λgab�k
ab,i∂k − 2m V,i

)

+ (

2gbc (gi j ),c ∂b + λ gbc (gi j ),b;c
)

(∂i∂ j − λ�t
i j ∂t )

+ 2m
(

2gbc V,c ∂b + λ gbc V,b;c
)

,

where we do not apply the covariant derivative to the indices of gi j and �t
i j in the

brackets. The potential terms cancel and the three terms without λ in this expression
total

gi j 2 gbc �a
bi ∂a∂c∂ j + gi j ∂ j 2 gbc �a

bi ∂a∂c + 2gbc gi j
,c ∂b ∂i∂ j

= gi j [∂ j , 2 gbc �a
bi ] ∂a∂c + 2gi j (

gbc �a
bi ∂a∂c + gba �c

bi ∂a∂c + gac
,i ∂a∂c

)

∂ j

and as the bracket vanishes, and moving all coordinate vectors to the right, we get
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4m2 T (dh) = λ(gi j (

2 gbc �a
bi (−�k

ac ∂k) + gab�k
ab,i∂k

)

∂ j

+ gi j ∂ j
(

2 gbc �a
bi (−�k

ac ∂k) + gab�k
ab,i∂k

)

− gi j (

2gbc (�k
i j ),c ∂b + λ gbc (�k

i j ),b;c
)

∂k

− gkj �i
k j

(

2 gbc �a
bi (∂a∂c − λ�k

ac ∂k) + λgab�k
ab,i∂k

)

+ gbc((gi j ),b,c − gi j
,a�a

bc
)

(∂i∂ j − λ�k
i j ∂k) − 2gbc (gi j ),c �k

i j ∂b∂k

+ 2 gi j gbc
, j �a

bi ∂a∂c + 2 gi j gbc �a
bi, j ∂a∂c − λ2gbc (gi j ),c (�k

i j,b)∂k .

Expanding the (gi j ),b part of (gi j ),b,c derivative generates derivatives of �’s and one
can then check that all order λ derivative of � terms cancel. At order λwe then expand
all remaining derivatives of the metric, which generates �2 terms and find that these
also all cancel. 
�

The above results are all that we need for the applications that follow. However,
our motivation came out of quantum geodesics and it remains to fill in some of this
noncommutative geometry. Here we limit ourselves to finding the geodesic velocity
vector field X : �1

D(M)
→ D(M) as a bimodule map to order λ.

Proposition 5.5 There is a geodesic velocity field X underlying the model given by

X(d f ) = 1

m

(

gi j f,i∂ j + λ

2
� f ),

X(dY ) = 1

m

(

gi j Y a ;i (∂a∂ j − λ�b
aj∂b) + λ

2

(

�Y + Y a gi j R ja ∂i

)

) − Y (V )

at least to order λ. We also set X(θ ′) = 1 so that X vanishes on the kernel of ρ.

Proof This followsnaturally from thewaywehave constructed the differential calculus
if we assume that ρ is injective on the quotient, but we still have to identify it even in
this case. We use h as above and in view of (2.8), we take

X(da) = λ−1[h, a] .

For f ∈ C∞(M), we see easily that m X(d f ) = gi j f,i ∂ j + λ
2 gi j f, j;i as stated. The

more difficult calculation is for the vector field Y ,

2λm X(dY ) = [gi j , Y ] (∂i∂ j − λ �k
i j∂k) + 2m [V , Y ] − λ gi j [�k

i j , Y ]∂k

+ gi j ([∂i , Y ]∂ j + ∂i [∂ j , Y ] − λ �k
i j [∂k, Y ])

= −λ Y p gi j
,p (∂i∂ j − λ �k

i j∂k) − 2λm Y p V,p + λ2 gi j Y p �k
i j,p ∂k

+ λ gi j (

(∇i Y − Y p �q
pi ∂q)∂ j + ∂i (∇ j Y − Y p �q

pj ∂q)

− λ �k
i j (∇kY − Y p �q

pk ∂q)
)

so
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2m X(dY ) = Y p gin � j
np (∂i ∂ j − λ �k

i j ∂k) − 2m Y p V,p + λ gi j Y p �k
i j,p ∂k

+ gi j (

(∇i Y )∂ j + ∂i (∇ j Y − Y p �q
pj ∂q ) − λ �k

i j (∇kY − Y p �q
pk ∂q )

)

− λ Y p g ji �m
ip�k

mj ∂k

= Y p gin � j
np (∂i ∂ j − λ �k

i j ∂k) − 2m Y p V,p

+ gi j (∇i Y ∂ j + ∂i ∇ j Y − λ �k
i j ∇kY

)

− λ gi j Y p
,i �q

pj ∂q − λ gi j Y p �q
pj,i ∂q − gi j Y p �q

pj ∂i ∂q

+ λ Y p gi j (�k
i j �

q
pk − �m

ip�q
mj + �q

i j,p) ∂q

= −2m Y p V,p + gi j (

2∇i Y ∂ j + [∂i , ∇ j Y ] − λ �k
i j ∇kY

) − λ gi j Y p
,i �q

pj ∂q

+ λ Y p gi j (�k
i j �

q
pk − �m

ip�q
mj + �q

i j,p − �m
jp �q

im − �q
pj,i ) ∂q

= −2m Y p V,p + gi j (

2∇i Y ∂ j + λ ∇i ∇ j Y − λ Y p; j �q
ip ∂q − λ �k

i j ∇kY
)

− λ gi j Y p;i �q
pj ∂q + λ Y p gi j (�k

i j �
q

pk + �q
i j,p − �m

jp �q
im − �q

pj,i ) ∂q

= −2m Y p V,p + 2gi j ∇i Y ∂ j + λ �Y − 2λ gi j Y p;i �q
pj ∂q + λ Y p gi j Rq

jpi ∂q

= −2m Y p V,p + 2gi j ∇i Y ∂ j + λ �Y − 2λ gi j Y p;i �q
pj ∂q + λ Y p gqn Rnp ∂q

which we write as stated. We can compare the result with (3.4) and the formula
in Proposition 3.5 to conclude that X vanishes on these kernel elements if we set
X(θ ′) = 1. The difference is that we are now using the commutator in D(M) not its
image under ρ as we did in Sect. 3. 
�

In principle, we also need a right bimodule connection∇ on�1
D(M)

at least to order
λ, with respect to whichX obeys the geodesic velocity equations. This can in principle
be found by similar methods [7] but will be looked at elsewhere.

Finally, while Proposition 5.3 justifies our interpretation θ ′ = ds for proper time in a
‘generalisedHeisenberg picture’ for the evolution of algebra elements, this necessarily
has a corresponding ‘Schrödinger picture’ with evolution of pure states according to

− λ
∂ψ

∂s
= ρ(h)ψ (5.4)

for suitableψ . This is exactly the quantumgeodesic amplitude flowequation∇Eψ = 0
from (2.6) if we identify ds with the geodesic time parameter interval there. This
justifies our interpretation of the theory. Even though wave functions ψ on M in the
case where M is spacetime are not something usually considered, we see that this
arises naturally from quantum geodesics and our above results.

6 Basic examples

Here we compute the geometric content of our formulae in various special cases as
a check of consistency. The one for the Schwarzschild black hole will be used in
applications in Sect. 7.
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6.1 The flat case

When M is flat in the sense that the Levi-Civita connection has zero curvature, the
algebra of differential operators looks locally like theflat spacetimeHeisenberg algebra
but the difference is that our constructions are geometric and coordinate-invariant,
which is still of interest. The general results above for �1

D(M)
to order λ2 can be

written in the flat case as

[̂ξ, f ] = m−1λ ξ#( f )θ ′

[X ,̂ξ ] = λ (∇̂Xξ) − (2m)−1λ θ ′ (2∇ξ# X + λXa ;i ξ#i
;a

)

[dX , f ] = λ ̂(〈∇i X , d f 〉dxi ) + (2m)−1λ θ ′ (2∇d f # X + λ Xa ;i d f #i
;a

)

[Y , dX ] = λ d(∇Y X) − λθ ′ 〈∇Y (dV ), X〉 − λ̂dxi
(∇∇i X Y + ∇∇i Y X

)

+ (2m)−1λθ ′ gi j (

λ∇ j (∇∇i X Y ) − ∇i X ∇ j Y + λ�k
a j (∇i X)a∇kY + X ↔ Y

)

where ξ# is ξ converted to a vector field via the metric.We have seen that all the Jacobi
identities associated with being a bimodule then hold to this order. This reduces to
[7] when we identify the image of ∂i in D(M) as pi and λ = −i� and choose special
flat space coordinates where � = 0 so that ∇i (∂ j ) = 0. Also note that in the flat
case,Vect(M) is a pre-Lie algebra with X ◦ Y = ∇X Y so that

X ◦ Y − Y ◦ X = [X , Y ]Vect(M), X ◦ (Y ◦ Z) − Y ◦ (X ◦ Z) = (X ◦ Y − Y ◦ X) ◦ Z

and in this case U (Vect(M)) ⊂ D(M) has a calculus with [Y , dX ] = λ d(∇Y X) as a
general construction for pre-Lie algebras. Our construction has a bigger algebra but
we see this as part of the relevant commutator.

Finally, we have a Schrödinger representation of �1
D(M)

given by

ρ( f )ψ = f ψ, ρ(X)ψ = λX(ψ), ρ(ξ̂ )ψ = λ

2m
(( , )∇ξ)ψ + 2ξ#(ψ)

ρ(dX)ψ = −X(V )ψ + λ2

2m
(�(X)(ψ) + 2gi j 〈∇i X ,∇ jdψ〉), ρ(θ ′)ψ = ψ

which, in the absence of an associativity obstruction, can be expected to extend to an
entire exterior algebra �D(M).

6.2 The compact Lie group case

This has the merit, as for the compact real form of any complex semisimple Lie group
G, of a trivial tangent bundle allowing calculations to be written at a Lie algebra level.
HereD(G) = C∞(G)�U (g)where the Lie algebra g ofG acts by left-invariant vector
fields. This is because, on a Lie group, one has a global basis of left-invariant vector
fields which by themselves generate U (g). Any polynomial of functions and vector
fields can be considered equivalently as a polynomial in functions and the basis of
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left-invariant vector fields by moving all coefficients to the left using the commutation
relations.

We start with the algebra generated by the functions and its centrally extended
differential calculus. This has generators ea for the anti-Hermitian basis of 1-forms
over the algebra with dual basis ∂a of left-invariant vector fields. The real structure
constants are defined by the Lie bracket [∂a, ∂b]g = cab

c∂c and theKilling form,which
in the compact case is negative definite in this basis. We take the metric gab = (ea, eb)

as given by this up to a normalisation. We also have ea# = (ea, ) = gab∂b to convert
a 1-form to a vector field. Ad-invariance of the metric and its (more usual) inverse are,
respectively,

cab
d gcb + cab

cgbd = 0, cab
d gdc + cac

d gbd = 0.

The calculus has form-function relations

[ea, f ] = m−1λg(ea, d f )θ ′ = m−1λgab(∂b f )θ ′, d f = (∂a f )ea+(2m)−1λ(� f )θ ′,

where � = gab∂a∂b is the Laplacian in our conventions. The products of 1-forms and
functions here are in the quantised �1, i.e. one could use • and put a hat on the ea).
The quantum version of a classical 1-form f ea , writing • explicitly, is then

f̂ ea = f • ea + (2m)−1λ(d f , ea)θ ′ = f • ea + (2m)−1λ(∂b f )gbaθ ′.

Next, on a Lie group, the Levi-Civita connection has generalised Christoffel sym-
bols for the basis and curvature given by

∇∂a ∂b = 1

2
[∂a, ∂b]g = 1

2
cab

c∂c, ∇∂a eb = −1

2
cac

bec, �c
ba = 1

2
cab

c

R(∂a, ∂b)∂c = 1

4
[[∂a, ∂b]g, ∂c]g = 1

4
cab

ecec
d∂d

and the latter in index conventions translates to

Rd
cab = 1

4
cab

ecec
d , Rcb = 1

4
cab

dcdc
a = 1

4
Kcb,

where Kab is the Killing form. For the canonical Riemannian geometry on G, gab will
be proportional to this and we identify this constant as

gab = dim g

4Rsc
Kab (6.1)

where Rsc is the Ricci scalar curvature.
Next, for D(G), we add ∂a into the algebra with relations

[∂a, ∂b] = λcab
c∂c, [∂a, f ] = λ∂a f
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and according to our general results, we take commutation relations in�1(D(G))with

[∂a, eb] = λ∇∂a eb − m−1λθ ′∇eb#∂a − (2m)−1λ2θ ′(R(∂a, eb#) + Tr((∇∂a)(∇eb#))
)

= −λ

2
cac

bec − (2m)−1λθ ′gbccca
d∂d

− (2m)−1λ2θ ′(Racgcb − 1

4
Tr(cca

d ec ⊗ ∂d ⊗ gbec f e
pe f ⊗ ∂p)

)

= −λ

2
cac

bec − (2m)−1λθ ′gbccca
d∂d − (2m)−1 λ2

4
θ ′(c f c

d cda
f gcb − cca

d gbecde
c)

= −λ

2
cac

bec − (2m)−1λθ ′gbccca
d∂d = λ

2
cca

b(ec + m−1θ ′ec#),

where at the end we used that the Ricci tensor is proportional to the Killing form and
hence to the inverse metric gab. By similar calculations, we have

[d∂a, f ] = λ ̂(id ⊗ 〈d f , 〉)∇∂a + m−1λ θ ′ ∇d f #∂a

+ (2m)−1λ2 θ ′(R(∂a, d f #) + Tr((∇∂a)(∇d f #))
)

= λ

2
cba

c∂c f eb + (2m)−1 λ2

2
cba

cgdb∂d∂c f θ ′ + m−1λθ ′∂b f ∇deb#∂a

+ (2m)−1λ2θ ′∂b f
(

R(∂a, eb#) + Tr((∇∂a)(∇eb#))
)

+ (2m)−1λ2θ ′Tr((∇∂a)(d∂c f ⊗ ec#))

= λ

2
cba

c∂c f eb + (2m)−1λθ ′∂b f gbccca
d∂d

+ (2m)−1 λ2

2
θ ′(cba

cgdb∂d∂c f + cba
d gcb∂d∂c f

)

= ∂b f
( − λ

2
cac

bec + (2m)−1λθ ′gbccca
d∂d) = λ

2
∂b f cca

bẽc

where
ξ̃ = ξ − m−1θ ′ξ#.

For the 3rd equality, we recognised the previous vanishing Ricci + Tr expression but
have an extra term due to ∇d f # not being tensorial in the coefficients of d f . The 4th
equality uses ad-invariance of the metric. One can check that this is consistent with d
applied to the relations [∂a, f ] = λ∂a f when expanded by the Leibniz rule and with
expressions of the form [∂a, f eb] = [∂a, f ]eb + f [∂a, eb] again expanded as usual.
Finally

[∂a, d∂b] = λ

2
cab

cd∂c + λP(1)(∂a, ∂b) + λP(2)(∂a, ∂b),

where we break P(X , Y ) into terms without and with curvature in the general expres-
sion. Here
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P(1)(∂a, ∂b) = −θ ′〈∇∂bdV , ∂a〉 − (ec∇∇∂c∂a ∂b + (2m)−1λθ ′gcd∇∂d ∇∇∂c ∂a ∂b + a ↔ b)

− (2m)−1θ ′gcd(

(∇∂c∂a)(∇∂d ∂b) − λ�e
sd (∇∂c∂a)s∇∂e∂b + a ↔ b

)

= −θ ′(∂b(∂a V ) − 1

2
cba

c∂cV ) − 1

4
ec(cca

d cdb
e + ccb

d cda
e)∂e

− m−1λ

16
θ ′gcd cde

f (cca
scsb

e + ccb
scsa

e)∂ f

− m−1

8
θ ′gcd ((cca

scdb
t + ccb

scda
t )∂s∂t − λ

2
cds

e(cca
sceb

f + ccb
scea

f )∂ f )

= −θ ′(∂b(∂a V ) − 1

2
cba

c∂cV ) − 1

4
ec(cca

d cdb
e + ccb

d cda
e)∂e

− m−1

8
θ ′gcd ccb

scda
t (∂s∂t + ∂t∂s),

where for the last equality we used the Jacobi identity and antisymmetry of the Lie
bracket to cancel all the λ/8 terms. We also have

P(2)(∂a, ∂b) = m−1θ ′gcd Re
abc(∂d∂e − λ� f

ed∂ f )

+ λ

2

(

∇∂c (R)(∂a, ∂b) + 〈R(∂c,∇∂d ∂a)∂b, ed 〉 + 〈R(∂c,∇∂d ∂b)∂a, ed 〉
)

ẽc

+ λ(2m)−1θ ′(∇∂a (R)(∂b, ∂c) + ∇∂b (R)(∂a, ∂c) − ∇∂c (R)(∂a, ∂b)

− 〈R(∂c, ∂a)∇∂d ∂b + R(∂c, ∂b)∇∂d ∂a, ed 〉
)

ec#

− λ(2m)−1θ ′gcd(

R(∂b, ∂c) ∇∂d ∂a + R(∂a, ∂c) ∇∂d ∂b)

= m−1θ ′gcd Re
abc(∂d∂e − λ

2
cde

f ∂ f ) + λ

4
(Rd

bcecda
e + Rd

acecdb
e)ẽc

− λ

4
m−1θ ′(Rd

ecacdb
e + Rd

ecbcda
e)ec# − λ

4
m−1θ ′gcd (Rbccda

e + Raccdb
e)∂e

= m−1

4
θ ′gcd ccb

scda
t (∂s∂t − λ

2
cst

f ∂ f ) + λ

16

(

cce
f c f b

d cda
e + cce

f c f a
d cdb

e)ẽc,

where for the second equality we used

∇∂c (R)(∂a, ∂b) = ∂c R(∂a, ∂b) − R(∇∂c∂a, ∂b) − R(∂a,∇∂c∂b) = 0

since the Ricci tensor is a multiple of the metric and hence covariantly constant. We
then used that

cca
f c f e

dcdb
e + ccb

f c f e
dcda

e = K (∂b, [∂a, ∂c]) + K (∂a, [∂b, ∂c]) = 0

by invariance and symmetry of the Killing form, so that there is no ec# terms. We also
use that Rab is a multiple of the metric, so that there is no ∂e term. Finally, we put in
the formula for Re

abc and used ad-invariance of the metric to cast the first term in a
certain form. This is arranged so that when we add P(1) and P(2), the last term of the
former and the first term of the latter exactly cancel giving the final result
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P(∂a, ∂b) = −θ ′(∂b(∂a V ) − 1

2
cba

c∂cV ) − 1

4
ec(cca

dcdb
e + ccb

dcda
e)∂e

+ λ

16

(

cce
f c f b

dcda
e + cce

f c f a
dcdb

e)ẽc.

The coefficient of ẽc here is a canonical totally symmetric trilinear-form on the Lie
algebra.

Next, we can compute Jacobiators in our case. Following the results of Sect. 4, the
nonzero ones come out using the curvature above as

J (∂a, ∂b, ec) = −λ2R(∂a, ∂b)(ec − m−1θ ′gcd∂d )) = −λ2

4
cab

eced
cẽd

J ( f , ∂a, d∂b) = λ2
(

(R(∂a, ∂c)∂b)( f )ec − m−1θ ′ R(∂b, (d f )#)∂a
)

= λ2

4
(∂d f )

(

cac
eceb

d ec − m−1θ ′gdccbc
ecea

f ∂ f
) = λ2

4
(∂d f )cac

eceb
d ẽc,

where at end we used ad-invariance of the metric. We also have

J (∂a, ∂b, d∂c) = λ2
(

d(R(∂a, ∂b)∂c) − m−1θ ′(g f e∂e)∇∂ f (R(∂a, ∂b)∂c) + θ ′(R(∂a, ∂b)∂c)(V )

− ẽd
(

R(∇∂d ∂a, ∂b)∂c + R(∂a,∇∂d ∂b)∂c + R(∂a, ∂b)∇∂d ∂c)

+ ∇R(∂a ,∂d )∂c ∂b + ∇R(∂d ,∂b)∂c ∂a + ∇R(∂a ,∂b)∂d ∂c
)

)

= λ2Rd
cab(d∂d − (2m)−1θ ′g f sc f d

t∂s∂t + θ ′∂d V )

− λ2

2

(

R f
cebcda

e + R f
caecdb

e + R f
eabcdc

e + Re
cad ceb

f + Re
cdbcea

f + Re
dabcec

f )ẽd∂ f

= λ2Rd
cab(d∂d + θ ′∂d V ) − λ2

2

(

R f
eabcdc

e + Re
cad ceb

f + Re
cdbcea

f )ẽd∂ f

= λ2

4
cab

ecec
d (d∂d + θ ′∂d V ) − λ2

8

(

cac
scsd

t ctb
f − cbc

scsd
t cta

f )ẽd∂ f .

For the 3rd equality, we dropped the ∂s∂t term as these commute at order 1 and
are contracted with something antisymmetric by invariance of the metric. We also
cancelled 3 of the 6 similar terms after inserting the value of R and using the Jacobi
identity for the Lie algebra. The remaining 3 terms do not cancel but again using the
Jacobi identity in the Lie algebra can be condensed to two for the 4th equality.

Finally, we compute what the Schrödinger representation looks like in the Lie group
case. Here,

ρ( f )ψ = f ψ, ρ(∂a)ψ = λ∂a(ψ), ρ(ea)ψ = m−1λea#(ψ), ρ(θ ′)ψ = ψ

since

( , )∇eb = −1

2
(ea, ec)cac

b = −1

2
gaccac

b = 0.

This extends the usual Schrödinger representation to 1-forms on M by converting
them to vector fields by the metric and the scale factor m. In addition, we have
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ρ(d∂a)ψ = −(∂a V )ψ + λ2

2m

(

(�∂a)(ψ) + R(∂b, ∂a)eb#(ψ) + 2gbc〈∇∂b ∂a,∇∂cdψ〉)

= −∂a(V )ψ + λ2

2m

(

(�∂a)(ψ) + R(∂b, ∂a)eb#(ψ) + 2gbc〈∇∂b ∂a,∇∂cdψ〉)

= −(∂a V )ψ + λ2

2m

(

(�∂a)(ψ) + Rsc

dim g
∂aψ − 1

2
gbccba

f cc f
d∂dψ + gbccba

d∂c∂dψ
)

= −(∂a V )ψ + λ2

2m

(

(�∂a)(ψ) − Rsc

dim g
∂aψ

) = −(∂a V )ψ

using invariance of the metric so that

gbccba
f cc f

d = −cba
cgbf cd

c f = cba
ccc f

bg f d = K f ag f d = 4Rsc

dim g
δd

a .

We also used that ∂c∂d commute to order 1. We then used that in the Lie group case
for our basis,

�(∂a) = ( , )∇(eb ⊗ ∇∂b∂a) = gbc∇∂b∇∂c (∂a) = 1

4
gbccca

dcbd
e∂e = Rsc

dim g
∂a

by a similar computation.

Example 6.1 For G = SU (2) = S3 we have the Lie algebra [∂i , ∂ j ] = εi jk∂k in a basis
of left-invariant vector fields, where εi jk is the totally antisymmetric tensor. Then the
Killing form and symmetric trilinear form are

Ki j = 〈[∂i , [∂ j , ∂k ]], ek〉 = ε jklεilk = (δ jkδki − δ j i δkk) = −2δi j

Ki jk = 〈[∂i , [∂ j , [∂k , ∂l ]]] + [∂ j , [∂i , [∂k , ∂l ]]], el 〉 = εklmε jmnεinl + εklmεimnε jnl = 0.

We set gi j = −δi j which corresponds under (6.1) to a certain radius so that the Ricci
scalar is 3/2. Then we have

[∂i , e j ] = λ

2
εi jk(e

k − m−1θ ′∂k), [d∂i , f ] = λ

2
εi jk(∂ j f )ẽk; ẽk = ek + m−1θ ′∂k

[∂i , d∂ j ] = λ

2
εi jkd∂k − λθ ′(∂ j (∂i V ) − 1

2
ε j ik∂k V

) − λ

4

(

e j∂i + ei∂ j − 2δi j e
k∂k

)

.

The Jacobiators are

J (∂i , ∂ j , ek) = λ2

4
(δik ẽ j − δ jk ẽi ), J ( f , ∂i , d∂ j ) = λ2

4
(δi j∂k f ẽk − ∂i f ẽ j )

J (∂i , ∂ j , d∂k) = λ2

4

(

δik(d∂ j + θ ′∂ j V ) − δ jk(d∂i + θ ′∂i V )
)

+ λ2

8
(εkil ẽ j − εk jl ẽi )∂l .
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Finally, the Schrödinger representation is

ρ( f )ψ = f ψ, ρ(∂i )ψ = λ∂i ψ, ρ(ei )ψ = − λ

m
∂i ψ, ρ(d∂i ) = −(∂i V )ψ, ρ(θ ′)ψ = ψ.

6.3 The Schwarzschild metric

One can analyse the theory for a general static rotationally invariant spacetime. Here
we just focus on the representative black-hole case with rs the ‘Schwarzschild radius’
as a free parameter, and we also set the external potential V = 0. The Ricci tensor
vanishes, the metric and the Christoffel symbols are

gμνdxμdxν = −(1 − rs

r
)dt2 + 1

1 − rs
r

dr2 + r2(dθ2 + sin2(θ)dφ2),

�t
tr = rs

2r2
(

1 − rs
r

) , �r
tt = rs

2r2

(

1 − rs

r

)

, �r
rr = −�t

tr , �r
θθ = −r

(

1 − rs

r

)

,

�r
φφ = sin2(θ) �r

θθ , �θ
rθ = 1

r , �θ
φφ = − sin θ cos θ , �φ

rφ = 1
r , �φ

θφ = cot θ.

Recalling our notation �μ := �μ
αβgαβ , these come out as

�t = �φ = 0, �r = −1

r
(2 − rs

r
), �θ = − 1

r2
cot(θ).

The Ricci tensor is zero but the Laplacian on the coordinate basis vector fields is not
zero and we compute it as

�∂t = �∂φ = 0, �∂r = − 2

r3
(r − rs)∂r ,

�∂θ = − 1

r2

(

2(r − rs) cot(θ)∂r + (cot(θ)2 − 1)∂θ

)

.

We compute the kernel relations from (1.3) for the coordinate basis as

∂t = −m(1 − rs

r
)
dt

ds
, ∂r = m

1 − rs
r

dr

ds
− λ

2r − rs

2r(r − rs)
, (6.2)

∂φ = mr2 sin2(θ)
dφ

ds
, ∂θ = mr2

dθ

ds
− λ

2
cot(θ) (6.3)

for the momentum operators. We also have (1.4) as

m
d∂t

ds
= m

d∂φ

ds
= 0, m

d∂θ

ds
= cos(θ)

r2 sin3(θ)
∂2φ + λ

2r2 sin2(θ)
∂θ ,

m
d∂r

ds
= − rs

2(r − rs)2
∂2t − rs

2r2
∂2r + 1

r3
∂2sph + λ

r3
(r − rs)∂r ,
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where

∂2sph := ∂2θ + ∂2φ

sin2(θ)
+ λ cot(θ)∂θ

is the ‘spherical momentum’. These are our D(M)-valued geodesic equations in first
order form. Note that ∂μ ∈ D(M) are (locally defined) vector fields and we are not
obliged to think of them as differential operators.

Proposition 6.2 The spherical momentum and the total momentum

−∂2tot = − ∂2t

1 − rs
r

+ (1 − rs

r
)∂2r + λ

r
(2 − rs

r
)∂r + ∂2sph

r2

are constants,
d∂2sph
ds = d∂2tot

ds = 0 to order λ.

Proof (1) the differential in D(M) is d f = ̂d f and using (3.4) in the kernel of the
Schrödinger representation, this becomes in particular

m
d f (θ)

ds
= 1

r2
( f ′∂θ + λ

2
( f ′′ + cot(θ) f ′))

from the form of �θ . We use this and [∂θ , f (θ)] = λ f ′ along with our expressions
for d∂θ to compute that

m
d

ds
(∂2θ + ∂2φ

sin2(θ)
) = λ

r2 sin2(θ)
(∂2θ − ∂2φ cot2(θ)

sin2(θ)
)

to order λ. The addition of the quantum correction λ cot(θ)∂θ exactly kills this.
(2) −∂2tot := gμν∂μ∂ν − λ�μ∂μ is the expression stated but this is proportional to

the Hamiltonian h ∈ D(M) in our set-up. Hence this follows from Cor 5.4 applied in
the case of the Schwarzschild metric. It can also be verified explicitly as an excellent
check on our calculations, using

m
d f (r)

ds
= (1 − rs

r
)( f ′∂r + λ

2
f ′′) + λ

2r
(2 − rs

r
) f ′

obtained from (3.4). 
�
Since ∂μ ∈ D(M) map under the Schrödinger representation to momentum oper-

ators, we think of them as momentum. Classically, we would set λ = 0 and consider
them as real momenta pμ. Ditto for p2sph = p2θ + p2φ/ sin2(θ) for the spherical momen-
tum and the total momentum

− p2tot = − p2t
1 − rs

r

+ (1 − rs

r
)p2r + p2sph

r2
. (6.4)
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Thus ptot = m, the rest mass of the particle if s is proper time. This can be used
to express pr as a function of r and the other three conserved quantities. These four
constants of motion then allow one to fully compute geodesics by determining their
values for any initial proper velocity. However, to act on wave functions we need the
above expressions at least to order λ and to view them as operators. Then requiring
that the image of ∂2tot is a constant m2

K G becomes the Klein–Gordon equation for a
particle of mass mK G .

We also check ∗-compatibility. From

∂∗
μ = ∂μ + λ�ν

νμ

we find

∂∗
t = ∂t , ∂∗

φ = ∂φ, ∂∗
r = ∂r + 2λ

r
, ∂∗

θ = ∂θ + λ cot(θ),

which implies to order λ,

(∂2tot )
∗ = ∂2t

1 − rs
r

− (∂r + 2λ

r
)2(1 − rs

r
) − ∂2sph + 2λ cot(θ)∂θ

r2

+ λ

r
(2 − rs

r
)∂r + λ

r2
cot(θ)∂θ

= ∂2tot + 2
λ

r
(2 − rs

r
)∂r − 4λ

r
(1 − rs

r
)∂r − 2λ

rs

r2
∂r = ∂2tot

and similarly, but more easily, (∂2sph)∗ = ∂2sph as expected. Similarly,

m
d

ds
(∂∗

r ) = m
d∂r

ds
+ 2λ(1 − rs

r
)(− 1

r2
)∂r = m

d∂r

ds
− 2λ

r3
(r − rs)∂r

so that

(m
d∂r

ds
)∗ = − rs

2(r − rs)2
∂2t − (∂r + 2λ

r
)2

rs

2r2
+ 1

r3
∂2sph − λ

r3
(r − rs)∂r

= − rs

2(r − rs)2
∂2t − rs

2r2
∂2r + 1

r3
∂2sph − λ

r3
(r − rs)∂r = m

d

ds
(∂∗

r )

as expected. Similarly, and more easily, for ∂θ , and trivially for ∂t , ∂φ .

7 Quantummechanics-like applications

The theory developed in previous sections can be applied in two contexts. The first is
M a Riemannian manifold for ‘space’ and the geodesic time variable s identified with
regular time t . This amounts to a geometric approach to regular quantummechanics on
M , towhich the theory above applies. This is of interest, but herewe focus our attention
on the more novel case in which M is spacetime with wave functions ψ ∈ L2(M)

over spacetime.
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7.1 Spacetime quantummechanics

We recall from Sect. 5 that we represented the algebra D(M) and its differential
calculus as an extended Schrödinger representation ρ on L2(M). We interpreted θ ′ =
ds as a ‘Heisenberg picture’ where λ da

ds = [ρ(h), a] for operators a and s proper
time and for some choice of Hamiltonian. We used this for a = ρ( f ) in Sect. 3.1
to define d f in D(M) and for a = ρ(X) in Proposition 3.5 to define dX . It then
follows on products at least to order λ working in D(M), and hence at least at the
order for quantum mechanics in the image under ρ. The corresponding Schrödinger
picture (5.4) moreover matched up to an expected quantum geodesic flow with s the
geodesic parameter and this provides the physical meaning of the external time s. If we
imagine a density of dust where each particle evolves along a geodesic in spacetime,
we can start with an initial configuration of ρ and evolve it by proper time s for each
dust particle. If we proceed by analogy with ordinary quantum mechanics, it would
then be natural to set ρ = |ψ |2 for ψ some kind of ‘wave function’ on spacetime
and evolving with s is then the quantum geodesic at hand. This is not quite what we
do as we work on A = D(M), but the formalism works in principle for any suitable
A − C∞(R)-bimodule, in the present case consisting of s-dependent wave functions
in L2(M). This remains the conceptual setting even though our case is also more
complicated due to nonassociativity at higher order. We will also refer to momentum
operators acting on wave functions and defined with respect to a coordinate basis as

pμ := ρ(∂μ) = λ
∂

∂xμ
. (7.1)

Next, we consider the choice of Hamiltonian. When M is space, we take h so that
ρ(h) = − �

2

2m � + V for some external potential function. In the spacetime case we
will use � for the spacetime Laplacian to avoid confusion, and we will focus on the
simplest case where the spacetime external potential V = 0.With spacetime signature
− + ++, we accordingly take

ρ(h) = − �
2

2m
� (7.2)

to define our more novel spacetime or ‘Klein–Gordon’ quantum mechanics, which
we will solve in the next section. For the theory to be unitary, we need that ρ(h) is
self-adjoint, which depends on the limiting behaviour of fields when the manifold is
not compact. The following observation is a step in this direction.

Proposition 7.1 For a Schwarzschild background, at least on 2-differentiable radial-
only dependent wave functions ψ(r), ρ(h) is symmetric if we impose von Neumann
conditions in the sense of r2ψ ′ → 0 as r → ∞ and (r − rs)ψ

′ → 0 as r → r+
s .

Proof We focus for simplicity on the radial sector of the model, so ψ = ψ(r). We
use the measure

√− det(g) = r2 sin(θ) so that the L2-norm for radial functions is
effectively

〈ψ |ψ〉 =
∫ ∞

rs

|ψ(r)|2r2dr (7.3)
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(the sin(θ) cancels in expectation values for purely radial calculations, so we ignore
this). Thenρ(h) = λ2

2m �, where� acts on radial functions as (1− rs
r ) ∂2

∂r2
+ 1

r (2− rs
r ) ∂

∂r .
Then

〈φ|�ψ〉 = [φ̄ψ ′r(r − rs)]∞r+
s

− λ2
∫ ∞

rs

φ′ψ ′r(r − rs)dr ,

where prime denotes ∂/∂r and where the term from differentiating r(r − rs) in the
integration by parts cancels with the second term of �. If we choose Neumann con-
ditions as stated then we do not pick up anything from the endpoints. Doing the same
for 〈�φ|ψ〉 proceeds in the same way and gives the same answer for the second term.


�

Next, in both space and spacetime caseswithout external potential, the images in the
Schrödinger representation of (1.3)–(1.4) are set to zero and hence we automatically
have an Ehrenfest theorem,

m
d

ds
〈ψ |xμ|ψ〉 = 〈ψ |gμν pν − λ

2
�μ|ψ〉, (7.4)

m
d

ds
〈ψ |pμ|ψ〉 = 〈ψ |�ν

μσ gσρ(pν pρ − λ�τ
νs pτ ) + λ

2
Rνμgνρ pρ |ψ〉. (7.5)

This differs from classical geodesic flow for the expectation values of the coordinates
because of quantum uncertainties, i.e. since the expectation of a product is not the
product of the corresponding expectations. Similarly if we add an external potential
V . Note that in the Heisenberg picture, the stateψ is fixed and does not evolve in time.
However, the same result applies in the Schrödinger picture, where ψ now evolves
with s according to (5.4) and operators are considered as fixed questions about the
system and not evolving (in the basic version of the theorem). Then

m
d

ds
〈ψ |aψ〉 = m

λ
〈ψ |ρ(h)a − aρ(h)|ψ〉

and for [ρ(h), a] we use the expressions previously computed as the coefficient of θ ′
in the calculation of da and its representation. As 〈ψ |ψ〉 is a constant, this also tells
us the rate of change of the expectation value 〈a〉 := 〈ψ |a|ψ〉/〈ψ |ψ〉. The Ehrenfest
theorem (7.4)–(7.5) in the Schrödinger picture thus looks the same but now with the
s time dependence on the left coming from the state.

Proceeding in the spacetime Schrödinger picture, if we have an eigenvector for the
Hamiltonian with eigenvalue EK G , say, then each of these evolves by−λψ̇ = EK Gψ

and hence

m
d

ds
〈ψ |a|ψ〉 = 0

just as in regular quantummechanics. In the case of a black hole background and radial
wave functions ψ(r), we note the following consequence of the Ehrenfest theorem.
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Proposition 7.2 In a Schwarzschild background, if the wave function is differentiable
and has only radial dependence ψ(r) = ψ1 + iψ2 for real ψi then

m
d〈ψ |r |ψ〉

ds
= λi

∫ ∞

rs

r(r − rs)(ψ1ψ
′
2 − ψ2ψ

′
1)dr + λ

2

[

|ψ(r)|2r(r − rs)
]∞

r+
s

if the endpoint limits exist. Hence, unitary evolution of 〈ψ |r |ψ〉 requires that the
second term vanishes, for example if |ψ |2r2 → 0 as r → ∞ and |ψ |2(r − rs) → 0
as r → r+

s .

Proof By the Ehrenfest theorem and the calculations in Sect. 6.3, since ∂r ∈ D(M)

acts as λ ∂
∂r , we have

m
d〈ψ |r |ψ〉

ds
= λ〈ψ |(1 − rs

r
)

∂

∂r
+ 2r − rs

2r2
|ψ〉.

Then we compute

∫ ∞

rs

ψ̄r(r − rs)ψ
′dr = 1

2

∫ ∞

rs

r(r − rs)∂r |ψ |2 + i
∫ ∞

rs

r(r − rs)(ψ1ψ
′
2 − ψ2ψ

′
1)dr

= [r(r − rs)

2
|ψ |2]∞

r+
s

− 〈ψ |2r − rs

2r2
|ψ〉

+ i
∫ ∞

rs

r(r − rs)(ψ1ψ
′
2 − ψ2ψ

′
1)dr ,

where we apply integration by parts to the first term. We then insert this back into the
Ehrenfest theorem. 
�

For example, the ‘atomic’ black hole eigenstates in Sect. 7.2.2 (the type (iii) modes)
are differentiable at any point just above the horizon, bounded there, and decay
exponentially for large r , so the endpoints term vanishes and evolution is unitary
as expected. Moreover, these modes are real and remain real (times a phase that is
independent of r as they evolve), and hence 〈r〉 is a constant as expected for evolu-
tion eigenstates. The endpoints limit condition also appears to be true for the horizon
modes arising in the numerical calculations in Sect. 7.2.1, but these are complex so
〈r〉 does not have to be a constant, and indeed we will find that 〈r〉 actually increases.

7.2 Pseudo-quantummechanics in Schwarzschild background

Ordinary quantum mechanics arises as an approximation to solutions of the KG equa-
tion for a fixed mass m and wave functions which, after factoring out a rest mass mode
e− m

λ
t , are slowly varying with respect to some local laboratory time t . In this sec-

tion, we consider something rather different but which nevertheless quite resembles
quantummechanics. To avoid confusion, we will call it ‘pseudo-quantummechanics’.
Namely, we look at the above spacetime Schrödinger picture with ρ(h) the space-
time Laplacian (and no external potential), but reduced in the presence of a time-like
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Killing vector. This extends ideas in [7] to the curved static case. The big difference
is that in pseudo-quantum mechanics the ‘quantum mechanics time’ is the geodesic
parameter time s as explained above and not the spacetime coordinate t . We work in
geometric units where the speed of light is c = 1. We continue to focus on a black
hole as representative of our methods.

The required reduction at the noncommutative geometry level is to restrict to func-
tions independent of t and quotient by the time coordinate case of (1.3),(1.4), i.e.

mdt = gttθ ′∂t , d∂t = 0 (7.6)

to order λ. As explained in Sect. 6.3, the vector field ∂t ∈ D(M) appears in the classical
limit as the ‘energy’ pt and the first of (7.6) with m interpreted as the mass of a particle
imposes that θ ′ = ds for the proper time in the classical approximation and for the
chosen signature. This is part of classically imposing (1.3) whereby

−ds2 = gμνdxμdxν = θ ′2

m2 gμνgμαgνβ pα pβ = −θ ′2

for a particle of mass m, but we need only impose it for one of the time coordinates to
identify θ ′ as proper time, i.e.with the right time dilation factor.We still have a quantum
geodesic flow on this reduced algebra that still lands on the Schrödinger equation and
is now closer to the conventional one for quantum mechanics. This reduced algebra
can be elaborated along the lines of [7], although we do not do so here as we do not
need it explicitly.

The second of (7.6) means we can represent the reduced algebra (and hence the
original algebra) on fixed frequency or more precisely fixed ‘energy’ pt elements of
the form

e
pt t
λ ψ(r , θ, φ), (7.7)

now with such wave functions also varying in s. Here ∂t ∈ D(M) in the noncommu-
tative geometry acts as λ ∂

∂t and hence has value pt on the above modes. Such modes
are not normalisable and hence not precisely in L2(M) but it is useful to include them
in the discussion (there are standard ways to deal with this issue more precisely). The
associated quantum geodesic flow/spacetime Schrödinger equation on these modes
then looks like

− λ
∂ψ

∂s
:= − �

2

2m
�ψ = (− �

2

2m
� + Vef f )ψ, (7.8)

where

Vef f (r) := −(1 − rs

r
)−1 p2t

2m
,

� := (1 − rs

r
)

∂2

∂r2
+ 1

r
(2 − rs

r
)

∂

∂r
+ 1

r2

(

∂2

∂θ2
+ 1

sin2(θ)

∂2

∂φ2 + cot(θ)
∂

∂θ

)

.

This has been set up to resemble some kind of quantum mechanics for a particle of
mass m on a 3-manifold with the spatial part of the metric plus an induced radial
force potential. Although this only looks like (and isn’t) what is normally meant by
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quantummechanics, it has the merit that the KG flow/spacetime Schrödinger equation
is coordinate invariant; we are only choosing to look at it a certain way with respect to
a chosen coordinate time (and then extending to allow plane waves in this direction).
With this discussion, we are nevertheless led to a precise setting were we can ask
for ψ to be L2 on position space and use standard quantum mechanical methods and
language. As in quantum mechanics, one can either solve this directly by integrating
the first order PDE (7.8) or one can look for eigenvalues EK G and eigenfunctions of
the evolution operator, i.e. such that

(− �
2

2m
� + Vef f )ψ = EK Gψ,

which amounts to (7.7) solving the KG equation � = m2
K G
�2 with ‘square mass’

m2
K G = −EK G2m.

We may potentially be interested in all the eigenvalues EK G , not only negative ones,
since there is no specific massive KG field in the picture and we are just using the
KG wave operator � to define the flow. We illustrate both the direct numerical PDE
method and the eigenfunction method, and can consider the latter as

(

− �
2

2m
� + Vef f + p2t

2m

)

ψ = Eψ; �ω = −pt =
√

m2
K G + 2m E,

for ψ(r , θ, φ), where we subtracted the rest energy to match conventions of the ordi-
nary time-independent Schrödinger equations. We will find solutions ψE for E < 0
that are much like those of a hydrogen atom. Also, to align with ordinary quantum
mechanics, we will be interested in pt ≤ 0 or equivalently ω ≥ 0 as explained in
the introduction, see [10]. The asymptotic form of solutions of the KG equation in a
Schwarzschild background is known analytically in terms ofWhittaker functions [39],
and exact solutions for more general Kerr black holes were noted in [11] in terms of
Heun functions. These can also be solved for exactly using MATHEMATICA, which
is the approach we take. In both cases, graphs are presented in units with � = 1.

7.2.1 Direct integration in the radial case

The simplest solutions are for ψ = ψ(r) constant in θ, φ. Then we can solve this
numerically see Figs. 1 and 2. Calculations are for rs = −pt = m = 1 and are done
numerically for r ∈ (1.000001rs, 50rs) with Neumann boundary conditions of zero
radial derivative along the horizon edge. Figure 1a, b studies the case of an initial
Gaussian centred at 10rs showing complex oscillations in ψ and a gradual diffusion
of the probability density |ψ |2. Part (b) shows the same model in close up nearer the
horizon and extending a little further in geodesic time s. We see the emergence of
further probability density waves when the region of disturbance reaches the horizon,
at around s = 0.65. Whereas parts (a)–(b) have the initial Gaussian centred far from
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Fig. 1 a Evolution of ψ(r) initially a Gaussian centred far from the horizon at 10 rs showing complex
waves and diffusion of the Gaussian probability density with motion of the peak towards the horizon b the
same model but in close up near the horizon showing appearance of horizon modes at time s = 0.65. c
Evolution of an initial Gaussian centred at 1.4rs close to the horizon. Units of rs = 1

Fig. 2 a Cross sections of the model in Figure 1a, b showing close-ups of the emergence of probability
density waves when the Gaussian tail starts to interact with the horizon, at around s = 0.65. Note the
different scales in the plots. By s = 3 these horizon modes are all that remain. b The same model in larger
view showing the Gaussian bump absorbed at s = 1.4 into the horizon modes. c The expected value 〈r〉
and d the probability density entropy both increase throughout the process

the horizon, part (c) shows evolution of an initial Gaussian at 1.4rs , i.e. near to the
horizon. It is significant that this is not particularly singular in our set up where our
region terminates just above horizon.
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Figure 2a, b looks in cross-section and in close up at these emergent ‘horizon
mode’ probability density waves (their actual wave function is complex oscillatory).
The density waves start very small on the tail of the Gaussian where it interacts with
the horizon as shown at s = 0.65, but by s = 0.9 they are already twice as high as the
peak of the Gaussian, even though most of the probability still resides in the Gaussian
off stage at larger r . But by s = 3, there is almost no trace of the original Gaussian
as the horizon modes have grown and also increased their wavelength considerably.
Part (b) steps back and shows what happens to the Gaussian bump. By s = 1.4 the
oscillations have passed the centre of the Gaussian.

Note that the peak of the Gaussian bump throughout this process has an apparent
motion increasingly rapidly towards the horizon so that by s = 1.1 it is at r = 7.2rs

and by s = 1.4 it appears at about r = 4rs in Fig. 2b underneath the probability
density oscillations (albeit no longer a Gaussian by this point). The picture is thus
of a Gaussian bump ‘particle’ falling into the black by a process of absorption by
waves created at the horizon. This apparent movement of the Gaussian peak towards
the horizon is, however, quite a bit faster than a classical geodesic for the same initial
velocity pt/m, as governed by (6.4) in the form

dr

ds
= ±

√

p2t
m2 − (1 − rs

r
) (7.9)

Solving this with the same initial point as the initial location of the Gaussian bump,
the point particle is only at 9.65rs at s = 1.1 and 9.55 at s = 1.4 compared to the
above. Yet in spite of the inward motion of what used to be the Gaussian peak, the
expected value of 〈r〉 all the while increases as shown in Fig. 2c. This is a somewhat
unexpected effect, but what happens is that the horizon modes, while they increase
with time in height near the horizon, also have increasingly larger wavelength, which
pushes up the expected value of r .

It is tempting to think of the disappearance of the initial Gaussian and its eventual
replacement by the horizon modes as a kind of information loss. To this end, we
plotted the continuous entropy−〈 ln(ρ)〉 of the associated classical probability density
ρ = |ψ |2/〈ψ |ψ〉, which on radial functions amounts to

S(ψ) = −〈 ln( |ψ |2
〈ψ |ψ〉 )〉 = −

∫ ∞

rs

|ψ |2
〈ψ |ψ〉 ln(

|ψ |2
〈ψ |ψ〉 )r

2dr . (7.10)

We find in part (d) that this also increases throughput the above process. We similarly
looked at the entropy starting with several other R≥0-valued initial wave functions
with support away from the horizon and rmax (or any fixed phase times such func-
tions) and entropy increasing appears to be a general feature for at least this narrow
class, but not for all initial wave functions. There is also a natural relative entropy
S(ρ|ρ′) = −〈 ln(ρ/ρ′)〉 where ρ is used to compute the expected value (this is called
the Kullback–Leibler divergence [25] in information geometry). However, this quan-
tity relative to the initial state is too noisy to compute numerically due to the essentially
zero probability densities of both parts of the ratio approaching rmax .
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All of our plots are for s before the point where the region of disturbance reaches
rmax (otherwise one gets a reflection there and interference from this). Integrity of the
numerics before that point was assessed by computing 〈ψ |ψ〉 which indeed remains
constant up to numerical noise or systemic errors (of less than around ±1% over the
range of s plotted). Moreover, changing rmin to ten times closer to the horizon does
not visibly change any of the graphs (except for the highly magnified s = 0.65 case
in Fig. 2a which does not significantly change on making rmin twice as close). In
particular, the horizon modes do not appear to diverge at the horizon. It should be
stressed, however, that the assumption of an initial Gaussian wave function in r is
entirely hypothetical and not a physical choice. For example, a particle ‘Gaussian
bump’ coming in from r = ∞ might be expected to have already have evolved to a
complex wave function by the time its region of disturbance reaches radius rmin <

r < rmax so as to be an initial state for the numerical model.

7.2.2 Black hole atom case

For large r , the potential looks like a 1/r potential (shifted by 1) and we can solve for
something which for large r is like a hydrogen atom or ‘gravatom’. This mirrors the
hydrogen-like atom in [7]. The term gravatom has been used in physics for the loose
context of gravitationally bound states and these are of potential empirical interest
[36], but we are not aware of any theoretical framework to make this precise in the GR
setting needed for a black-hole atom. Although in our case the physical significance
of evolution with respect to s is not yet established, when we focus on stationary
states with respect to the s-evolution, as we do in this section, we do obtain something
that looks like quantum mechanics and is in the same spirit as a quantum-mechanics
interpretation of solutions of the Klein Gordon equation proposed in [15]. We are then
able to study gravatom modes in our framework.

We proceed similar to a hydrogen atom, namely by separation of variables in the
eigenvalue equation. Separating out and solving for the φ coordinate dependence fixes
pφ as well as pt as parameters and we need only consider eigenstates of the Klein–
Gordon wave operator of the form

e
pt t
λ e

pφφ

λ R(r)F(θ).

The radial equation then separates to

(

2m EK G

�2
+ p2t

�2(1 − rs
r )

)

R +
(

(1 − rs

r
)

∂2

∂r2
+ 1

r
(2 − rs

r
)

∂

∂r
)

)

R = l(l + 1)

r2
R

(7.11)
for some constant l, and the remaining θ equation is then

(

l(l + 1) − p2φ
�2 sin2(θ)

)

F +
(

∂2

∂θ2
+ cot(θ)

∂

∂θ

)

F = 0. (7.12)
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Fig. 3 Spherically symmetric l = 0 evolution eigenfunctions for the pseudo gravatom with p2t /2m = 0.5.
a shows oscillatory mode (i) with eigenvalue EK G = −0.49, exponentially divergent mode (ii) with
EK G = −0.51 and exponentially decaying ‘atomic’ mode (iii) with EK G = −0.51. b and c shows the
fractal nature of all three modes approaching the horizon, where successive close ups look the same

The latter is the same as for the angular part of the Laplace equation on R
3 and solved

as usual for integral l by Legendre polynomials Pm
l (cos(θ)) where pφ = m� and

m = 0, 1, · · · , l (these functions combine with the e
pφφ

λ to spherical harmonics as
usual). So the only difference for us is the radial equation (7.11).

Note that if we take rs = 0 in the 2nd term on the left of (7.11) and work to order
rs in the 1st term then we obtain the usual equation for an energy E eigenstate of a
hydrogen atom, with the correspondence

EK G + p2t
2m

= E, rs p2t = me2

2π�2ε0
,

where m is the reduced electron mass (that takes into account the mass of the nucleus).
e is the electron charge and ε0 the vacuum permitivity constant. Recall that the ground
state of the hydrogen atom is spherical (the wave function is purely radial) and up to
normalisation is of the form, with energy

ψ(r) = e
− r

a0 , a0 = 4π�
2ε0

me2
, E = − �

2

2ma2
0

. (7.13)

Our case is more complicated, but we can expect some similarity in view of the above.
Some solutions are shown in Fig. 3 for rs = pt = m = 1 and pφ = 0 (the higher

spin modes follow a similar pattern). In this case ψ again depends only on the radius.
The radial equation depends critically on EK G and we find that:

(i) For EK G ≥ − p2t
2m , there are real oscillatory modes which (up to normalisation)

are well approximated for large r by

ψ(r) ∼ sin(αr + β)

r
.

There is a free boundary condition resulting in a phase shift of the form β as stated
for large r .
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(ii) For EK G < − p2t
2m , solutions typically diverge exponentially to ±∞ at large r ,

ψ(r) ∼ eαr

r
.

(iii) For EK G < − p2t
2m and carefully chosen initial conditions, the mode in (ii) can

be suppressed leaving solutions approximately of the form for large r ,

ψ(r) ∼ e−αr .

The case (iii) has a finite norm but the other two are not normalisable with respect
to the same r2dr measure as above, due to large r contributions. Remarkably, all
solutions are non-singular as r → rs . The large r frequency/exponential factor is

α =
√

|2m EK G + p2t |
�

.

Wesee that the pseudo-gravatomwave functions for l = 0match the usual hydrogen
atom at large r , based on the ‘atom-like’ type (iii) modes, but their behaviour near
the horizon is completely different. Namely in the figure parts (b), (c), the modes
are shown again in close up (the type (iii) ‘atomic’ mode is plotted but the other two
increasingly coincide aswe near the horizon).We see that the evenmore close-ups look
the same, a phenomenon that persists on iterating more close-ups all the way down
to machine precision. Thus the solutions, while bounded and not divergent, oscillate
infinitely quickly as r → rs and acquire a fractal nature. This is to be expected due to
the time dilation approaching the horizon. Note that the horizon modes in Sect. 7.2.1,
while they look superficially like type (i) here, are not eigenstates. In fact, they are
complex and decay much faster (namely what appears to be more like 1/r2 at large
r ).

Thus, the probability density |ψ(r)|2 of the l = 0 modes, unlike the case of a
hydrogen atom, does not simply decay but rather, approaching the horizon, forms
bands of increasingly small separation. In the example, we see these density peaks for
the ‘atomic’ type (iii) mode at:

35, 15, 5, 1.5, 1.03, 1.0013, 1.00006, · · ·

in units of rs . This banding will be present in any coordinate system. Banding, i.e.
the wave function crossing zero, is a feature of some higher l modes in the case of
the hydrogen atom, but we see it already and in a fractal form here. Indeed, the radial
structure of the modes for small l > 0 in our case appear to qualitatively identical to
the l = 0 case, while the angular structure of the higher l modes is the same as for a
hydrogen atom. Note, however, that neither E nor EK G are forced to be quantised. For

the hydrogen atom, the exponential form ψ(r) = e
− r

a0 for the ground state in (7.13)
implies the stated value of a0 to avoid a divergence in the eigenvalue equation at r = 0,
while the stated relation between E and a0 comes from the eigenvalue equation at large
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r (and together they fix the discrete value of E for this type of mode). In our case we
have an analogue of the large r restriction, but not of the small r restriction.

8 Concluding remarks

We introduced a new technique for doing some form of quantummechanics on curved
spacetimes based on the algebraD(M) of differential operators, as generated by com-
plex smooth functions and vector fields on the manifold with the rule that they do not
commute, so [X , f ] = λX( f ) where λ = −i�. The key feature is that apart from
being careful about the ordering, we can work with the usual objects of tensor calculus
familiar to physicists working in GR, in contrast with other approaches to quantum
theory on curved spacetimes where the focus is on operator algebras and functional
analysis [19, 22]. By separating these aspects, we were able to write downD(M)-level
first-order versions of the geodesic equations as setting to zero the kernel expressions
in (3.4) and Proposition 3.5. These equations are generally covariant, being defined
by covariant geometric objects or where not apparently covariant, behaving correctly
after one accounts for the above noncommutativity in patching coordinate charts or
changing bases (Remark 3.9). Moreover, our local versions (1.3)–(1.4) land on the
classical geodesic equation when λ → 0, while at order λ they contain information
which, when D(M) is represented as operators, encodes the Klein–Gordon equation
with potential. At order λ2, we also saw the Ricci tensor in the commutation relations
in Propositions 3.1 and 3.2.

We also gained a novel way of thinking about the need for these equations, i.e. why
classical and now quantum particles move along geodesics in the first place, as due
in our context to the presence of gravity (curvature) and a resulting nonassociativity
obstruction that geodesic motion kills. This is the content of Corollary 5.1. The full
explanation here lies in the noncommutative differential geometry of D(M) as an
algebra, which in the curved case (in this paper) we were not able to fully understand
but where the flat space ordinary Heisenberg algebra version is [7]. However, by
moving θ ′ = ds to the denominator and interpreting dxμ, dpν as rates of change,
the quantum geodesic equations and associated commutation relations can be used
without knowing their origin in noncommutative geometry and with a possibility of
new effects at order λ2 which could be investigated.

On the mathematical side, although we did not aim to develop the higher order
theory other than to compute the breakdown of the Jacobi identity at order λ2, there is
a precedent in the use of L∞ and homotopy algebra methods to describe field theory
in the presence of interactions, see e.g. [21] for a review. Possibly the higher orders
could be treated order by order motivated by such methods. In special cases, it might
also be possible to cast the exterior algebra as quasiassociative, i.e. associative in a
nontrivial monoidal category. This is another direction for further work and could
connect to cochain twist methods [6]. Finally, while the focus of the paper has been
onD(M) constructed at a smooth level, there are many interesting issues as operators
in the Schrödinger representation. The image of D(M) would appear to qualify as
an O∗-algebra in the sense of [40], and we also note an extensive literature around
metrics on phase space and theWeyl–Hörmander calculus for the quantisation, see for
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example [38]. A Poisson-level setting behind the flat spacetime/Heisenberg algebra
case is in Appendix A of [7] and a version of it may apply in theD(M) case as a point
of contact.

Next, the parameter s that we used in the spacetime case has its origins as geodesic
proper time and by extension makes sense also at the ‘Heisenberg picture’ level of
evolution in D(M). If we are happy with this when � = 0 to describe the motion of
a classical particle, we should be somewhat happy with it in some kind of collective
sense for motion of a quantum particle even if what exactly we mean by ‘proper time’
is at this point a little fuzzy. We believe that this interpretational conundrum does not
need to be answered immediately but could emerge from applications and experience
over time. Until then, it is fair to say that quantum evolution with respect to s is
of mathematical origin and only quantum mechanics-like, but with hints at potential
physics. In particular, when M is spacetime, we are not doing quantum mechanics
on curved spacetime in the sense pioneered in [14]. We also saw that our Heisenberg
picture was equivalent to a Schrödinger picture where wave-functions are now on
spacetime and s is now the time of a Schrödinger-like evolution (5.4). We looked
at this in Sect. 7 for ‘Hamiltonian’ (7.2), where the wave operator � replaces the
role of spatial Laplacian and we took external potential V = 0. We also referred to
this as a ‘Klein–Gordon flow’. We are led to this point of view even though wave
functions on spacetime are not usually considered in Physics (but see, for example,
[18]). Moreover, even if one discounts any physical role of s, one can still view (5.4) as
a tool to study geometry on a (pseudo)-Riemannian manifold on a par with heat-kernel
expansions or Ricci flow methods. As we are not solving for a fixed mass, this Klein–
Gordon flow captures off-shell information as a self-contained step in the direction of
quantum field theory (which also deals with off-shell modes in computing Feynman
integrals) without being quantum field theory, and could be explored further even if it
is just a tool. We exhibited a class of such flows in Sect. 7.2.1 around a Schwarzschild
background and saw from numerical work that their probability density entropy (7.10)
increases with s in the models that we looked at, as in Fig. 2. The process here suggests
a comparison with information being lost on conversion to Hawking radiation when
matter falls into a black hole; such ideas could be explored further in our parallel
setting. Another question is that the formalism of quantum geodesics whichwe applied
toD(M) can also be applied directly to M itself as a quantum geodesic flow on this. If
these latter ψ are real and positive then this is not really different from a density flow
(where each particle moves on its own geodesic), but when ψ is complex then new
phenomena are potentially possible. Such quantum geodesic flows directly on M are
different from the Klein–Gordon flows in the present paper, but both could be looked
for other spacetimes of interest.

In Sect. 7.2.2 of the paper, we connected with another point of view on what could
be called quantum mechanics on curved spacetime, namely solutions of the wave
or Dirac equation that are interpreted as quantum-mechanics-like with respect to a
preferred time direction (then there is no external time s and ‘wave functions’ are
on space). This is not new and for black hole backgrounds appears first to have been
considered in [15]. General solutions for this andmore generally for Kerr backgrounds
are also known [11]. In our case, such Klein–Gordon solutions appear as stationary
states for the Klein–Gordon flow and we used methods motivated by analogy with
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time independent quantum mechanics, finding ‘gravatom’ states with banding in the
probability density even for orbital angular moment l = 0 and of a fractal nature as
we see in Fig. 3. In our companion paper [10], we do a similar analysis for FLRW
cosmologies, this time using similar methods to those used for quantum mechanical
tunneling now applied to solve the Klein–Gordon equation through a period of rapid
inflation. It would be interesting to look at other spacetimes in the same vein.

Last but not least, while the entire paper aswell as [7, 10] is about applying noncom-
mutative geometry to quantum mechanics with classical space or spacetime, the same
formalism can be applied to the case where the space or spacetime is noncommutative
or discrete (the latter also falls within noncommutative geometry with finite-difference
1-forms not commuting with functions). Direct quantum geodesic applications are in
[8, 9, 27], respectively, while quantum mechanics on noncommutative spaces via the
methods of the present paper remains to be considered.
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