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Abstract

We obtain generally covariant operator-valued geodesic equations on a pseudo-
Riemannian manifold M as part of the construction of quantum geodesics on the
algebra D(M) of differential operators. Geodesic motion arises here as an associativ-
ity condition for a certain form of first-order differential calculus on this algebra in the
presence of curvature. The corresponding Schrodinger picture has wave functions on
spacetime and proper time evolution by the Klein—-Gordon operator, with stationary
modes being solutions of the Klein—-Gordon equation. As an application, we describe
gravatom solutions of the Klein—Gordon equations around a Schwarzschild black hole,
i.e. gravitationally bound states which far from the event horizon resemble atomic
states with the black hole in the role of the nucleus. The spatial eigenfunctions exhibit
probability density banding as for higher orbital modes of an ordinary atom, but of a
fractal nature approaching the horizon.

Keywords Noncommutative geometry - Quantum mechanics - Black holes -
Quantum spacetime - Quantum geodesics - Quantum gravity
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1 Introduction

Noncommutative geometry [3, 13], and in particular the theory of quantum geodesics
[2, 8, 9, 27], was recently applied in [7] to the Heisenberg algebra A in quantum
mechanics viewed as a noncommutative phase space. This work equipped A with a
certain carefully chosen exterior algebra of differential forms €24 defined by a choice
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of Hamiltonian, and a certain generalised quantum metric in Q' ®4 Q! such that
quantum geodesic flow with parameter 7 recovers the standard Schrodinger equation.
A generalised quantum metric here means we assume neither symmetry nor nonde-
generacy, and indeed, the one in [7] was antisymmetric in the 2 — 0 limit (so more
like a symplectic or contact structure) and also had a kernel (due to having one dimen-
sion more in the calculus) which encodes the Hamilton—Jacobi equations of motion.
Differential forms mean that as well as the Heisenberg algebra generators x*, p,, we
also have their differentials dx*, dp, (and an unexpected additional 1-form 6”) and
all the tools of noncommutative differential geometry. The work included also the
relativistic case where now the geodesic time parameter is an external proper time,
and extended it to an electromagnetic Heisenberg algebra applicable to spacetime
with a background U (1)-gauge field. We will say later what we mean by a quantum
geodesic, but in practical terms it amounts to a flow generated by the (minimally cou-
pled) Klein—Gordon operator, and in the electromagnetic case we saw how the Lorentz
force law appears naturally at this level. Although we did not claim new physics from
such constructions, they provided a novel perspective using new tools.

In the present sequel, we now aim to extend these ideas to the generally covariant
setting where the Heisenberg algebra is, we propose, replaced by the algebra D(M) of
differential operators on a smooth manifold M and we aim to obtain geodesic motion
rather than the Lorentz force, as a flow on this algebra. For our purposes, we consider
D(M) as the algebra generated by functions f and vector fields X with cross-relations
[X, f1= A X(f), where A = —ih for the application we have in mind, hence looks
like the usual Heisenberg algebra in any local coordinates. We will explain in the
preliminaries, see Sect. 2.1, how this is equivalent to the usual definition of D(M).
Recent interest in this algebra lies in the fact that it forms a Hopf algebroid, see
[41] where further deformed versions of it were introduced. It is also used in algebraic
geometry and homological approaches to physics [24]. Importantly for us, even though
it is noncommutative, this algebra is defined globally, and when taken in the above
form, we can work with it using the same tools of tensor calculus as familiar in General
Relativity (GR), allowing us to build structures on it in a globally defined manner when
M is equipped with a Riemannian or pseudo-Riemannian metric g. Thus, although,
as is standard practice in GR, we will frequently write down expressions in a local
coordinate chart with coordinates x* and coordinate vector fields d,,, this is mainly
for convenience and we do not assume a global coordinate chart. Indeed, x*, 9,, are
not precisely elements of D(M) but merely locally defined representatives and the
relevant equations can be rewritten in terms of global quantities. Although standard
in GR, such methods are not standard in quantum mechanics, which normally goes
via the theory of linear operators on Hilbert spaces. The two are connected via a
canonical Schridinger representation p : D(M) — Lin(L?(M)) in which functions
act by multiplication and vector fields act by A times differentiation along the vector
field, as defined on the smooth functions of compact support CS°(M) C L*>(M). By
Lin(L2(M )), we mean possibly unbounded operators with associated domains, but
the ones arising in our case all have domains containing at least C2° (M). Moreover,
we work with complexified functions and vector fields, then D(M) is a x-algebra,
and the x-operation is required to map to the adjoint of the associated operator in the
sense (¢, p(a)y) = (p(a®)p, ¥) forall ¢, ¥ € C°(M), where a € D(M) and (, )
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denotes the L>(M) inner product. The basic idea of the paper is to transfer quantum
mechanical ideas from the operator side in the image of p to the smooth geometric side
of D(M) where we can aim to use tools of (noncommutative) differential geometry.
We view this as motivation for our definitions on D(M), with the further study of
their connection to the operator side a topic for further work, as it would need rather
different tools of functional analysis.

In the case where M is space and time is external, the picture we have in mind does
appear to be in line with the time-independent case of what is usually called quantum
mechanics on curved spacetime in the sense of [14], except that this is usually done
as a Schrodinger equation, whereas we lift the evolution to the D(M) level. But when
M is spacetime, the physical interpretation of our results is less clear for two reasons,
both of which we start to look at in examples and applications towards the end of the
paper. The first is that ‘wave functions’ 1 on spacetime are not something usually
considered in physics. The second is that whereas the concept of one particle moving
along a geodesic entails a proper time s as geodesic parameter, we are effectively
extending this to some kind of collective proper time with respect to which evolution
take places. Hence, our quantum mechanics-like evolution with respect to s is not
actual quantum mechanics in any conventional sense, although it has parallels. What
has sometimes also been referred to as quantum mechanics in curved spacetime is
fields obeying the minimally coupled Klein—Gordon or Dirac equation viewed, where
possible, as quantum mechanics-like with respect to a global time coordinate. See,
for example, [15] for an early work on this view around a Schwarzschild black hole.
There are issues in the Dirac case about what is left of coordinate invariance, see [1]
and related works. In our case, by focusing on stationary states under s we arrive at
a similar point of considering solutions of the Klein—-Gordon equation (but not for a
particle of fixed mass) which is then comparable to these works. Finally, this circle of
ideas should not be confused with quantum field theory on curved spacetime, which
is quite well understood using operator algebra methods at least when M is globally
hyperbolic (the main issue in general is lack of a unique vacuum state), see [19, 22]
for relatively recent reviews. We do, however, obtain classical geodesic motion in the
h — 0 commutative limit, and hence, with the above caveats, the present work fills a
certain quantum mechanics level gap between classical geodesics on M as in GR, and
quantum field theory on spacetime M using operator algebra methods.

We turn now to the principal results of the paper and where they can be found. In
order not to overpromise, let us say right away that the key thing we find, in Sect. 4, 1s a
curvature obstruction to an associative differential exterior algebra Qp 7 on D(M) of
the type needed. This obstruction, which appears in a breakdown of Jacobi identities at
order A2, is in line with curvature obstructions in [5] in a different context. It is also at
this order that we see the appearance of the Ricci tensor in our resulting commutation
relations

~ — A A2
[X,6] =X (Vxé) — Zgl (g;w S/L Vi X) — ﬂel(xp é,-:u g,uv Rv,o +guv Xp;vé}-u;p)-

(1.1
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Here, X is a vector field, & is a 1-form on M, é is its image as a 1-form in Q%( My

V is the Levi-Civita connection, also indicated by a semicolon, and R, is the Ricci
curvature. The parameter m will play the role of a particle mass, and the element 6’
is a central 1-form on D(M) as in [7, 30] which will be understood as a proper time
interval. The way that these commutators emerge is that we ask that the Schrodinger
representation extends to a representation of the whole exterior algebra

o Qpary — Lin(L*(M)) (1.2)

still typically with unbounded operators. Since the composition of operators (where
their domains allow) is necessarily associative, 2p(pr) would also have to be associa-
tive if p were to be injective. However, this is not the case, and instead, all the terms
that lead to nonassociativity of the calculus are in the kernel of p. On the other hand,
searching for p to the extent possible does lead to a full set of commutation relations,
of which (1.1) is one, between elements of D(M) and their differentials in Q%)( My
This step-by-step derivation of a generally covariant set of commutation relations 1s
achieved in Sect. 3. The method used is the same as in [7], namely to write down a
natural (covariant) form of Hamiltonian f and ask that evolution given by commutator
with this matches up with what we expect for the quantum geodesic flow. The Jacobi
identity issue is then covered in Sect. 4.

To complete the noncommutative geometry behind the quantum geodesic requires
a technical component of a suitable ‘bimodule connection’ V with respect to which
our geodesic velocity field X on D(M) in Proposition 5.5 should be autoparallel.
This appears to be rather complicated and is deferred to further work. It is expected
to exist at least to order A% as a globalisation of the one in [7] for the flat case, but
meanwhile the geodesic flow itself is still defined in line with X found to this order
in Sect. 5. Section 4 also identifies natural elements of Q%) » that are in the kernel
(and likely span it over the algebra, although we do not prove this). In the relativistic
case without external potential V, and working to order A2 and (for convenience) with
local coordinates, these are

9’ A
o (s, 05
m 2

/

0 A
dpy — Z <Fvucrggp(17vpp - )“Frvﬂpt) + Egaﬁ Fvﬁa,u Pv — V,u) s (1.4)

where p,, = 9, as a local vector field when viewed locally in D(M) and mapping
to )‘a%u in the Schrodinger representation, and I'* = I'**,,¢"? is a contraction of
the Christoffel symbols. Therefore, if we set (1.3)—(1.4) to zero in order to kill the
nonassociativity in the calculus, and if we interpret ' = ds as ‘proper time’ s then we

can interpret (1.3) as definition of p, in terms of %, in which case (1.4) becomes

dZxk __r» dxV dx? N A on dx” n O(AZ) (1.5)
ds?2 ds ds  2m U ds '
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(the order A2 term can also be computed), where
CcHY = ,gaﬁ(gﬂyrvya’ﬂ + gV}’]‘*#ya‘ﬁ) + glt.fl"v;ﬂ _ gVﬁrH;ﬁ + Faﬁﬂrvaﬁ _ F‘Xﬁvl_‘“aﬂ,

see Proposition 5.3. The combination of derivatives here is different from that in the
curvature, and indeed, C*" does not transform as a tensor (it could possibly be better
understood in terms of jets, although we have not done this). Moreover, (1.5) becomes
an operator equation in the ‘Heisenberg picture’ when viewed in the Schrodinger
representation, where these relations hold. The equations (1.5) are coordinate invariant
and can be computed in any coordinates, but the separate terms in isolation do not
transform simply, both because of I'*,, and C*”, and because the % do not commute
with functions. In the non-relativistic version where M is space and 8’ = dr for an
external time s = ¢, and with an external potential V in the Hamiltonian, we similarly
recover noncommutative versions of Hamilton—Jacobi equations of motion on the
curved space with order A corrections. Also note that real vector fields are not invariant
under * due to a divergence correction (see Sect. 2.3) but can be corrected so as to
be invariant. Doing this to the p; associated with local vector fields 9; and applying
the representation p then recovers the hermitian momenta in (5.31) of [14] in the case
where M is space.

From (1.5), we can see as promised that geodesic motion as in conventional GR
is contained in our algebraic set-up at zeroth order. Indeed, for A = 0, (1.3)-(1.4)
are a standard cotangent bundle approach to geodesics flows as used, for example, in
[12]. The difference is that we ‘quantise’ this picture by providing order A corrections
needed for a coordinate-invariant ‘Heisenberg picture’ on D (M) as the global version
of the Heisenberg algebra. We shall see that order A is also relevant to the Schrodinger
representation and Klein—Gordon operator on ‘wave functions’. We also explained that
while the differential calculus on D(M) is nonassociative at order A2, the equations
setting (1.3)—(1.4), i.e. the geodesic equations, are required to kill this associativity
obstruction in presence of generic curvature. This is a new ‘anomaly cancellation’
derivation of classical geodesic motion (rather different from the principle of least
action) and is a conceptual outcome of the paper even at the zeroth order. As explained,
the physical meaning of the order A level is less clear not least due to the interpretation
of the time parameter s. On the other hand, some kind of proper time parameter like
this would seem to be unavoidable it we want to ‘quantise’ geodesic motion.

At a more practical level, Sect. 6 computes the main elements of the formalism for
some important special cases: (a) the flat case but now in any coordinate system due to
our geometric approach (here the differential calculus is strictly associative as usual),
(b) the case of a compact Lie group such as SU(2) = S* computed in a left-invariant
basis, and (c) a Schwarzschild black hole background with its usual coordinates. This
provides a sanity check on the general results in earlier sections. Section 7 consid-
ers applications of the formalism, focussing on the case where M is spacetime and
without an external potential. This section can be understood directly from (1.3)—(1.4)
as derived in the preceding sections of the paper. We look at these operator geodesic
equations and an Ehrenfest theorem for their expectation values. On the other hand,
our ‘Heisenberg picture’ flow on D(M) has a corresponding ‘Schrodinger picture’
evolution on ‘wave functions’ ¥ but now on spacetime with the Klein—Gordon opera-
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tor in place of the spatial Laplacian, and with respect to this external geodesic time s,
as a less conventional outcome of our approach. However, when the spacetime admits
a time-like Killing vector, we can restrict as for flat space in [7] to (non-normalisable)
modes of a fixed frequency e 1! with respect to the preferred time direction. On such
modes, the Klein—-Gordon flow reduces to what we call ‘pseudo-quantum mechanics’,
which resembles ordinary quantum mechanics for wave functions defined on space
but still has evolution with respect to geodesic time s. Using this formalism around
a Schwarzschild black hole, we look in Sect. 7.2.1 at an initial Gaussian bump wave
function and see in detail how this gets absorbed by the black hole through the emer-
gence of modes created at the horizon that eventually replace it. At least in examples
of the type we looked at, the classical entropy of the probability density p = ||
increases throughout this process.

Finally, Sect. 7.2.2 constructs exact stationary states for pseudo-quantum mechanics
around a black hole, i.e. non-normalisable modes for the Klein—-Gordon flow of the
form

Vst =BG x), Gt x) = e Yp(x)

for spatial eigenfunctions ¥ (x) which resemble those of a hydrogen atom of energy
E far from the event horizon. Here ¢ (¢, x) is an exact solution of the Klein—Gordon
equation of square-mass proportional to Eg . Even though the Klein—-Gordon equa-
tion is 2nd order in ¢ rather than 1st order as for the usual Schrodinger equation, this
is irrelevant for stationary modes provided we specify, say, negative frequencies by
o > 0 as here. Considering the ordinary Klein—Gordon equation as an extension of
actual quantum mechanics with respect to ¢ is not new, see for example [15] around
a black hole, but we arrive at it differently and with somewhat more detailed results.
The spectrum of the gravatom that we describe, in the sense of gravitationally bound
quantum states [36], is not quantised due to an open boundary at the horizon, but
the radial wave functions are not unlike higher orbital modes of a hydrogen atom,
albeit with a fractal banding in probability density, i.e. crossing zero infinitely often
approaching the horizon.

Section 2 provides some preliminary elements of noncommutative geometry of
the particular ‘quantum Riemannian’ flavour [3] that we use (as opposed to Connes
earlier approach [13] coming out of operator algebras). This grew out of the quantum
spacetime hypothesis that spacetime is better modelled as noncommutative due to
quantum gravity effects [16, 20, 29, 33], as used in works such as [4, 26, 31, 32].
Likewise, quantum geodesics [2, 7-9, 27] have been introduced as a way of formulating
geodesics on such quantum spacetimes. For the intuitive picture here, the reader should
imagine a dust of particles each moving on geodesics and then replace the flow of a
density p of such particles by the flow of a wave function ¥ such that p = |y |? as
in quantum mechanics. At the density level, there are also similarities with optimal
transport [28] and there could be applications to relativistic fluid dynamics as in [37],
but when we work with complex wave functions ¥, the theory acquires a very different
and more quantum-mechanics like character. This is not our topic in the present paper,
however, where we rather apply the formalism to D(M) and then transfer the flow
of its elements to L2(M). The paper concludes in Sect. 8 with some remarks about
directions for further work. We note that a literature search since the preprint version
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turned up [18] where a probabilistic view with respect to an external time s was
also proposed, and [23] where applying noncommutative geometry of some form to
quantise geodesics was also proposed, albeit different from our approach.

We work in units of ¢ = 1 and signature — + ++ in the spacetime case. In what
follows, we will distinguish between the real coordinate vector fields 9, as locally
defined elements of D(M) and their image p, = p(d,) as the corresponding local
momentum operators. In the classical limit A = 0 of this algebra, the 9, map to p,, as
the real classical locally-defined momentum of a single particle moving on a geodesic
as explained above. This gives continuity with usual notations in physics, extended to
D(M) via noncommutative geometry.

2 Preliminaries

Here we recap some basic preliminaries from conventional Riemannian geometry in
the notations we need, and elements of noncommutative geometry from [3, 7].

2.1 Background and notation

In the general theory, we will write 9, for a local-coordinate vector field on the man-
ifold, whereas % will be a partial derivative as an operator when we later consider

vector fields acting as A 3?(" on wave functions (in the Schrédinger representation p).

This imaginary constant A obeys A* = —A and in quantum mechanics has value —i h.
We take it to be ‘small’ in that we count orders of A and take lower orders to be more
significant.

By working to order A%, we mean discarding A3 in geometric constructions on
the manifold M. Vector fields here will typically be denoted X, Y, Z and functions
typically f, h etc. and will be taken to have order zero. The real parameter m has
dimensions of mass, and we will similarly not count its order or make assumptions on
its size. We take g%” to be a (possibly Lorentzian) Riemannian metric on the connected
manifold M, and V to be its Levi-Civita connection with Christoffel symbols "%,
Unless otherwise stated we assume that the vector fields X, Y, Z and functions f, h
are real, though D(M) below will be taken as a complex algebra with a x-operation
that picks out the real geometry as invariant under it.

We will use a semicolon to denote covariant differentiation of tensors, e.g.

He.e=H% 4+ H', % — H 4 T%,,

where comma denotes partial differentiation. We repeat the semicolon for succes-
sive covariant differentiation, including previous derivative indices. For example the
differential of f, = f., is

f,a;b = f;a;b = f,a,b - f,c Fcab .
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9 Page8of65 E. Beggs, S. Majid

The curvature on 1-forms and vector fields is
([Va, Vp16)a = —R%cap 2, ([Va, Vp1X)? = R%cap X°

in the case of a coordinate basis where [9,, d5] = 0. More generally, as the Levi-Civita
connection is torsion free, we can write the Lie bracket of vector fields as

[Y, X]Lie = Vy X — VxY. 2.1

We will also have recourse to the standard measure of integration

/f(xl,...,x”)\/ldet(g)ldxl...dx"

on a coordinate patch, where g is the matrix g, for the metric in the coordinate basis.
Finally, for our purposes, we consider a complex version of the algebra of differential
operators.

Definition 2.1 Let D(M) be the algebra generated by complex valued smooth func-
tions C*°(M) and complex smooth vector fields, with commutation relations

Y, X]=AlY, XlLie, [X, fl1=A2X(f), [f.gl=0. (2.2)
We also set
f.X=rX, 2.3)

where f X denotes the vector field given by multiplying a function and a vector field
to get a vector field as usual. Moreover, D(M) acts on C°°(M) (and on C2°(M)) by
p(fg = fgand p(X) = L X (g) for all vector fields X and functions f, g.

Here X at this point could be any nonzero parameter. It simply scales our generators
in such a way as to have a commutative algebra as A — 0, in line with our view of
the algebra as a quantisation of a classical geometry. There is also a x operation when
A is imaginary, which we discuss in Sect. 2.3 and which is the case we will need.
Although we take this as a definition of D(M), we now outline its equivalence with
the usual description of the algebra of finite-degree differential operators on a smooth
connected manifold M. Here, differential operators of degree < n are linear maps
C°°(M) — C*(M) which in every coordinate chart on an open set U of any atlas of
the manifold can be written as a sum of terms of the form

d 0

etk gxit gxik

v 2.4)

Here, x'» are local coordinates, Viy,..ip € C®W) and 0 < k < n. Where charts
overlap, the different coordinate descriptions will be related via the chain rule since
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the operator is the same. We first observe that such operators can be described in global
terms as the action (in the usual way, without A) of sums of terms of the form

SiXy - Xg (2.5)

for smooth functions f;, smooth vector fields X; and 0 < k < n. In one direction,
this is obvious as any (in our case, complex) vector field can be expanded in local
coordinates and all the coefficients moved to the left via the product rule. Conversely,
every differential operator D in the usual sense can be obtained this way, see e.g. [35,
Thm 9.62]. To see this, one can multiply D by 1 as a partition of unity for a finite
atlas of M to convert the local form of type (2.4) into a global one of type (2.5). It
means that the usual algebra of finite-degree differential operators can be identified
with the image of p in Definition 2.1. Next, we note that both D(M) and the usual
algebra of differential operators are filtered algebras according to the degree and have
‘associated graded’ algebras in which one works modulo smaller degree. For D(M),
this is Sym (M), the algebra of symmetric tensors (i.e. symmetric tensor products over
C°° (M) of the space Vect(M) of vector fields) because the commutators are of lower
degree. But this is also the associated graded algebra of the usual algebra of differential
operators via the symbol of the differential operator. The induced map at the associated
graded level is therefore an isomorphism to its image and by homological algebra, so
is p itself (i.e. one can see this by looking at the top degree). Hence, D(M) as we
defined it is isomorphic to the usual definition of finite-degree differential operators.

This completes the background from classical geometry. For noncommutative
geometry, we use an approach that works over an algebra A, in our case a *-algebra
working over C (namely, we take A = D(M)). A ‘differential calculus’ means to
specify an A-A-bimodule ! and amap d : A — Q! that obeys the Leibniz rule and
where every element of Q' is a finite sum of terms adb for a, b € A. In principle
this should be extended to an ‘exterior algebra’ (2, d) of all differential forms, but
there is always a ‘maximal prolongation’ way to do this by applying d to the degree 1
relations. In the x-algebra case, we require that this extends to a * operation on 2 as
a graded-involution that commutes with d. A left bimodule connection [3, 17, 34] on
Q! (or similarly for some other bimodule) is a pair of maps

v:el s eles!, o:Q' i - Q'es Q!
obeying the Leibniz rules
V(a§) =da®&+aV(§), V(a)=o0(E ®da)+V(E)a

forall £ € Q' and with a € A acting on the right hand side on the nearest copy of Q'.
The map o if it exists is determined by V, i.e. is not additional data but a restriction
in V. One can apply a right module map ‘right vector field’ Q' — A to the left factor
to turn V into something more like a covariant derivative. One also has a right handed
version of these conditions, a right bimodule connection. The goal of the paper from a
mathematical perspective is to find as best we can such a natural differential calculus
on A =D(M).
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9 Page 10 of 65 E. Beggs, S. Majid

2.2 The Schrodinger representation and quantum geodesics flows

We consider the Hilbert space H = L*(M) of square integrable functions on M,
using the standard measure. The algebra D(M) acts on L?(M) in a representation
p:DM)— Lin(L3(M)) as possibly unbounded operators by

(DW= ¥ PO =2 x4

for Y € L*(M), f € C°°(M) and a vector field X. We use the coordinate for-
mula for the standard differentiation of a function in the direction of a vector field.
We use p explicitly to avoid confusion with powers of 1. We extend this to time
dependent wave function ¥ (s) € L?(M) for some external ‘time’ parameter s i.e.
¥ € E = L2 (M)QC>®(R), where the overline is to remind us that we do not mean
here the algebraic tensor product. Although one could make a completed tensor prod-
uct to make E a Hilbert module, what we mean more precisely by this in the present
context is smooth L%(M)-valued functions on R. The tensor notation is rather more
convenient for the description of the algebraic side of the constructions, so we retain
this as a notational device. We next fix a Hermitian operator p(h) acting on a suitable
domain of L?(M) as our Hamiltonian and presented as the image in the Schrodinger
representation of an element ) € D(M).

We now recap how this data, familiar from quantum mechanics (but we will also
apply it to M spacetime) relates to quantum geodesics flows on an algebra A. We recall
[3] that a right A — B bimodule connection means an A — B bimodule E (so one can
multiply elements of E by elements of A from the left and of B from the right) and
linear maps

Vi:E—> EQ®pQL, or:Q,04+E— EQpQ
such that the Leibniz rules
VE(eb) = e ®db + VE(e)b, VEg(ae) =ogp(da ®e)+ aVE(e)

hold for all e € E,a € A,b € B. This is a ‘polarised’ version of a right A — A
bimodule connection on E. In our case, A = D (M) with a differential calculus 2 114 to
be determined and B = C*°(R) is the geodesic time parameter s coordinate algebra
with its classical differential calculus and E = L*(M)QC>®(R) (or C*(R, C (M)
prior to completion of C2° (M) to L2(M)). As in [7], we make a right A — B bimodule
connection

VeW) =@ + 2" p0) v) ®ds (2.6)

at least for a suitable domain (such as ¥ € C*°(R, C°(M))), where dot denotes
partial derivative with respect to s. The quantum geodesic flow of ¥ € E is given by
Vey = 0, i.e. a version of Schrodinger’s equation for the observer of the quantum
geodesic. We also have

op(da®y) =Ve(pla)¥) — pla) VE(W) = p(X(da))y ®ds,  (2.7)
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Generally covariant quantum mechanics Page 11 of 65 9

where X : Ql‘ — A is the geodesic velocity vector also to be determined and again,
for example, ¥ € C*°(R, C°(M))). As in [7], the composite p o X is determined by
(2.6) as

p(da) == p(X(da)) = 17 [p(h), p(a)] (2.8)

and amounts to an extension of the Schrodinger representation of da on L?(M), for
a € D(M). We will focus on Hamiltonian p(h) defined by the Laplacian and an
optional external real potential V,

22 :
—AY VY, Ay =g Yy =g Vi — TV

p) Y =~

or equivalently by the element
1 ab ¢
[’)Z %(g 040p — AI'°0.) +V € D(M),

where I'¢ := g“chab.

All of this depends on defining the differential calculus on D (M), at least to degree
1, for the notion of a connection to make sense. After that the main part of the details
for a quantum geodesic in the above case amounts to extending the Schrodinger rep-
resentation as in (1.2). This is our main focus in the paper, with a little more about the
underlying noncommutative geometry in Sect. 5.

2.3 The star operation

In particular, we use the Schrodinger representation to motivate the definition of a
x-operation on D(M) as follows, for A imaginary. For a function f on the manifold
M, we let f* be simply the complex conjugate of f. For a real vector field X we set

X* = X + Adiv(X),

where we use the divergence defined by the connection, div(X) = X¢.,. This is needed
for * to correspond to the adjoint operator in the representation in the sense explained
in the introduction (i.e. for inner products with elements from C2° (M) C L%(M)). The
same principle applies to products of vector fields and makes D(M) into a x-algebra
with * corresponding to adjoints in the sense discussed. Moreover, the operators in
D(M) leave the dense subset C2°(M) of L2(M) invariant, as do their images under
*. (This means that we have an example of an O* algebra in the sense of [40].) For
example in degree 2:

Lemma 2.2 Let the operator T be defined by T () = 1> M Vi, j where MU is a
matrix of real functions. Then

T ) =TW) +AMYT y  + 22 MYy + MY 0
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9 Page 12 of 65 E. Beggs, S. Majid

Proof We prove this for M"/ = X' Y/ and then use linear combinations for general
M/ First, for vector fields X = X' 9; and Y =Y/ 9;

T(W)=X-AVyX)y.

We then use (Y X — AVyX)* = X*Y* 4+ A(VyX)*. Moreover, (¢, p(XY)y) =

(@, p(XDp()Y) = (p(XN)P, p(N)Y) = (p(Y)p(XH)P, ¥) = (p((XY))p, V)
holds automatically for all ¢, ¥ € C°(M). O

Also note that in the case of a single vector field X, we can subtract half the
divergence correction. Then X + %div(X ) is invariant under *. In the case of a local
coordinate vector field 9;, the self-adjoint version in the above sense is

9; 4+ )Ll'*j..
i ) ij-

ox

self-adjoint version under p is —ih(% + Z% In /det(g)), which agrees with the
proposed momenta (5.31) in [14], except that in that context spacetime is globally

hyperbolic and the spatial metric on each time-slice can vary in the time 7.

But in the case where M is space, Fjij = %i‘ In \/det(g) so that the image of the
1

3 Differential calculus on D(M)

In this section, we construct a natural differential calculus on D(M) to the extent
possible such as to obtain Schrodinger’s equation as a quantum geodesic flow, i.e.
the method used in [7] in the flat spacetime case. The idea there, and here, is to
work backwards to arrive at what we propose as set of relations for QID( My Up to and

including order A2 and which define a first order calculus to order A. Higher differential
forms will not be needed but their relations are in principle implied by application of
d to give an exterior algebra again to order A. One can formally declare that A2 = 0
and then consider this as an actual calculus c.f. [5], although we do not do so here. We
make no claim as to the axioms obeyed at order A> due to failure of Jacobi identities
in Sect. 4 at that order.

3.1 Centrally extended one forms on M

We start with the differentials for f € C°°(M) C D(M). For the chosen form of b,
we calculate
PRI . -
mlp(), p(N)="-(e" fij— &7 faTij) +22 6" £ 5

and hence from (2.8), we have
mp@f) =2 (58" (fi):j+&" £ 50), mlo@h), p(Hl= 18" h; fi
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Generally covariant quantum mechanics Page 13 of 65 9

forall f,h € C>®°(M). As [dh, f] should be a 1-form on D(M), we adjoin an extra

1-form 6’ € Q%( M) which commutes with elements of D(M) and obeys
or(0' ®Y) =¥ ®@ds.

Then we set

mldh, fl=rg"h;fi0', p®)=1

which then has the right image under p.

We still have to be careful about defining a product between 1-forms and functions
as part of 2pyy), rather than just a commutation relation, which we do symmetrically.
Thus, for such a product e on the calculus which is consistent with the representation,
we look at more general 1-forms than df while being careful about this lack of
commutation. For n, € C*(M), we set ] = %(np e dx? 4 dx” e n,). Then

2m p() = 2mnpp(dx?) + mlp(dx?), npl =1 (¢ mij +287 0 5%) . G

We can now define the centrally extended 1-forms QM ) to consist of 7+ f 0, where
n e Q' (M)and f € C%®(M). The product is given by

~_ T~ A ij / -~ z - A ij /
fen=fn—-—g" finj0", nef=/fn+-—g" fin;0", (3.2)
2m 2m
where f 7 is the usual classical product of a function f and 1-form 7. This gives a
commutator which is consistent with the formula above,

mim, fl=xrg"n; £ 0. (3.3)

This also means that 6’ is in the algebra generated by functions and their differentials
provided A # 0, as for the flat case in [7]. To see this, note that since Q' (M) is
finitely generated and projective as an A = C°°(M) module, there is is a ‘dual basis’
coev = Za Xo ®a &y with vector fields X, and 1-forms &, obeying X (§g) = 84, p-
Writing &, = Y ; cord fur for some functions cy and fo; and letting 14 be the 1-
form corresponding to the vector field X,cq 7 via the metric isomorphism #, we have
coev = Za)](nal)# ®4 dfyr. Applying (3.3) to pairs (147, fos) and summing over
(a, I) gives the evaluation of coev, which as constant, in front of 6’. This expresses
the latter in the required form. Moreover, having specified (3.3), we will omit writing
the bullet product on the left in (3.2) and consider the right bullet product there as
defined by this commutator. The differential on D(M) is given by setting d f = &? .
This has a standard central extension form as in [3, Prop. 1.22] except that we have
chosen to do the product symmetrically.
We observe that the 1-form

~ . AL
mE— g &;60'0 — S5V 10 (3:4)
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9 Page 14 of 65 E. Beggs, S. Majid

is in the kernel of the Schrodinger representation p for all £ € Q}V[ We regard 9;
(locally) as an element of D(M) or O-form. In particular, the elements

— . A .
mdxi — g 6'9; ~|—§gpq F'MQ/

are in the kernel to order 2. This means that the representation alone cannot uniquely
determine the relations of Qp(ys) even in degree 1; we need additional information.

3.2 Commutator of differentials of functions and vector fields

We next find the commutator [E, X] for € € Q'(M) and a vector field X. First we
apply the representation and calculate

- A2 g ) )
mip@E), p(X) = —=X" gV & )0 + 1787 (8 &1 XU 8pg — Epra X*) s

2
22 . . .
= _?Xa g" (";‘_i;j);a + 22 g’ (gb] gj Xq;b 8pq — gp;a Xa) 0; .
3.5)
In addition, the relation (2.3) gives
mfX.El—m fIX.El=m[f.E]1X = —-1g"t f;0' X. (3.6)

Using (3.1), we have
<. £ A ij a ip ya d
mp(Vxé) = zg (X Ei;a);j +Arg" X %'p;a FrE
and from this we propose the following to satisfy both (3.5) and (3.6):
~ — . 22 .
m[X, &l =mxr(Vx§) — 10 (gV & V;X) — 79’(?(“ £p 8" Rya + 87 X, 1)
3.7

Proposition 3.1 The commutation relation in (3.7) preserves the star operation.

Proof For real X and £ we apply * to find, on the assumption that the commutators
are respected by the star operation,

mIE, X +1divi)] = —m A (VxE) + 16’ (V;X) g & + 226’ g7 & div(V; X)
2

A ..
N 79/(Xa &p 8" Rya + 8" X“; 5i;a>'
(3.8)
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Generally covariant quantum mechanics Page 15 of 65 9

So we require to show
m[E, adiv(X)] = 10’ [V; X, g" &1+ 270" ¢ & div(V;X)
— 220/ (X &, 87 Rya + 87 X%, &ia) (3.9)
and this is equivalent to
¢V & div(X) j = =X g TV & + ¢ & div(ViX) — X“ &, g" Rya

= 8" & X% a — X&) 87 ¢'" Rigia

= gik Ei (Xa;k;a - Xb gnm Rnkmb)

= g™ & (X“a + X" 8" Rubka). (3.10)

which holds as required. O
3.3 Commutator of functions and differentials of vector fields

From our previous calculations we have an immediate result to order 1>

Proposition 3.2 We have

mldX, fl=mr (X% fadx')+ 160" (g fiV;X)

22 ..
+ 79/(}(“ f.p 871 Rga + 8" X%, f,i;a)

and this preserves the star operation.

Proof We use Sect. 3.2 and differentiate the relation [X, f] = A X i f.i. To check the
star property, we need to show that, for real f, X,

m([dX, f1+[dX, f1") = Am[f,ddiv(X)]. (3.11)
The LHS of (3.11) is
2018 i, ViX1— 220" gV fidiv(V;X) + 220" (X £ p " Rya + 87 X%} fira)
= 220" X 8V fi)a— 270" Y fidiv(V;X)
+ 27 QI(XG f.p 8" Rga + gij X4 f,,';a)
=220 X" (=" fiTa+ 8" fia) — 220" gV fidiv(V;X)
+ s 9/(Xa fip gh? Rya + gij Xa;j f,i;a)
= 2208V fi X 0 +220'X9 i 87 Rjq
— —)»2 G/gij fi Xu;a;j,

which is equal to the RHS as required. O
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9 Page 16 of 65 E. Beggs, S. Majid

3.4 The form of commutator of vector fields and their differentials

Proposition 3.3 The commutation relations (2.2) and (2.1) imply commutation rela-
tions for dX of the form

[Y,dX] = Ad(VyX) + A P(X,Y),

where P(X,Y) = P(Y, X). Assuming associativity to order A, the relation f.X =
(f X) implies to order A

AP(fX,Y)—AfP(X,Y)=—A(Y% fqadx) X
—am = 0" (gV £ V;Y)X — rAdf VxY.

Proof We have [Y, X] = A(VyX — VxY), and applying the derivation d gives
[Y,dX] —Ad(VyX) =[X,dY] — Ad(VxY),

and we label this A P(X,Y). Next, d(fX) = df.X + fdX and then, assuming
associativity to order A in what follows

[Y,d(fX)] =[Y,d f1X +df [Y,X]+[Y, f1dX + f[Y,dX]+ O(1?)
which gives

AA(Vy(fX)) +AP(fX,Y)=[Y,df] X +df[Y, X]+[Y, f1dX
+x fAd(VyX) + A FP(X,Y).

Now
Ad(Vy(fX) =2d(Ydf) X + f, Vy(X))
SO we get

AP(fX,Y)—AfP(X,Y)=(Y,df] —Ad(Y(df)) X —rdf VxY
= —[dY, f1X —rdf VxY,

giving the answer. O

Proposition 3.4 The reality condition [Y,dX|* = —[Y™*, dX*] for real vector fields
X, Y, assuming that d(X*) = (dX)* and using X* = X + A div(X) for real X, is that
forreal X, Y (we name the expression N (X, Y) to use it later)
N(X,Y)=P(X,Y)— P(X, V)  =am~'0' gV div(Y),; V;X
+am=10' g div(X); V;Y + A(d(X9YP R,
+ Y7, X9,,) +dx (YPdiv(X).p + XP;div(Y), )
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Proof We have, to order A2
(A d(VyX)+ A P(X, Y))* = —[Y + Adiv(Y),dX + Addiv(X)],
which gives

A d(VyX)* —AP(X,Y)* = —2d(VyX) — » P(X,Y) — [Adiv(Y), dX]
—[¥, 2 ddiv(X)],

which gives, to order A
P(X,Y)— P(X,Y)" =xddiv(VyX) — [div(Y),dX] — [V, ddiv(X)].
Then using Proposition 3.2 and (3.7), we have, to order A

P(X,Y)— P(X,Y)" = Addiv(VyX) + 1 X¢,; div(Y) , dx’
+am~'o' g div(Y),; V;X
— A Vy(ddiv(X)) +am™ 0" g div(X); V;¥

and then use standard differential geometry calculations. O

3.5 Schrodinger representation of the differential of a vector field

Proposition 3.5 The representation of dX for a vector field X is
5 A2 .
mpdX)(Y) =27 g" XU (Va);j + ?((AX)“ + X8V Ri)Vi —m VXY,

where Ry, is the Ricci tensor and A is the Laplace—Beltrami operator on vector fields.
This corresponds to

.. A g
mdX — @’ <g” X (340) — AT 4 o) + 5 (AX + X g Rjq ) mX(V))

being in the kernel of the Schridinger representation to order )\>.

Proof From (2.8)

2m p(dX) () = 2m 1~ [p(h), p(X)1¥
=287 (XY a))j+2mV XYy — X 0,002 87 (Y1) +2m V)
=228 X (V)i — ((Wi):j)ia) + 207 87 X5 (Yra);j
+ A28 (X)W —2m Vg X
=22 g7 X (Vi) — (W) )ia) + 227 87 X5 (Ya);
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9 Page 18 of 65 E. Beggs, S. Majid

+ 2287 (X0).j Wa —2m Vo X4y
=228 X (W) + 2287 (X 0).j — X" RYjr) Vg —2m V.o X“
giving the answer. O
In particular, the elements
/

o[ A A
do; — - (F]idg‘h(ajac — )»Fejcae) + EA(B,‘) + Ele'g“(?C — mV,,'>

are in the kernel to order A2

Proposition 3.6

mAT2p(P(X, Y)Y +mAa2YP X9V 4y ¥

1 y
= E(Yh X¢ (—g™ glJ(qujc;b + Ryciv; ) — g4 Ryp (Xb Yo, + b X7,
=287 Xy =287 X V) = (Vaco ) = (Vam X)) Ya
B gij X% Ybi“ Vobij — gij Yb;i X o Varj — gij X Yb;j Y bia
+ gij y? X Roepi gae\[’,a;j .

Proof By definition of P(X,Y),

Ap(P(X, Y)Y = p([Y,dXDY — A p(d(Vy X)) ¥
=AY 0, p(dX)Y — A p@X)(Y* ¥0) — A p(d(Vy X))V,

and using Proposition 3.5, we have

2m p(P(X, Y)Y =2m Y 3, p(dX)Y —2m p(@X) (Y Y.0) — 2m p(d(Vy X)) ¢

= Y2 8,207 g7 X (Wa)j + A AX) Ya + A2 X" g Ryr Yo —2m V.y X )
— (20287 X (YY) )i + A2 ACO (YY) + 22X 8% Ryr (YY) 0
—2mV, XY y,)
— (202 87 (Vy X)%i (Pa)ej + A Ay X) Ya + 22 (Vy X) g% Ryr Y
—2m V4 (VyX)" ¥),

which we simplify as

2mA 2 (p(P(X, Y) + Y XUV )Y =
=vP 0,287 X (W0).j + A Ya+ X" g% Ryr ¥.a)
— (287 X% (P Y.+ ACO XY p) o+ X g% Rer (Y0 U 1) 0)
— (287 (VX% (Wa):j + Ay X Ya+ (VyX) 8% Ryr Vr.a)
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=YP 0,247 X (Wa).j + A Ya) + Y2 X % Ryyip Voo + Y2 X" 8% Ryr
— 287 X (Y Y p)a)j + ACO YY) 0+ X7 g% Ryr (Y2 U ) 0)
— (287 (Vy X)) (). j + Ay X) ¥ q)
=Y 8,287 X (a).j + ACO Ya) + YO X" g Ry b Va
— (287 XU (Y Y p).a)j + ACO Y Y g + A Y vy,
+ X" g% Ry YO v p)
— (287 (VX% (W), + Ay X Ya)
=Y (287 X 4y +28Y X1 (W) + A Va)
+YP X" g% Ry a
— (287 XY (Y Y p)a)j+ ACO Y Uy + X g Ry YO 4 p)
— (287 (Vy X)) (). j + Ay X) ¥ 4)
=287 YO XU p + 287 YO XYy (W) + YO A Y
+YP X" g% Ry
28U XU (YY) — ACOYE Yy — X g Ry Y W,
— 287 (VyX)" (Wa),j — AV X) Vg
=28 YO X" (Y jib = Vo) + 287 YO XY g
+ YO A Y + YO X" 8% Ry o
28U XYYl vy — 28T X YP W — 28 XY
— A Yy — X" g Ry YO 0y =287 (YO X )i W — AVYX) Vg
=28 Y X (Wasjib = Voak ) + 287 YO XRY i g j + YO Ay
+YPXT g Ry Y
280 XYl vy =28 XYl =28 XYY Y,
— A Yl Yy — X7 Ry YP Wy =287 Y XYW — AVYX) Y
=28 YO X Y R ajb + 287 YO X Ropi 8V + Y A Y0
+YP X" Ry Y
— 28 XU ¥l — 28 X YP U =28 X Y W
— A Yy — X" g Ry YO 0y =28 YP Xy W — AVYX) g
= (287 YO X¢; RYjp + YO A + YO X" g% Ry
— 28" XYY = A Y — X7 g% Ry Y — A(VY X)) Ya
28U XYYl W — 28T XN VP by + 28 YP X Reci 87V
— 28 Yl Xy

We check that

(A(VyX) — VayX — Vy(AX))*
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=28 YP X +287YP XC R ip 4+ 87 YP XE R i 4+ 87 YP X9, RP iy

and then in our last expression for 2m A72(p(P(X, Y)) 4+ Y? X% V ;.4 ), the coeffi-
cient of ¥ , can be rewritten as

287 YP X R+ Y2 X7 g% Ry,
=287 XY i — (VA ) — (Vaw) X)) — X" g1 Rgr Y.,
— (287 YP . X% 4287 YP X ROy + g YY XC R iy + 8T YO X9, RPibj)
=Y" X (g Rye:py — 8 R iy j) — X" g Ryp Y, — g YP X, Ry
—28¥P i X =287 X Y — (Va) V) — (Vam X7

Here,

8% Ryesp — 8% R%inyj = 8“9 8" (Rigjesb — Rycinsj)
= —g" ¢ (Ryije:p + Ryciv: )
= 8% 8" (Ryich:j + Ryivjic + Ryive:j + Rybeij)
=g gij(qubj;c + Rypeisj)
= —g" " (Ryijbsc + Rypic: ) »

which is symmetric in b, ¢, so the total is symmetric in swapping X and Y, as required.
O

3.6 Commutator of a vector field and the differential of one

We begin by writing P(X,Y) = Py(X,Y) + A P1(X, Y) to order A, where Py(X,Y)
has been chosen to satisfy the lowest order requirements in A. Of course, this decom-
position of P(X,Y) is not unique, rearranging the order within a term of Py(X,Y)
will change its value while introducing higher order terms which can go into Py (X, ).
However, there is one principle we can use to try to solve this problem; if our func-
tions and vector fields are real then, to O (AO), terms formed from them are Hermitian.
The only source of complex numbers (ignoring the Hilbert space) is the imaginary
A. In other words, we expect A P (X, Y) to be anti-Hermitian to order A. Then from
Proposition 3.4 we expect to have to order A,

2P(X,Y)=Py(X,Y)+ Ppy(X,Y)" "+ N(X,Y). (3.12)

We set
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Po(X,Y) = —dx! (Vy,xY + Vu,y X) — @m) "' 6'(V;X V;Y + V;Y V,X)
— 0 Y XV iy +mT g0 YP X Recpi 8900 — AT 4j00),
(3.13)

which gives the order two derivatives of v (and therefore the lowest order terms in
the algebra of differential operators) in Proposition 3.6, and satisfies the condition in
Proposition 3.3.

Lemma 3.7 To order A,

Py(X,Y)* + N(X,Y) — Py(X,Y)
=2 (YPXIRypi + X, YPRY iy + XIYP , RY 4ipy) dx’
+am 10 g (Vi Vi X) VY + X" ViVY + (V; Vi V)" VX +Y".; V,;V, X)
+am 10" g (YP X+ XP YO Reepi) j 8% O
—am= 0" g YPR, VX — om0 g XIR,; VY.

Proof Working to order A,

Py(X, ¥)* = — (Vy,x ¥ + Vy,y X)* dx
— @m0 ((ViX)* (V1) + (ViY)* (V;X)%) g
—0' YO XUV oy m 0 (3070 + A 9T ) 8 Y X Rocni 8%
= —(Vy,xY + Vy.y X) dxi — @m) 71O (Vi X) (V;Y) + (ViY) (VX)) g
—0' YO XUV oy 4 m 0 (00 + 2 T ) 87 YP X Rpepi 8%
— Adiv(Vy,x ¥ + Vy,y X) dxl
—m LA (div(V; X) (V;Y) + div(V; ) (V; X)) g/
+am 0 (TP apd; + TP ,00) 87 Y0 X Roei 8¢, (3.14)

where we use div(d;) = I'? j,,. If we add the last two lines of (3.14) to N(X, Y), we
get, to order A,

o ded (YPdiv(X). , 4+ XPdiv(Y). ;) — Adiv(Vy,xY + Y,y X) dx?
+2d(XTYP Rpg + Y74 Xp)
+am™' 0" gV div(Y),; V;X +am~ 6 g¥ div(X); V;Y
—m ™' 'A(div(V; X) (V;Y) +div(V;Y) (V; X)) g
+am 0 (TPpd; + TP 158a) 87 Y X Recni §°°
= Adx (= YP,; X9Ryp — YP g X9, — YP ;X9 ,T 1y — X9, YP R,
= X% pY P = X9 Y7 T )
+2d(XTYP Rpg + Y7 g Xp)
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—am~le gl (YPR, +T",iYP. )V, X
—am™'0' gV (XIRy +T" ;i X9.,)V;Y
+am ™0 (TPupd; + TP p0a) 8 Y” X Rechi g
= Adx (YPX9Rypsi + X400 Y P RY pig + X9YP. 0, R 4ip
- Yp;jXq;ijiq - Xq:jYp;qFjip)
— om0 gl (YPRy + T YP,) Vi X
—am™'0' gV (XIR, +T" ;i X9.,)V;Y
+ Aam 0 (TP 4pd; + TP ,8,) 87 Y2 X Reochi 8% (3.15)

We use (3.7) to rewrite the first two lines of the final expression for Py(X, Y)* in
(3.14) to order A as

— (VgixY + Vy,y X) dxl — @m)~'0'((ViX) (V;Y) + (V;¥) (V; X)) g

— 0 Y XUV 0y +m 103,07 + AT 0%) &7 Y2 X Rocri 8%

= —d/)c\i(Vvl.XY + Vy,y X) — @m)~'0'g" (Vi X) (V;Y) + (Vi Y) (V; X))
— 0 Y XUV 4y +m 10 g VP X Rechi §7¢(349; + 2 T4 k)
+ 2 (VvxY + Vyy X) T pidxd +am™'0' g7 V;(Vy,xY + Vy,y X)
+am O (T 89 + T 0 g") (X% VY + Y9, ViX)
+m 0" [9), 87 Y" X Rechi 8] 00 +m "0 [0a, 7 Y" X Recri 8% 9;

= —dx! (Vy,xY + Y,y X) — @m)~'0'g" (Vi X) (V;Y) + (V;Y) (V; X))
— 0 Y XUV 0y +m 10 g YO X Rocni §7¢(349; + 2 T4 )
+ 2 (Vv,xY + Vg, X) T pidxd +am™'0' g7 V;(Vy,xY + Vy,y X)
+am O (T 0y g + T 4y ") (X% VY 4+ Y% ViX)
+am =0 g7 (Y X Reepi);; 8% 0a + 2m™"0" g1 (YP X Recpi)sa 8°° 0
—m 0" YP X Recpi (8" 8T ua + 87 8"Tua) 9,
— a0 YP X Reeni (8" 8%T uj + 87 8“T4j) 0a

=— d/;(Vvl.XY + Vy,y X) — @m)~'0'g" ((ViX) (V;Y) + (Vi Y) (V; X))
— 0 Y XUV 0 +m 10 g YO X Rocni §7¢(349; — 2 T 4j k)
+ A (VvxY + Vy,y X) T pidxd +am™'0' g7 V;(Vy,xY + Vy,y X)
+am O (T 0y 8 + T 4y ) (X% VY 4+ Y% ViX)
+am 10" g (VP XCRecpi). j 8% 00 + 2m 10" g7 (Y2 X Recpi).a 8¢ 9
—am 7 0 VY XRepi 87 8T 0 — Am™'0" YO X Rocpi g™ 7T 1j 8, -

We recognise the first two lines of the last expression as Py(X, Y), and hence
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Po(X,Y) + N(X,Y) — Py(X,Y)
= A (Vy,xY + Vy,y X)" 7 ;dx/ +2m™'0' g7 V;(Vy,xY + Vy,y X)
+am 1O (M "+ T i 87)(X1 VY + Y4, ViX)
+am ™10 g7 (Y X Rechi);j 8% a +2m™'0" g (Y” X Recti)ia 8 9
— 10" YO X Rocpi 87 8T %00 8 — Am ™10 Y2 X Roepi g 7T 4 3
+adx (YPXTRypi + X1, YPRY pig + X9YP R gipy — Y7, X9, T — X9.,YP T )
—am 10 g (YPRy + T, YP. ) VX —Am™' 0" g (XTRy + T i X9.,) VY
+am 10" (0P 40 + T ,04) 87 Y7 X Rechi 8%
=A(¥YPy X9+ XP Y9 )T pidx’ +am™10' ¢V V;(Vy,xY + Vy,y X)
+am O (T gy g 4+ TV 4y )X VY + Y% Vi X)
+2m 10" ¢ (YP X Recpi).j 8% a + Am™"'0" g (Y” X Rechi).a 8% 0
+adx' (YPXIRypi + X1, YPRY pig + X9YP R gipy — Y7 X9, , T — X9.;YP TV 1)
—am™ 0 g (YPRy + T i YP.) VX —Am™' 0" g (XTRy + T X9.,) VY
= Adx (YP X9 Rypii + X1 YPRY pig + XIYP .0 R i)
+2m~'0' g V;(Vy,xY + Vy,y X)
+ om0 (M g + T 4 8" (X4 VY + Y% ViX)
+ om0 g (YP X Reeni): j 8% a + 2m™"0" g7 (Y? X Rechi)ia 8% 0;
—am™ 0 g (YPRy 4T i YP. ) VX —Am™' 0" g (XIRy + T X9.,) VY
= 2dx' (YPX9Ryp:i + X9 YPRY pig + XTYP ., R” 4ip)
+m~'0" g V;(Vy,xY + Vy,y X)
+am ™0 T 0y Y Vi X 4+ am ™0 T X9 VY
+am =0 g9 (Y" X Recbi);j 8% 80 +2m™'0" g7 (Y X Recvi)ia 8 9;
— om0 gV YPR, VX —am~' 0" g XIR, VY
= adx' (YPXIRyp:i + X9, YPRY pig + XTYP . RY 4ip)
+am 0 g V(X" VY 4+ Y VX))
+am T O T UYL VX 4 amT 0 T g X Y, Y
+am ™10 g7 (VP X Rechi);j 8% a +2m™"0" g (Y” X Recti)a 8 9
—m™' 0" gV YPR, VX —am~'0' g XIR,; VY

which gives the result stated. O

Proposition 3.8 We have

- A ..
P(X,Y)=—dx! (Vy,xY + Vy,y X) + 2—9/ Vi (Vy,xY + Vy,y X)
m
—0'yb xe Vb —I—m_lgij o' yP X Rocpi gae(ajaa — )»Fkajak)
—1 _ij o/
—@2m)~ gV 0 (ViX V;Y + VY V;X)

A
5 -8 0 T g (X9 iy + Y9, Vi X)

@ Springer



9 Page 24 of 65 E. Beggs, S. Majid

+ 3 A(YPXIR i + X9 ) YPRY pig + XTYP R i) (dx' —m ™10 g0
A, w

.7 (YPX9(Rpizg + Rgisp = Rgp:i) = YV XTR" pig

— X9 YPRY 4ip) 87" 0;

A . A .
-3 6 g YPR); VX — %G/g” X9Ryi VY .
Together with Proposition 3.3, this gives the commutator as
[Y,dX]=Xxd(VyX)+ X1 P(X,Y).

Proof We use equation (3.13) for Py(X, Y) and Lemma 3.7 for Po(X, Y)*+N (X, Y)—
Py(X, Y). Then from Proposition 3.4, we have

2P(X,Y)=Py(X,Y)+ Po(X,Y)"+ N(X,Y)
=2P(X,Y)+ P(X, )"+ NX,Y) — Py(X,Y)

giving

2P(X,Y) = —2dxi (Vy,xY + Vy,y X) —m g1 6/ (ViX V;Y + V;Y V;X)
—20Y XV gy +2m g 0 YP X Roepi §9°(900 — AT 43
+ A (YPXTRypii + X9 YPRY pig + X1YP .y RY i) dx’
+am70 g (V;ViX)" VY + X" V;V,.Y
+(V;ViV)" VX +Y",; V;V,X)
+2m 10" g (VP X+ X" Y Reeni); j 8 Oa
—am™ 0 g YPR, VX — im0 g XIR,; VY . (3.16)

We split this first result for P(X, Y) into well defined bits:

2P(X,Y) = —2dx! (Vv,x¥ + Vy,y X) + Am ™' 0/ gV, (Vy,x ¥ + Vy,y X)
—20" YO XUV 4 +2m7 g 0 VP X Reti 87000 — AT 4j0k)
—m g0 (ViX V;Y + VY V;X) + am ™' g 0/ (Vy,x V;Y + Vy,y V; X)
+ A (YPXIRypi + X9 YPRY pig + X1YP, R" 4;p) dx’
—am~'g" 0’ (Vy,xV;Y + Vy,yV;X)
—m™ 10 gV (Vy,xY + Vy,y X)
+ .m0 g ((ViViX)" VY + X" V;V, Y + (V;ViY)“ V, X +Y",; V;V,X)
+am ™10 g7 (V" X+ XP Y Reapi);j 8% B
— .m0 g YPR, VX —am™'0' ¢ XIR,; V;Y .
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The last five lines of this are

—am ™ g 0 (Vg x VY + Vy,y V;X) + am ™10 g (K, X“ VY +T%,; Y, ViX)

+am ™0 g (VP X+ X Y) Rechi):j 8 8 — 2m ™ 0" g YP R, V; X
—2am™1 0" gl XIR,; VY

= —am g 0 (Vy,xV;Y + Vy,y V; X) + am =10’ g (TF,; X" VY + T, Y. Vi X)

+am ™0 g (Y2 X+ XP Y Rechi):j 8% 80 — 2m ™ 0" g YP R, V; X
—2am™' 0" gl XIR,; VY
=—am~'g" 0/ (X Y g 8p + Y7 X7 5 3)
+am =0 g (Y X+ X Y) Reabi): 8 Ba
— om0 g T YPRY VX —am™ 0 g XIR, VY

Then

2P(X,Y) = —25)-67 (VV,'XY =+ Vviyx) +)\,m_19/ gijVj(VVixY + Vviyx)

—20'YP XUV 4y +2m7 g1 0" YO XCR e 67800 — ATK ;)

—m g0 (ViX VY + ViY V;X) +am ™ gl 0/ (Vy,xV;Y + Vy,y V, X)

+ A(YPXIRypi + X9y YPRY pig + XTYP ) RV ;) dx!
—am~ g O/ (X9 YP, jig 0p + Y7 X, ), 0g)
+am ™0 g (YP X9 Rigpu + XU YP Ripgu) 8779,
—am™ 10" g YPR,; VX —2am~ 10 g XIR,; V;Y .
We can rewrite the fourth and sixth lines as
A (Yququ;i + Xq;wapriq + Xqu;waqip) dx’
+am™'0" g (YP X9 Rigpu + X1 YP Ripgu);w g7 0;
=4 (Yququ:i + Xq;wapriq + XqYP;waqip) dx’
+ Am 0 (—YP XIRY piyg — XTYPRY yip)ow 877 9

= (YPX9Rypyi + X100 Y PRY pig + X9V P, R yip) (dx' —m™'0

+am 0" (YP XY Rypsi + X400 YPRY pig + X9Y Py R 4ip
+ (=YP XIRY pig — XTYPRY 4ip):w) 87" 9,

= A (YPXIRypi + X1 YPRY pig + X9YP R 4ip) (dx' —m ™6

+am 10" (YP X Rypii = Y710 XIRY pig = Y7 XIRY pigi
- X9, Yprqip — X1 Yprqip;w) g’ 9; ,

and we note that

w w w
—R" pigiw = R pquii + R” pwizg = —Rpgii + Rpizg,
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so the above fourth and sixth lines become

L
=+ (YPXIRypi + X1 ) YPRY pig + XTYP. RV 4ip) (dx' —m ™60 " )
+am ™10 (YP X9 (R ping + Ryicp = Rypii) = Y7o XIRY pig — X9, YP R 4i) 87" 9

which gives

2P(X,Y) = —2dxl (Vy,x¥ + Vy,y X) + 2m 0 g1V, (Vy, x ¥ + Vy,yX)
—20'YP XUV 4y +2m7 g1 0" YO XCR e §7€(8j00 — ATK ;)
—m T g O (ViX VY + ViY V;X) +am ™ gl 0/ (Vy,xV;Y + Vy,y V, X)
FA(YPXT R i + X9, YPRY pig + XTYP oy RY i) (dx' —m ™10 g a))
—dm g O (X P g 0+ YP X, Bg)
+2m =0 (YPXU(Rpisg + Ryizp = Rapii) = Yo XIRY pig
= X% YPR"gip) 871 0;
—am™ 0" gV YPR,; VX — im0 g XIR,; VY .

Finally, we combine the last part of the third line with the fifth line to give the stated
answer. O

Remark 3.9 The formula for P (X, Y) is written in a coordinate basis but is both coor-
dinate invariant and applies in any (local) basis. To see this, we set a new basis of
1-forms and vector fields

9 =A% 0,, dxt =AM, .

For the purposes if this remark only, we use a, b, c for the new basis labels and i, j, k
for the coordinate basis. Then, for E; dx' a 1-form valued in a vector bundle (for which
we do not write indices),

A E; - ﬁe’g"f ViE = (AVic f) AY Ep ﬁe/ AT gV (AP Ep)
= TP ATy = 5 g7, (AN ) Ay A By — 50 AT g (A Ey)
= T B o0 g (AT A By — 20 A g V(A )
=fCE — %9’ 8“0 (A" AP Ep — %9’ AT g APV (Ep)
—dx E; — ﬁe/ ¢V, Ep .

This equation serves two purposes. First, change to another coordinate basis shows the
coordinate independence of the expression on the noncommutative algebra. Second,
it provides a formula in a more general context than a coordinate basis, which will be
useful later. Next we define the Christoffel symbols for any basis. To do this, calculate
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Vipda = AP VATV, 0,) = AT, 0,(ATY ) 8 + AT AT, T,
= (AT AT O+ AP ATY T A D,
=AY (A B+ AT AT T A B,

as A1, A€ = 8. We define I'“;;, in the new basis by V;,d, = I'“4 0c. Then

90 — ATX 0, = A 9 APy 3 — ATK;; AL B,
= A% AP} 3, 0+ 2 A%} 9g(AS) B — ATK 1 Ak B
= A% AP (30 0+ A (AP 8a(Ap) = AT AN TH g A% )
= A% A} (840 — AT updc) -

The last of the expressions we need to consider for 2m P (X, Y) is
— 70’ ViX VY + g 0’ Tk X9, VY
= g7 0'ViX (A V,Y) +rg7 0’ Tk X9, VY
= —¢" 0" A ViX (VoY) — 28" 0" X7 94(A)) VY + hg" 6'T*; X9, VY
= —g" 0" VpX VoY + 26" (=0,(A°)) + T A g X V.Y
= —g0' VX VoY + 20" (T APy A" ) g7 X9, VY
= —g0' VX VY +2g%0' T, X0.qV.Y
and so the first three lines of the formula for P (X, Y) in Proposition 3.8 are coordinate
independent and true in more general bases (given the formula for the Christoffel sym-

bols used here). The remaining lines are manifestly coordinate invariant by standard
differential geometry.

3.7 Check of Schrodinger representation of differential of a vector field

It remains to check an identity used in the derivation that amounts to consistency of
the proposed Schrodinger representation of differentials of vector fields.

Proposition 3.10

p(P(X,Y) — Py (X, Y) — S Py(X. V)" — I N(X, Y)¥
22 ‘
= _3ab Flab(Yququ;i + Xq;wapriq + Xqu;waqip) v

4m
Proof First we calculate
2mp(dx (Vy,xY + Vy,y X)) + 87 o(ViX V;Y + V;Y V;X)y
= 2map(xi) (X2 YO + Y0 XV ) Yo + 087 (0(ViX) Y Yra + p(ViY) X9 Yra)
=222 g" 5l — gPIT ) (X0 YO, + Y2 X ) g
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+287 (p(ViX) Y9, Y+ p(ViY) XY Yra)
=22 (=gPI T ) (X2 YO + Y0 X ) g + 22281 (XD Y+ Y2 XD ) U e
F22Q ) (Xl Y+ Yl X+ XP Y+ VP X ) Y
+ )‘zgij (Xb;i Ya;j + Yb;i Xu;j) Vb + )‘Zgij (Xb;i Ya;j;b + Yb;i Xu;j;b) V.a
+222g ) X0y Yy + YO X ) va TR
+ 2287 (XD Y Ve + YO X4 Y a) Ty

Now from Proposition 3.6,

2m A2 p(P(X, Y) = Py(X, Y)Y
= (Y" X (8" ¢" (Ryijesb + Rycin: ) = 84 Rgp (X" Y, + Y0 X,)
— 28 YP X = 28T X Y — (VA V) — (Vam) X)) Ya
+24 (Xb;i;j Y, + Yb;i;j X%+ xb; Y+ P XUp ) Va
+g' (xPy Y9 b+ v X ) Va
+ gij (Xb;k Y4, + Yb;k Xp) ¥ I‘kij
+ g (Xb;i Y9 ¥a+ Yb;i X a) lﬂ]lgj
= (= YP X g% ¢ (Ryijesp + Rycibi) = 8¢ Rgp (X" Y +¥" X%,0)) U0
+ g (Xb;i;j Y, + Yb;i;j X p) Ya+ g (Xb:i Y9 b+ Yb?i X% jib) Va
+ 8 (XY + Y X ) Ve TR+ g (X0 Y+ YD X ) Y Ty
We use the symmetries of the Riemann tensor
87 Ryijer = 87 Rjcqish = —8" Rjcbgii — 8" Rjcivig = 8" Rybic:j — Rebig
to rewrite this as
2m A2 p(P(X,Y) — Po(X, Y)Y
= (V" X+ X" Y) g 8" Recpirj + Y* X " Ry
- gji Rip (Xb Ya;j + Yb Xa;j)) Ya
+ 8 (X7 Y+ Y0 X ) Vg + 87 (X0 Y+ Y70 X ) W
+ 87 (X Y+ Y X ) Y T+ 7 (X7 Y+ Y X) Y T

Next we calculate

p(Po(X,Y)* 4+ N(X,Y) — Po(X, Y)(¥)

=1 (YPXIRypi + X1 ) YPRY pig + XIYP . RV 4y p(dxD) ()
+am ™ g p((ViViX)" VY + X" ViV Y + (VYY) Vi X + Y4 ViV, X) ()
+am = gl (Y X+ XD YO) Reei): j 8% () ()
—am™ T YP Ry p(ViX) (W) — Am ™ g X9 Ry p (V)W)
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and then

mA "2 p(Py(X. Y)* + N(X,Y) — Po(X, Y)(¥)
= =5 T (VP X Rypii + X9 Y PR pig + XIYP R 4ip) ¥
+ 8" (YPXIRypj + X YPRY pig + XIYP ) R gip) ¥.a
+ 87 ((ViViX)" Y4 4+ X" (ViVuY)* + (Vi Vi) X4 + Y (ViVu X)) Vg
+ 87 (P X+ XP YO R, j 8% V.
—-g" YPRpi Xa;j Va—g" Xqqu Ya;j Va-

Hence,

2m a2 p(P(X,Y) — sPy(X, V) — P, 1) = LN, Y)w

=1 g Ty (YPXI Ry + X9y YPRY i + XTYP y RY i) ¥
+ gij (Xb;i;j Ya;b + Yb;i;j Xa;b) Y.a +gij (Xb;i Ya;j;b + Yb;i Xa;j;b) V.a
+ 87 XY+ Y X ) Ya TR+ Y (X0 Y+ Y0 X ) va Ty,
—g” (Xq;waRwPiq + Xqu;waqip) V.a
— g ((ViViX)" Y+ X" (ViVuD)* + (Vi ViD) X+ Y (ViVa X)) Vg
— gV (P X+ XPYO), Recpi 8 Voa

=1 g Ty (YPXI Ry + X9y YPRY i + XTYP y RY i) ¥
+ 8V (X0 = (Vi) Y+ (Y = (VDD X9 ) Y
+ 87 (X (Y — (Ve + YP (XY — (ViVEX)D) Yoa
+ 8 P vy + Y X ) W T+ g (XD Y+ YR X ) Ve T
— g (X1, YPRY pig + XY R ip) Va
— gV (P X+ XPYO), Rechi 8 Voa

=2 g (YPXIR i + XDy YPRY g + XTYP RV i) W
8 (XP ) — (Vi Y+ (VP — (Vi) X ) Y
+8 (X0 (v — (VYN + YE (XY — (VY X0D) Y
+g" (Xb;k Y4, + Yb;k X)) Va Fkij +g" (Xb;i Y4y + Yb;i X“h) Va Fg’fj
- g% gij(Xq;iY‘”R.ipeq + Xqu;iquezr) V.a
— 7 (X" iR ppYP + YR iy XP) Y
— gV (VP X+ XP YO, Recp 8% Va

=L g T p(YPXIRy i + X9 ) YPRY iy + XIYP .y RY i) ¥
+ g (—xb kv, — vl Tk X ) v
+87 (=Xl vk, — ¥l X T )
+g" (Xb;k Y, + Yb;k X“p) Va Fkij + g (Xb;i Y + Yb;i X“) Va F;’ﬁj
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and the Christoffel symbols in the last three lines cancel. We see that the result is given
by the action of an algebra element as stated of order A2 and which therefore vanishes
at order A as in (3.12). O

3.8 Differential calculus to order A

Finally, while we have a set of commutation relations for QID( wy to order A%, we
should complete its specification. The model for how this data extends to a product
was explained below (3.3) in the case of functions and differentials of functions. For
the other products one can proceed case by case, but here we note that since our
proposed relations are invariantly defined, it is sufficient to define the products in a
local coordinate chart. In this case, we take dx*, dp,, 0" as locally a basis over the
algebra from the left, and define products of these from the right via the commutation
relations. More generally, we define (adx*).b := a(dx*b) and (ad p,).b := a(dp,b)
fora, bin D(M). There are no issues for 6’ as our construction has this central, but for
this procedure to specify a right action, we need [dx*, ]and [dp,, ]to be derivations.
Our relations tell us what these are on functions and vector fields but that they extend
as derivations is not automatic. Indeed, requiring this on [a, b] = ab — ba 1is just
the Jacobi identity. We will see in the next section that this holds to order A (but not
necessarily at order %), hence we have a bimodule at least to order A. That d is a
derivation was part of our construction to find the relations, but can also be verified
explicitly to order X.

4 Jacobiators
We define the Jacobiator

J(x,y,2) =[x, [y, 2]l + [z, [x, 11 + [y, [z, x]] 4.1
for x, y, z elements of the algebra or its 1-forms. Note that applying a permutation

to x, y, z simply multiplies the Jacobiator by the sign of the permutation. If we have
associativity then all the Jacobiators will vanish.

Proposition 4.1 For all functions f,h € C®(M), 1-forms & € QY(M) and vector
fields X, Y, to order 22, we have

J(f hE)=0, J(f.Y.E)=0,
JOV X B) =22V X& R joq (dx) —m ™10/ g% 3,).

Proof The first calculation is omitted as easier, and known since we have a (symmetric
version of) a standard centrally extended calculus on a manifold. For the second result,

J(f Y. 8) = [f, [V Ell — A[E, Y(PI+ [V, [E, f1]
= [f, A (V¥ + @m)'[f, =200 (67 & V;¥)] = 2m~ gl ;Y (). 6'
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+am Y, g g £ 0]
= —W2m~ g £ (Vy8),;0' +32m™10' 87 & (V;Y) fa
—22m T g E (Y ()),i 0+ AP m T Y g (& f).a 0
MmT0 g (= £ (VyE)j +& (ViV) fu—E (Y ()i + Y& f).a)s

which vanishes. For the third result, by definition,

J(X,Y,8) = [X,[Y,E]] — [V, [X, EIl + ALE, [X, Y]Liel -

We begin with

_— . 22 .
mIY (X, §1 = [Y,md(Vx§) = 16" (" & V;X) — —-0'(X“&p 8" Rga + 8" X*. &i:a)

=mA[Y,(VxE)] —10'[Y. gV ] V; X — 20" g & [Y.V;X]
=m 32 (VyVx§) — 226" g7 (Vx&); V;¥ — 226" Y9 (47 §).a V; X

220" gV g [y, Vi X1Lie
=ma% (VyVy8) — 220" g XV, ¥P 0y —220' Y ¢ £, VX

+220 Y g & T VX =320 gV & 1Y,V XL
= m A2 (VyVyx€) — 3260 g1 &, (XOV;Y + YV, X)

+220' v g 5T VX — 226 g E YN,V X + 2260 g1 & XD VY
= m a2 (VyVx8) — 320" g &, (XTV;Y + Y9V, X)

+220' g & (YITS, VeX = Y VoV X + X2V, Y)
—m A2 (VyVyx€) =226 g &., (XOV;Y + YV, X)

+226" g & (=Y (X )i+ X5 Y p)0e
—m A2 (VyVyx€) =326 g &., (XOV;Y + YV, X)

+2%0 g E (=Y (X0, + XD YO )0 — 220 g1 £ (Y RC e XO)0e

SO

m[Y,[X, €11 —m[X,[Y,E]] — Am[E, [X, YLi]

=m 3% (VyVx&) —m 32 (Vx Vy£)

+Az g & (=Y (X4, +XP Y€ p)0e — 276" g & YO XC R ) Do
"8 E (= XY+ YO XC)0e + 220 g1 & XY R Be

—am (1Y, XlLje. €]

=m 3% (VyVx&) —m 32 (Vx Vy&) — mi2 (Viy x).£)
+220" g g (=Y (X0 + XD YO )00 — 370" g1 £ YO X Ry e
—220 g g (= XU (Y. + Y0 XC)0e — 220" g1 & XC Y Ry de
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+3260"¢Y & VIV, XlLie
=320 g & XY R jeq e —m 32 Y XT RV i £y dxd@
=320"gV & X YR joq de —m AP YT X RY 4 £, dx)
=32m Y9 X (0 g7 & g Rppjeq O — R juc & dx))
=22m YO X & (=m0 g g% Rjpeq D + Rl joq dx))
=22m Y9 XE (—m 10 gP R peq 8o + R"jc,ﬁ;')
=2mY? X § (Rijca@— m='0" g% R de)

=22 m YO X & R joq (dxd —m™10" g% 3,),
giving the answer. O

Hence the calculus is not associative at order A2. Note that we assumed associativity
in deriving (3.6), however this only required the vanishing of the Jacobi relation for
two functions and a vector field, which we see does hold.

Proposition 4.2 We have J(f,h,dX) = 0 and

J(f, Y, dX) =22 dx’ YO XOR i fu — 22m ™ 1g% 0" YO X R peo f 40
=A2ybxe fa(Racbi dx! —m~1g g’ gl Ri,,ceaj)
= A2 YPXC faR i (dx' —m™" 0" g 9))

to order \2.

Proof Begin with

J(f h,dX) = [f, [h, dX]] + [dX, [f, h]] + [h, [dX, f]]
=[f.[h,dX]] = [A, [f,dX]],

JOL Y, dX) = [f, 1Y, dX]] + [dX, [f, Y]] + [V, [dX, f]]
=[f, [Y,dX]] = A[dX, Y(d )]+ [Y,[dX, f]]. (4.2)

We only need the commutators to first order in A for this, so set

[dX, f1= 4 (X% fa)+rm~10' (g7 £1V,X)),
[[dX, f1. k] = A[(X%; fa). ]+ 2m = 0" [(" £V, X), h]

and then from (3.3),
[([dX, f1,h] = 2*m ™ g X fa0'h; +2*m™' 0" gV fi X h,,
which is symmetric in f, h so J(f, h,dX) = 0. Next
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J(f, Y, dX) = [f, Ad(Vy X)I + [f, A Po(X, V)] — A [dX, Y(d )] + [V, [dX, f]]
= 32 (VyX)9; fadx' —32m™1 6/ gl £, V;VyX
—A[£, dx (Vy,xY + Y,y X)] = 22m) ' g 0'[ £, (ViX VY + V;¥ V;X)]
+am ™ g1 0" YP X Rocpi g7, 0j04)
32X (Y@f))adx’ =2 2mTh e ¢ (Ydf)) VX
FA[Y. XY fadx +mTl e gl £V, X]
= 22 (VyX)4; fadx' —32m™1 6/ gl £, V;VyX
+22m gl £/ (Vy,x Y + Y,y X) + 22dx (Vy,xY + Vy,y X)® fa
+22m g0 £ o (XY VY + Y9 ViX) +am ™ gl 0" YO X Roepi %L S 904
—2 XY (YA f)).adx' = 22m 0 g (Y(df)),; VX
+ A2V (XY fadxl) = A2mTl 0 g X fa VY
+A2m T O YT f).a VX +22m T e g fi 1Y, Vi X Lie
= —22m 0 gl f IV VY IX +32mT g f 6/ Vg X
+22dxt (X0 Y, — YO XY ) fa
+22m g0 fa (X VY + Y9 ViX) +am ™ gl 0" YO X Roepi gL S 904
12X (Y fa A Y ) dxl = 22m 70 g (Y fa + Y f ) VX
+22Vy (X fadx)) = 32m 0 g X fa VY +02mT e Y6V f).a VX
= 22m L0 gl f iV VyIX +32mT g f 0 Vg X 402 dx (—YP X ) fa
+am ™ g 0" YO X Rocpi %L f 2 90a) — 2 XP i (YO £ i) di!
F A2V (XY fadxl) = A2m™ 0 YO g!P T o) £V X
=32m 0 gl VY VX +32m T g f 0/ Vg X+ 27 dx YO (XY — X ) fa
+am gl 0" YP XCR e %1 f.8j04) — A2m ™10 Y P T oy £ VX
=m0 gl fiR(Y,9)X
+22dx" YPXR i fra +Am ™ g1 0" YP X R 67U f . 984]
=32 dx! YOXOR i fa — 32m g% 0" YO XORT oo f.0d)
as required. O

Proposition 4.3 We have

J(X,Y,dZ) = 22d(R(X,Y)Z) — 22 dx! V;(R(X,Y)Z) + A6 (R(X, Y)Z)* V;
+ A2 (R XIYPZ" 3y — RY,qi X9Z"V,Y — R,y YPZ' V, X
— R%gpX1YP V, Z)(dx' —m™ g 0'3))

1o order \2.
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9 Page340f65 E. Beggs, S. Majid

Proof Begin with

J(X,Y,dZ) = [X,[Y,dZ]] = [Y,[X,dZ]] — A [[X, Y]Lie, dZ]

=A[X,d(VyZ)]+ A[X, P(Z,Y)] — A[Y,d(VxZ)] — ALY, P(Z, X)]
=12 d(Vix.yp Z) = A2 P(Z,[X. Y]Lie)

=A2d(VxVyZ) + A2 P(VyZ, X) + A[X, P(Z,Y)]
—A2d(VyVxZ) — 2> P(VxZ,Y) — ALY, P(Z, X)]
— 22 d(Vix. 1 Z) = A* P(Z,[X. YLie)

=22dRX,Y)Z)+ 2> P(VyZ, X) + L[X, P(Z, V)]
— A2 P(VxZ,Y) = ALY, P(Z, X)] — A2 P(Z,[X, YLe),

which gives

J(X,Y,dZ) = A2 d(R(X,Y)Z)
+A[X, Po(Z,Y)] — 22 Py(VxZ,Y) — A2 Po(Z, VxY)
— MY, Po(Z, X)1 4+ A2 Po(Vy Z, X) + A2 Po(Z, Vy X) . 4.3)

Now we use, to order A,

[X,Py(Z, )] = —[X,dx] (Vv,2Y + Vy,y Z) — dx' [X, (Vy,2Y + Vv.r Z)]
—2m) '0'[X, gV (ViZV,;Y + VY V;Z)]
— 0 (X, Y" Z* Vil +m ™0 [X, g7 YP Z Recpi 8¢ (3 00)]
= MXT g dx¥ +m™" 0" ¢ V;X) (Vv,2Y + Vv,y Z)
—dx' [X, (Vv,2Y + Vy,v Z)1 — Cm) " 0'[X, g7 (ViZ V;Y + VY V,Z)]
— 0 [X.YPZVapl +m 10 [X, 87 YP Z Recki §°°(3j0a)] -
“4.4)

Now write to order A2 the terms containing dx’ in second line of (4.3) as

A2 XOTS i d! (Vv,zY + Vy,yZ) — adx' [X, (Vv,zY + Vy,y Z)]
+ 22dx" (Vy,vy2Y + Vy.y Vx Z) 4+ A2 dx' (Vy,zVxY + Vy,vyr Z)
=22 XT% 4 dx' (Vy,zY + Vy,y Z) + 22 dx' (Vg ,v X + Vg, 2X)
+ 22 dx’ (Vv,vyzY +[Vyy, Vx12) + 22 dx' ([Vy, 2. VX1Y + Vv,vyr Z)
=27 XT g dx' (Vy,zY + Vy,y Z) + 12 dx' (Vvy v X + Vg, 2X)
+ 22 dx" (Vy,vy2Y + R(ViY, X)Z 4 Viv,y X1 Z)
+22dx" (R(ViZ, X)Y + Vv, z x11. Y + Vv,v¢r Z)
= A2 XT¥ 4 dx! (Vv,2Y + VyyZ) + A2 dx! (VVV,-ZYX + VVv,-ﬂX)
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+ 22 dx! (Viv, vy1zY + R(ViY, X)Z + Vv, x Z)

—i—)»zdxi (R(ViZ7X)Y“FVVVI.ZXY"‘V[V,-,VX]YZ) . 4.5)
Now using [5%7, X]Lie = Vi X — X“T*j4 5%, this is

524y

=27 dx' (Vvg, ,v X + Vvg 2 X)

+ 22 dx! (Ve xyz¥ + Vg xz¥V + R(ViY, X)Z + Vvy yx Z)
axi’ ! !

+ 22X (R(ViZ, X)Y + Vg ,xY + Vvg v Z+ Vo gy 2),  (46)
i 1 oxt’

so we get the total dx’ contribution to the Jacobi operator as

24yl (Vrei )77 + RO, X)Z 4+ ROVIZ,X)Y + Vi 2)

—A2dxt (v X+ R(ViX,Y)Z+R(V;Z,Y)X +V Z) .(4.7)

N 0
R V)Z RGEL )X

Now we write to order A% the terms not containing dx’ and not containing V in the
second line of (4.3), using (4.4), as

Mm=10' g VX (Vv,zY + Vv Z) —22m)'0'[X, g (ViZV;Y + V;Y V,Z)]
+am™1 0" (X, g YP Z Roeni 8% (970a)]
+222m) " g 0 (ViVXZ VY + VY V;VxZ) — 22m ™" g 0" YP (VX Z) Rechi 8984
+222m) " g0 (Vi ZV;VxY + ViVxY V;Z) — 22m ™" g1 0" (VxY)? Z Recni 8984
=22m='0' gV VX (Vy,2Y + Vy,y Z) — 22m) ' 0'[X, g71(ViZ V,;Y + ViY V,Z)
—222m) 0’8" (X, Vi ZlLie V;Y +[X, Vi¥]Lie V; Z
+ViZ[X, VYL + ViY [X, V; Z]Lic)
+am ™ 0 [X, g7 Y ZC Rochi %100 + Am™'0" g YP ZC Rocpi g%°1X, 804]
+222m) g 0 (ViVXZ VY + ViY V;VxZ) — A2m ™ g1 0" YP (VX Z) Rechi 89984
+222m) " g 0 (Vi ZV;VxY + ViVxY V;Z) — 22m ™' g 0" (VxY)? Z Recri 8984
Am=0' g VX (Vy,z2Y + Vv Z) —am™'0'[X, 71V, ZV;Y
—2m ™0 (X, Vi ZLie V;Y +[X, ViYL V, Z)
+am 0 [X, g7 YP ZC Rochi 871000 + Am 10" g YP Z€ Rocpi 871X, 8 04]
+ 1 2m g ViV Z VY — 22m T g 0" YO (Vx Z)C Rochi 896004
+22m g 0V, ZV VY — 2mT gl 0 (VxY)? ZC Reepi 87084
=22m='0' gV VX (Vy,2Y + Vy,y Z) — am ™' 0'[X, g1V, ZV;Y
+22m™10'g" (Vy,2X V;Y + Vy,yX V; Z)
+22m 0" XY g Y Z Roching 8% 080 — A2m ™10 X9 T 1y g7F Y2 ZC Recii 8¢ 804
_2m e x4 Ty 87 Y? Z€Roepi g€ ;04 + Am ™0 g7 YP Z°Roi 81X, ;041
+22m g OV, VXIZ VY + A2m T g 6, Z [V, Vi TY
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=22m~0' g VX (Vy,2Y + Vyy Z) + M2m ™0’ X1 (M T i + g TV ) Vi Z VY
+22m~'0'gl (Vy,zX V;Y + Vy,y X V,Z)
+22m 0" XY g Y ZRoching 8% 080 — 2A2m ™10 g YP ZC Roci gV X 84 + VaX 8))
+27m g 0 (R, X)Z VY + Vig, x1. Z VY + ViZ R, X)Y + Vi Z Viy, x1..Y)
=22m='0' g (Vy,2Y V;X + Vy,yZV;X
+ Vv zX VY + Vyy X V;Z+Vy,xY ViZ + Vy,xZV;Y)
+22m 10" X g1V Y ZRoching 8% 034
—22m710" g Y Z Rocpi 8% (VX 8y + VaX 9))
+32m g0 (R, X)Z VY + V;Z R(3;, X)Y)
=22m=" 0" g (Vy,2Y V;X + Vy,yZV;X
+ Vv, zX VY + Vyy X V;Z + Vy,xY ViZ + Vy,xZV;Y)
+22m 0" X g1 Y ZRoching 8¢ 0j3a
+32m ™' 0 (R(@;, X)ZV;Y + R(@;, X)Y V;Z + R(3;,Y)ZV,;X + R(3, Z)Y V; X).

So the total 8" contribution to the Jacobi operator from terms not containing V is

22m~1e x4 8ij y? Zc(Recbi;q - Recqi;b) g 3]‘30
+ 22m gl 0 (R, X)Y ViZ + R(3;. Z)Y V;X — R(0;,Y)X V; Z — R(3;, Z)X V;Y) .

The terms containing V are easily computed separately. Then

J(X,Y,dZ) =32 d(R(X. Y)Z) + 326" XTY" 2 R¥ 4, V 1

+ 22 dx! (vR(ﬁx)ZY +ROYVIY, X)Z+RNV;Z,X)Y +Vp o 4y 2)

axt
— 2% dx! Ve yzX +RVX.DZ+RNVIZ X +Vp oy

axt oxi’

+ )\zmile/ X1 gij Yb ZC(Recbi;q - Recqi;b) gae aj 0a

Z)

+22m gl 6 (R, X)Y ViZ + R(3;. Z)Y V;X — R(3;,Y)X V;Z — R(3;, Z)X V;Y)
=A2d(R(X,Y)Z) + 220" X9YPZ R 1y Ve +32m™10" X9 g7 Y0 Z Rocpgei 8% 94
+ 22 dx’ (R4 X9YP ., Z" 8 + R, pi X0y YPZ" 3 + RV pg X9, YP Z" 3
+ RV pg XIYP 2" 3 + RV pq YPXIZT . 0 + ROy X9YPZP )
+22m =gl 0" (R oy X9YP 9y Vi Z + R i, Z'YP 9, VX — RV 1, 2" X9 8, V;Y)
=32 d(R(X, Y)Z) + 370" XTY 24 R* 4y Vi + 22m™10" g X9 YP Z'RY, .1 804
+ 22 dx’ (R%,1g X9YP. 2" 8 + R i X 0 YP Z" 3 + Vi (RY1pg XTYP Z7 )
— R0, i XIYPZ" 9y + R X9YP 2P, 8))
+ 13m0/ (R jpg XIYP 8, V; Z + R iy Z7YP 8, VX — RV 41, 27 X9 8, V)
A dR(X, Y)Z) — 22 dx! V;(R(X, Y)Z) + 226" (R(X, Y)2)* v,
+ A2 R, XTYPZT 8y (dx' —m ™10 g )

+22dx’ R,y X9Z"VaY — 32m gl 0'R i, 2" X 9, VY
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+22dx" R, YPZ" VX +22m ™ gl 0'RY i, 27 YP 9,V X
+22dx" Ry XIYP Vo Z + 32m ™ gl 0'RY ;,, XY P 8,V Z,

which gives the result stated. O

Corollary 4.4 The images of all the Jacobiators above are in the kernel of p, in fact in
the space spanned by elements of the form (3.4) and the expressions in Proposition 3.5.

Proof This is by inspection of most of the terms except for the last case where, if
we write U = R(X,Y)Z then the —A2dx! terms in the first line can be replaced
by —(dx’ — m"@’aj)V,-U — m*le/a,-Ua;,-aa and the second term here combines
with the other terms on the right to give an expression in the kernel of the form in
Proposition 3.5 applied to U. O

5 Operator geodesic equations from associativity

We have constructed the calculus in the previous sections motivated by the Schrodinger
representation and a chosen Hamiltonian. This calculus as we have seen has a Jacobi-
ator (it is not associative) even between O-forms and 1-forms i.e. SZID( M) is not quite
a bimodule over D(M) if there is sufficiently nontrivial curvature. We can, however,
impose relations that kill the non-associativity if we want. Indeed, the Schrodinger
representation maps to an associative operator algebra and hence all the Jacobiators
must have their image in its kernel, hence it is natural to kill this kernel. We keep the
option of a potential V in the choice of f, although in our spacetime application, we
will set this V = 0.

Corollary 5.1 The quotient of QID M) by elements of the form (3.4) and the expres-
sions in Proposition 3.5 (including with potential V') in the kernel of the Schrodinger
representation is a first order differential calculus to order \>.

Proof As explained in Sect. 3.8, it is enough to work in local coordinates where we
can take dx*, dp,, 0’ as a left basis over the algebra. After quotienting, we therefore
obtain 6’ as basis over the algebra and this was taken as central and associative with
respect to products by D(M), so we have a bimodule to the stated order. Moreover,
writing da = D(a)®’ for a € D(M), it is also part of the construction in Sect. 3 that
this D is a derivation to the stated order (we will shortly interpret it as %), but we
check this explicitly. From (3.4) and Prop 3.5, respectively,

ij Ao
mD(f) =g" f;o: + m® Lz
ij ya k A a ij
mD(X) = g X R (8a8j — A aj ak) + E(AX + X 8 Rja 3,’) - mX(V)
Hence, for functions f, A,

. A A
m D(f)h+m f D) =g (f; @b+ 5 fisjh+ fhjoi+ S fhij)

ij A A
= 8"((/R) 30 + 1 fjhi + 5L jh+ 5 [ hiij) = m D(fh).
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Next, we already used in Proposition 3.3 that d(f X) = d f.X + fdX in obtaining the
relations, but proceeding directly,

ij a k Ao a ij
mD(fX) —m f D(X) = g fi X* @adj — A0} 0 + 528" £ X, 00+ 8" f155 )
=" £ X0 =g fi XUT g 0+ 528" £ Xy Ba+ 8" £ X,
SO
m(D(fX) — fDX) = D(f)X) =g f;[X,8;]1—g" f; XaT¥j o + 1 g" f; X, 8a

which gives zero by the commutation relations between vector fields. X f is defined
by fX and the commutator [ f, X] and that this is compatible with d a derivation is
Proposition 3.2. Finally, for products of vector fields, we extend D as a derivation on
the tensor product of vector fields tensor over the field (which is automatic) and show
that this is well defined once we introduce the relations on the algebra. One relation
is (X.f)Y = X(fY) for functions f, which we have dealt with. The other nontrivial
relationis XY —Y X = [X, Y] where [X, Y]is a single vector field. In Proposition 3.3,
we obtained the relations there from d applied to the commutator of vector fields and
one can check explicitly that this can be pushed the other way to D well-defined by
the derivation rule. m|

Next, moving towards applications, it will be convenient to say what D looks like
on local coordinate vector fields 9;. For this, we need the following lemma.

Lemma 5.2 The Laplace—Beltrami operator on coordinate basis vector fields is
Ad; = (—g* Rii + g T ap.)9;.

Proof The general formula for the Laplacian on a vector field reduces to A(9;) =
(g””(FJ,-u,b + IV epI€0) — I'V;cI€)0;, which we then identify in terms of the Ricci
tensor as stated. O

Finally, we write ' = ds, where s will have the interpretation as a ‘geodesic time’
variable but for the moment this is just some central 1-form. Dividing through by this
and using the preceding lemma, the quotient relations as in Corollary 5.1 become

dx! . ;

s T gv8; - 5T, e-b
do; ; A '
dsl = T7iag™ (@95 — A% jpdh) + Egab Mapidj —mV,; (5-2)

to order A2, where I' = I'’;;,g%” and % denotes the coefficient of ds on applying d,
i.e. what we called D in the proof of the corollary. We view these quotient relations as
a first order formalism for noncommutative geodesic equations due to the following:
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Proposition 5.3 Eliminating 0; in terms of %, we obtain to order A

d%x! ; dx/ dxk gl . ici dx/

— 4+ Mg — —4+=V,=

ds? ik ds ds m T 2m j ds
Cij — _gab(gicrjca,h +gjcrica,b) +glbrj)b _ gjbrl,b + Fabirjab _ Fabjriab,
where we use the notation Fi;j = Fi,j + Fikj rk.

Proof We use T for the operation that extracts the coefficient of 6’, so

— A
mT@df) = 8" fc0p+ 58" Fie:

. A .
mT(dd;) = g% T (340 — AT 4 0) + Eg”b pidj—mV;  (53)

for any function f on M, using Lemma 5.2. Then applying d to (5.1),

2.0

d
m2dx =mT(dg")d; +mgiT(dd;) — % mT(dr)
S

i, A . A .
— (g“bg",b3a+§g“bg”,a,b—El"kg”,k)aj

. ) A . m
+ 87 (T jag® (@:0p — AT pda) + zg“b Mab.jde = 5 V.))

) A . AL
-5 (gab I 0 + Eg”b b — EFJ Fl,j)
to which we add

o dx® dx? : ;
2I~ r A r b A Fb
mT ab ds ds ‘ab (g‘”aj 2 a) <g "0 2 )

The quadratic in 9’s is order zero and this vanishes after matching indices and using an
identity of the form g"/ ; = —I'" prgP’ —T'/ ,xg?". In doing so, we pick up a derivative
of g from moving a 9; to the right. The resulting order A terms are d; times

CY =g gl oy —TFg" o+ 8" (= 2T %ag" T pe + g TV i) — 87717,
+ F’ab (2 g% gb 4 — g TP — P gh)
=g gV ap—TP8" ) — g/ T+ g™ (= 2T %ag™ T pe + 8P TV ap )
+ T ap (28 g% & — 284 TP)
= =g (1 pug” + T pag?) b+ T (T pag? + T pag?’) — g/ T
+ 8% (= 2T%g T pe + 8 T k)
+ T (=28 (TP g™ + T gy — 26 TP),
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where at the end, we expanded out three derivatives of the metric tensor in terms
of Christoffel symbols using the identity above. Similarly expanding the remaining
derivative and making a lot of cancellations gives the result stated after replacing 9;

by m % and a lowered index. O

The matrix C/ with indices raised has the first term symmetric and the remaining
terms antisymmetric. It is not a tensor and indeed we do not want it to transform as
one due to the noncommutative nature of the coordinates and calculus on D(M). Also
note that since our results are valid to order A2, one can also similarly determine the
order A2 correction. Next, the Hamiltonian h € D(M) is necessarily constant under
these equations.

Corollary 5.4 Let
[T, k
b= >—g" (@i0; — A" 00) +V € D(M).

Then dh = 0 in the quotient bimodule, i.e. % = 0 at least to order ).

Proof This follows in principle from the way d was defined via the Schrodinger rep-
resentation and [p(h), ], if we assume that (5.1)—(5.2) generate the whole kernel so
that p becomes injective on the quotient. Here we just check it directly. We have

2mdh = g" (dd; 3; + ; dd; — AdT';; 8 — AT';; ddy)
+d(g'7) (3i9; — AT"i; 8;) +2m dV.

Using (5.3), we have

4m* T(dh) = g" (28" T (adc — AT ac 0p) + 1g“" T ap ik —2m V1) 8;
+879; (28" T (9adc — AT e 3) + g " T ap ik — 2m V1)
— 18" (287 (T'ij).c O + 28" (T'3j) i) Oy
— 28" TP (28" T (3ade — AT ) + 28" T ap 10 — 2m V)
+ (287 (8").c 0 + 2 8" (8Y) ie) (B0 — AT 8y)
+2m (28" V. 0y + 18" Vipie).
where we do not apply the covariant derivative to the indices of g’/ and I'/; ; in the
brackets. The potential terms cancel and the three terms without A in this expression

total

8728519, 8,0:0; + "7 9;2 8" T4 3,00 + 28" 8" - 3 39,
=g [8;,28" 41948 + 28" (87 T 340c + g7 TCp; ade + 8 i Dade) 9;

and as the bracket vanishes, and moving all coordinate vectors to the right, we get
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4m> T (dh) = A(g" (287 Thi (=T ac d) + 8P T i) 0;
+879; (28" T (=T ac 8) + g“"T* ap,i 0k
— g (28" (T%i)).c 8y + A 8" (T%i}) sc) Ok
— g4 T4 (287 T (848c — AT e 8) + A" T k)
+ 8787 e — 8 aT%e) (387 — AT 3) — 287 () - Xy ok
+28Y g% ;T dade + 287 g7 T 840c — 228" (87).c (T¥1; )8k

Expanding the (g'/) , part of (g"/) ;. derivative generates derivatives of I"’s and one
can then check that all order A derivative of I" terms cancel. At order A we then expand
all remaining derivatives of the metric, which generates I'> terms and find that these
also all cancel. O

The above results are all that we need for the applications that follow. However,
our motivation came out of quantum geodesics and it remains to fill in some of this
noncommutative geometry. Here we limit ourselves to finding the geodesic velocity
vector field X : QID( M~ D(M) as a bimodule map to order A.

Proposition 5.5 There is a geodesic velocity field X underlying the model given by

. A
Xdf)=—(g" fi0j + EAf)’

S|—=3|~

y A y
XY) = — (g7 (30 = AT 0y0) + 5 (AY + Y98l R, a,-)) —Y(V)

at least to order A. We also set X(0") = 1 so that X vanishes on the kernel of p.

Proof This follows naturally from the way we have constructed the differential calculus
if we assume that p is injective on the quotient, but we still have to identify it even in
this case. We use fj as above and in view of (2.8), we take

X(da) = 27 '[h, a] .

For f € C®(M), we see easily that m X(d f) = g/ fioj+ %gij f.j;i as stated. The
more difficult calculation is for the vector field Y,

2m X(dY) = [g", Y1(0;0; — AT ;;00) +2m [V, Y] — 2 g [T, Y10
+ 8" (10;, Y10; + 9 [0, Y1 — AT [0, Y1)
= —AYP g , (30, —ATk;) —2amYP V., + 2% g7 YPTX; o
+ A" ((ViY —YP T4, 8)d; + & (V;¥ —YP T, 8,)
— ATk (VY —YP T 0 9,))

SO
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2mXAY) = YP g T, (8;0; — ATX; ;) —2mYP V p + 0 g YP T o
+87 ((ViY)3; +8;(V;¥Y = YPT9 5 85) — ATX;;(ViY —YP T 1 8))
—ayPglirm, vk, o
=YP ", (30; —ATX; ;) —2mYP V),
+ 8 (ViYa; +9; V;Y — ATk ViY)
—AglYP T, 0g — gl YPTY 1 0g — g YPTY 5 8;0,
FAYP gk T — T T+ T ) By
=—2mYPV,,+g7 (2V;Y 8; + (8, V;Y] — ATX;; Vi) —agl ¥P ;19 9,
+ A YP g (O T g =TT 4+ T = Ty Ty =T ) 8
=—2mYPV, ,+g7 (2V;Y 9; + AV;V;Y = YP. T, 95 — ATV, Y)
—h g YP T 0y 40 YD g (8T e+ T3y =T jp T =T ;1) g
=-2mYPV,,+2¢"V;Y3; + LAY =218 ¥P ;T 8, +2YP g R, 0,
= -2mYP V), +2¢V;Yd; + LAY — 24 g YP ;T i 8, +1YP g9" Ryp 3y
which we write as stated. We can compare the result with (3.4) and the formula
in Proposition 3.5 to conclude that X vanishes on these kernel elements if we set

X(0") = 1. The difference is that we are now using the commutator in D(M) not its
image under p as we did in Sect. 3. O

In principle, we also need a right bimodule connection V on Q% (o At least to order
X, with respect to which X obeys the geodesic velocity equations. This can in principle
be found by similar methods [7] but will be looked at elsewhere.

Finally, while Proposition 5.3 justifies our interpretation ' = ds for proper time in a
‘generalised Heisenberg picture’ for the evolution of algebra elements, this necessarily
has a corresponding ‘Schrodinger picture’ with evolution of pure states according to

0
—Aa—‘” = p()y (54)
S

for suitable 1. This is exactly the quantum geodesic amplitude flow equation Vg = 0
from (2.6) if we identify ds with the geodesic time parameter interval there. This
justifies our interpretation of the theory. Even though wave functions v on M in the
case where M is spacetime are not something usually considered, we see that this
arises naturally from quantum geodesics and our above results.

6 Basic examples
Here we compute the geometric content of our formulae in various special cases as

a check of consistency. The one for the Schwarzschild black hole will be used in
applications in Sect. 7.
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6.1 The flat case

When M is flat in the sense that the Levi-Civita connection has zero curvature, the
algebra of differential operators looks locally like the flat spacetime Heisenberg algebra
but the difference is that our constructions are geometric and coordinate-invariant,
which is still of interest. The general results above for Q%)( wm o order A2 can be
written in the flat case as

€, f1=m""2 " (f)0/
[X.E] =% (Vx&) — @m)~'20' (2Ver X + 21X, £%1)
[AX, £1=A((V; X, df)dx)) + @m) " 20" 2V X + 1 X% d fF)
[¥,dX] = 2d(Vy X) — 20’ (Vy(dV), X) — Adx’ (Vy,x¥ + Vy,yX)
+ 2m)" A0 g (AVj(Vy,xY) = ViX V;Y + ATFj(ViX)*ViY + X < Y)

where £* is £ converted to a vector field via the metric. We have seen that all the Jacobi
identities associated with being a bimodule then hold to this order. This reduces to
[7] when we identify the image of 9; in D(M) as p; and A = —ih and choose special
flat space coordinates where I' = 0 so that V;(9;) = 0. Also note that in the flat
case,Vect(M) is a pre-Lie algebra with X o Y = VY so that

XoY—YoX=[X,Y]lveertM)» Xo(YoZ)—Yo(XoZ)=(XoY—-YoX)oZ

and in this case U (Vect(M)) C D(M) has a calculus with [Y,dX] = A d(VyX) as a
general construction for pre-Lie algebras. Our construction has a bigger algebra but
we see this as part of the relevant commutator.

Finally, we have a Schrodinger representation of QID ) given by

A A
PO = [, p(X)Y =2X{W), pE)Y = %((, )VENY + 26" (y)
22 g
pdX)Y = =X(V)¥ + %(A(X)(l/f) + 28" (ViX, Vidy), p@)Y =y

which, in the absence of an associativity obstruction, can be expected to extend to an
entire exterior algebra Qp(yr).

6.2 The compact Lie group case

This has the merit, as for the compact real form of any complex semisimple Lie group
G, of a trivial tangent bundle allowing calculations to be written at a Lie algebra level.
Here D(G) = C°°(G) x U (g) where the Lie algebra g of G acts by left-invariant vector
fields. This is because, on a Lie group, one has a global basis of left-invariant vector
fields which by themselves generate U (g). Any polynomial of functions and vector
fields can be considered equivalently as a polynomial in functions and the basis of
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left-invariant vector fields by moving all coefficients to the left using the commutation
relations.

We start with the algebra generated by the functions and its centrally extended
differential calculus. This has generators ¢ for the anti-Hermitian basis of 1-forms
over the algebra with dual basis 9, of left-invariant vector fields. The real structure
constants are defined by the Lie bracket [0, dp]; = cqp 0. and the Killing form, which
in the compact case is negative definite in this basis. We take the metric g2 = (¢, e?)
as given by this up to a normalisation. We also have e** = (¢?, ) = g*9,, to convert
a 1-form to a vector field. Ad-invariance of the metric and its (more usual) inverse are,
respectively,

Cabdng + Cabcgbd =0, Cabdgdc + Cacdgbd =0.

The calculus has form-function relations
[e“, f1=m "ag(e* . df)0' =m~'ag®@, )0, df = @af)e"+2@m)~ 1(Af)E,

where A = g??3,9; is the Laplacian in our conventions. The products of 1-forms and
functions here are in the quantised !, i.e. one could use o and put a hat on the e¢).
The quantum version of a classical 1-form fe,, writing e explicitly, is then

Fel = feet + 2m)IAdSf, )0 = foe + m) " Ay )b

Next, on a Lie group, the Levi-Civita connection has generalised Christoffel sym-
bols for the basis and curvature given by

1

1 1
=04, ab]g = Ecabcaw \% eb = _Ecacbecv M = Ecabc

Vo, 0p = >

a

1 1,
R(@a; 99 = 71100, Iplg, delg = anb‘cec"ad
and the latter in index conventions translates to

1 1 1
Rd‘ = —c.1%¢c ‘d7 R., = —c dc .az—K.,
cab 4 ab Cec cb 4 ab Cdc 4 cb
where K is the Killing form. For the canonical Riemannian geometry on G, g, will
be proportional to this and we identify this constant as

dim g
4Rsc

8ab = Kap (61)

where R, is the Ricci scalar curvature.
Next, for D(G), we add 9, into the algebra with relations

[04, 0p] = )\Cabcaw (04, f1=A04f
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and according to our general results, we take commutation relations in QY (D(G)) with

[80, "1 = AV, e? —m™1A0'V 14y — 2m) 1220 (R(3a, €”%) + Tr((Vda) (Vel™)))

A
=~ cac bec — @m)~ 20 g ceq®dy
— @m) 7220’ (Racg” — ZTr(ccade" ® 04 ®g"cslel ®0)p))

A A2 .
= _Ecacbe - Cm)~ /gbcccadad — (2m) ] (Cf Cdaf b Ccadgbecdec)
= ;cac”e — @m) 7120 ¢ eca 0y = %cm”(e +m~1o ),

where at the end we used that the Ricci tensor is proportional to the Killing form and
hence to the inverse metric g,5. By similar calculations, we have
[ddy, 1= Gd® (df, )V +m 26 V0,
+@m) 1220/ (R34, df*) + Tr(VA) (VA )
A 1A A db / —14 7
= ECbu 0¢ fe + 2m)~ Cbu €040, 0" +m™ A0 Op [Vt 04
+ 2m)'2%0' 3y f (R (34, eb#) + Tr((Vda) (Ve )
+ @m) IR0 Tr((Vo,) (de f © )

A
= Sha B fe" + 2m)~1260'0, 8" cca B
1A db d cb
+ (@2m)~ ?9/(@1(468 340c f + cpa“ 8° aa’acf)

A _ A -
=df(— Ecacbe” + @2m)"'a0' gy 0a) = Eahfccabec

where

§=5-mlo's".

For the 3rd equality, we recognised the previous vanishing Ricci + Tr expression but
have an extra term due to Vd ¥ not being tensorial in the coefficients of d f. The 4th
equality uses ad-invariance of the metric. One can check that this is consistent with d
applied to the relations [d,, f] = Ad, f when expanded by the Leibniz rule and with
expressions of the form [9,, fe ] = [0q4, f] e’ + f [8,1, ] again expanded as usual.
Finally

A
[0a, ddp] = Zcapdde + AP @y, 3p) + 1PP 8y, 3p),

where we break P (X, Y) into terms without and with curvature in the general expres-
sion. Here
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PW @y, 9p) = —0'(Vy,dV, 8a) — (€“Vy, 5,9 + @m) "' 20/°Vy, Vy, 5,05 +a < b)

— @m) 10" g% (Vg 80) (Vi ) — A5 (Vacda)* Va, 8 + a <> b)
/ 1 c 1 c d e d e
=—0'(0p(04V) — Ecba V) — Ze (cca“cap” + ccb” Caa”)%e
-1

m-A .
- Te/ngcdef(Ccascsbe + chscsae)af

-1
m A
- TQ/ng((CcaStht + cep’cda’ 050 — Ecdse(ccaxcebf + chSCeaf)af)

1 1 .
= 0" (@aV) = 5Cpa 3 V) = Ze‘(ccadcdbe + cep?eaa®)de

—1
m
— T@’g“dccbxcda’(axat + 0 9y),

where for the last equality we used the Jacobi identity and antisymmetry of the Lie
bracket to cancel all the A /8 terms. We also have
P @4, 9p) = m™'0'g"' R ape(9ade — AT cady)
+§(V(R)(aa R(8e, Vy,02)3p, %) + (R(D¢e, Vi, 3p)a, €?) ) &€
7 (Ve 2, Op) + (R(0c, Vi, 04)0p, €“) + (R(8c, Vi, 0p)0a, €) )€
+ l(2m)7]9/(Vaa (R)(3p, 3c) + Vi, (R)(3a c) — V5, (R)(3q, p)
— (R(e, 8)Va, 85 + R(De, 8)Va, 0, ) ) e
— 2@2m) "0 g (R(3. 8c) Vo, + R(3a. dc) Vi, 0p)
. A A -
= milg/ngReabc(adae - Ecdefaf) + Z(Rdhcecdae + Rdacecdhe)ec

A A
- Zm 19,(Rdecacdbe + Rdecbcdae)ec# - Zm le,g(‘d(Rbccdae + Raccdbe)ae

-1
m A A -
= TQ,ngccbxcdal(asar - Ecsrfaf) + E(Ccefcfbdcdae + Ccefcfadcdbe)ees

where for the second equality we used
Vi (R)(3a, 9p) = 0cR(0a, 0p) — R(Vy. 94, 9p) — R(3a, Vo, 0p) =0

since the Ricci tensor is a multiple of the metric and hence covariantly constant. We
then used that

cea’ crecar’ 4 cen’ ¢ e can® = K @p, [8as 3c1) + K (34, [3p, 1) = 0

by invariance and symmetry of the Killing form, so that there is no e* terms. We also
use that R, is a multiple of the metric, so that there is no 9, term. Finally, we put in
the formula for R¢,;. and used ad-invariance of the metric to cast the first term in a
certain form. This is arranged so that when we add P and P, the last term of the
former and the first term of the latter exactly cancel giving the final result
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1 . 1 . , .
P (@, 3) = 0" @h(0aV) = J€ha“0cV) = ¢ (Cea®cap® + cepcaa®)de

A ~
d d
+E(Ccefcfb caa’ + cee’ ¢ racan®)et.
The coefficient of e¢ here is a canonical totally symmetric trilinear-form on the Lie
algebra.
Next, we can compute Jacobiators in our case. Following the results of Sect. 4, the
nonzero ones come out using the curvature above as

AZ -
J(3a, 3p, ) = —A2R(0g, dp) (e —m10'g%0,)) = —Cab“ced’e!
J(f da, d8p) = 22 ((R(Ba, 3)3p) ()e€ — m™ 160" R(Bp, (df)")d4)

22 B 22 -
= 7 @aN(cactcep”e” —m™10'g% ey cea” ) = T B f)cact cep? e,

where at end we used ad-invariance of the metric. We also have

J(3a, dp, ddc) = 12 (d(R(aa, ¥)de) —m 10" (g7°0e) Vi, (R (B4, 35)c) + 0" (R(3a, 3p)Dc) (V)
- eH(R(VaI, 4, 9p)3c + R(9a, Vi, 9p)9c + R(3a, 9p) Vi, dc)
+ VR(34,32)8: 9% T VR(34,9)3.9%a + VR34, 3c))
= 22R ap(ddg — 2m) 10" g S c ' 050, + 60,4 V)

22 -
- E(Rfcehcdae + Rfmecdbe + Rfeahcdce + Recadcehf + Re(‘dhceaf + Redabcecf)edaf
22 ~
= )\szcah(dad +60'94V) — ?(Rfeabcdce + Recadcebf + Rerdhceaf)edaf

22 2 -
= *Cabececd(dad +6'9,4V) — ?(Cacxcxdtctbf - Cbcscsdtcmf)eda_ﬂ

4
For the 3rd equality, we dropped the 9,0, term as these commute at order 1 and
are contracted with something antisymmetric by invariance of the metric. We also
cancelled 3 of the 6 similar terms after inserting the value of R and using the Jacobi
identity for the Lie algebra. The remaining 3 terms do not cancel but again using the
Jacobi identity in the Lie algebra can be condensed to two for the 4th equality.

Finally, we compute what the Schrodinger representation looks like in the Lie group
case. Here,

PNV = f, pQ)Y =213, pe)y =m~'re™ W), pO )W =y

since

1 1
(, )Veb = _E(ea, ec)cucb = _Egaccacb =0.

This extends the usual Schrodinger representation to 1-forms on M by converting
them to vector fields by the metric and the scale factor m. In addition, we have
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A2 X
p(do)Y = =0, V)Y + %((Mu)(w} + R(@p, 3)e” () + 2gb"(Vab 3. Vo, dyr))

)“2
= =0 (V)Y + - ((A0)(¥) + R(@, d0)e™ (W) + 28" (V3,84 Vo, dyr))

1 .
=~ V)Y + —( 0¥ — 58 b cpat copBar + 8% cha®dc0a)r)

2

A Rye
—(@. V)Y + 7((A3 W) — 3 1/f) =—0.V)¥

using invariance of the metric so that

f d 4va

f C?f = Cbacccfbgj = Kfag

b d b d
87 cva’ cof’ = —cpa“g" ——3,.

~ dim g

We also used that 9.9y commute to order 1. We then used that in the Lie group case
for our basis,

1 R,
A@) = (, )V(’ @ Va,da) = 87V, Vo, (80) = ~ 8" cea¥cpa®de = ——0,
4 dim g

by a similar computation.
Example 6.1 ForG = SU(2) = $3 we have the Lie algebra [9;, 9] = €;x 0k in a basis

of left-invariant vector fields, where €; j is the totally antisymmetric tensor. Then the
Killing form and symmetric trilinear form are

Kij = ([0;.10j. 9], &) = €jnieine = (8 jxdei — 85idkx) = —28;;
Kijk = (19, [9;, [3k, o111 + [}, [9;, [3k, 9111, e h = €kim€ jmn€inl + €klm€imn€jnl = 0.

We set g;j = —&;; which corresponds under (6.1) to a certain radius so that the Ricci
scalar is 3/2. Then we have

. A ~
[a,»,ef]=Eei,»k(ek—m—le’ak), [dd;, f1= e,,k(a ek ek =k +m~19'y,

A 1 A
[0;, 431 = S eijuddy — A0 (0 (0 V) — e],kakv) - Z(e ¥ +e'dj — 28 ).

The Jacobiators are

A2 ~ ~ A2 ~ ~
J(@;,0;, € = 7 Gikel = 8jeh), J(f,8,d0)) = - (Bijdh fek =B fel)

A2 A2 ~. ~
J (@, 0, ddy) = ( (0 +0'9;V) — 8 (dd; +0'; V)) 5 (€wired — exjie)in.
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Finally, the Schrodinger representation is
, A
PNV = f¥, p@Y =214y, ple)y = —aailﬁ, p(dd) = =@ V), p@)W =y,

6.3 The Schwarzschild metric

One can analyse the theory for a general static rotationally invariant spacetime. Here
we just focus on the representative black-hole case with r the ‘Schwarzschild radius’
as a free parameter, and we also set the external potential V = 0. The Ricci tensor
vanishes, the metric and the Christoffel symbols are

guvdxtdx’ = —(1 — )dt + 1 dr + r2(d6? + sin®(0)d¢?),

. re r re
o Frtt:;(l_i>a Frrr:_rttr, FGGZ_"(l—i),

My = ——"—
r 252 (1 — rY) 272 r r

N —

T pp = sin? (@) T gg, T , TV =—sinBcosd, T?y=1, T =coto.

Recalling our notation I'** := I'# g g"‘ﬂ, these come out as
t ¢ r l Is ] l
rr=r¢=0, M=--2--), - :——zcot(é)).
r r r

The Ricci tensor is zero but the Laplacian on the coordinate basis vector fields is not
zero and we compute it as

2
A0y = A3¢, =0, A9J = __3(7' — Is) 0,
e

1 2
Ay = —— (2(;» — 1) cot(8)d, + (cot(8)? — 1)39) .
r

We compute the kernel relations from (1.3) for the coordinate basis as

s m dr 2r —rg
0y =-—m(l —— 0y = — —A , 6.2
m( r )ds N r;‘ ds 2r(r —ry) 6.2)
d¢ de A
dp = mr?sin®(0)—, 89 = mr’— — = cot(f 6.3
p = mr sm()ds g = mr o 2co() (6.3)

for the momentum operators. We also have (1.4) as

do; doy dag cos(9) ., A

m =m— =0, = — —9
ds ds " T s30T 2 2sin20) !
do, Ty 5 Ty 2

G = 3t 5=
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where
2

8
92 =07 + ——— + Acot(8)d
o + sin (9) (0)d

sph
is the ‘spherical momentum’. These are our D (M )-valued geodesic equations in first
order form. Note that 9, € D(M) are (locally defined) vector fields and we are not
obliged to think of them as differential operators.

Proposition 6.2 The spherical momentum and the total momentum

92 r A r 82},
2 2 sp
-8, =— 1_’,_X+(1—7S)a,+;(2—7s)ar+ i

r

daszph dB, ¢
are constants, —g= = —jl& = = 0 to order .

Proof (1) the differential in D(M) is df = CT? and using (3.4) in the kernel of the
Schrddinger representation, this becomes in particular

df @ _ 1 , :
mL 2 = (' + S+ ot @) 1)

from the form of I'?. We use this and [3y, f(6)] = A f’ along with our expressions
for ddg to compute that

d 32 A 92 cot?(0)
m—R +—2—) = 32— 2

ds 7 " sin2@)  r2sin@@) 0 sin(6)

to order A The addition of the quantum correction A cot(6)dg exactly kills this.

(2) 32, = g""9,0, — AI'*9,, is the expression stated but this is proportional to
the Hamiltonian f € D(M) in our set-up. Hence this follows from Cor 5.4 applied in
the case of the Schwarzschild metric. It can also be verified explicitly as an excellent
check on our calculations, using

d S\ gt
ﬁ)—ﬂ—ﬂ08+;ﬁ+ Q-2)f
Y r r

obtained from (3.4). O

Since 9, € D(M) map under the Schrédinger representation to momentum oper-
ators, we think of them as momentum. Classically, we would set > = 0 and consider
them as real momenta p,, . Ditto for pfp = pé + pi / sin(0) for the spherical momen-
tum and the total momentum

2 2

14 r Psph
(- f)p3+i.

r

—pA = (6.4)
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Thus p;o; = m, the rest mass of the particle if s is proper time. This can be used
to express p, as a function of r and the other three conserved quantities. These four
constants of motion then allow one to fully compute geodesics by determining their
values for any initial proper velocity. However, to act on wave functions we need the
above expressions at least to order X and to view them as operators. Then requiring
that the image of 8 ;1S a constant m3 % becomes the Klein—-Gordon equation for a
particle of mass mgg.
We also check x-compatibility. From

% =0, + A",

we find
a7 = 0, 8¢ =0d¢, O, =8r+7, dp = 0p + Acot(6),

which implies to order A,

92 24, r 32, + 2xcot(0)dp
(atot 1 _t ;% — (0, + _) (1— :) P ;)
—(2— —)3 + cot(9)89
—830,+2 @0, - —(1 — 29 — 20750, = o7,
and similarly, but more easily, (83p h)* = aszp , as expected. Similarly,
d .. do, re 1 da, 2a
ma(ar) =mao T 2x(1 = 7)(_r_2)ar =mas T r—3(r — I5)0y
so that
do, rg 5 Vv 1,
MG = g~ O+ T 3 S e
_ Is 2 2 1 A B d
= _-2(}" _ rs)z at - 7 zar 8&[7/1 (r — rs)ar = ma(a;k)

as expected. Similarly, and more easily, for dg, and trivially for 9;, 9.

7 Quantum mechanics-like applications

The theory developed in previous sections can be applied in two contexts. The first is
M a Riemannian manifold for ‘space’ and the geodesic time variable s identified with
regular time 7. This amounts to a geometric approach to regular quantum mechanics on
M, to which the theory above applies. This is of interest, but here we focus our attention
on the more novel case in which M is spacetime with wave functions ¥ € L2(M)
over spacetime.
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7.1 Spacetime quantum mechanics

We recall from Sect. 5 that we represented the algebra D(M) and its differential
calculus as an extended Schrodinger representation p on L>(M). We interpreted 6’ =
ds as a ‘Heisenberg picture’ where k% = [p(h), a] for operators a and s proper
time and for some choice of Hamiltonian. We used this for a = p(f) in Sect. 3.1
to define d f in D(M) and for a = p(X) in Proposition 3.5 to define dX. It then
follows on products at least to order A working in D(M), and hence at least at the
order for quantum mechanics in the image under p. The corresponding Schrodinger
picture (5.4) moreover matched up to an expected quantum geodesic flow with s the
geodesic parameter and this provides the physical meaning of the external time s. If we
imagine a density of dust where each particle evolves along a geodesic in spacetime,
we can start with an initial configuration of p and evolve it by proper time s for each
dust particle. If we proceed by analogy with ordinary quantum mechanics, it would
then be natural to set p = ||*> for ¢ some kind of ‘wave function’ on spacetime
and evolving with s is then the quantum geodesic at hand. This is not quite what we
do as we work on A = D(M), but the formalism works in principle for any suitable
A — C*°(R)-bimodule, in the present case consisting of s-dependent wave functions
in L>(M). This remains the conceptual setting even though our case is also more
complicated due to nonassociativity at higher order. We will also refer to momentum
operators acting on wave functions and defined with respect to a coordinate basis as

Pu = (@) = by (7.1)

Next, we consider the choice of Hamiltonian. When M is space, we take b so that

ph) = —%A + V for some external potential function. In the spacetime case we
will use O for the spacetime Laplacian to avoid confusion, and we will focus on the
simplest case where the spacetime external potential V = 0. With spacetime signature
— + +-+, we accordingly take ,
p(h) = —;—D (1.2)
m

to define our more novel spacetime or ‘Klein—-Gordon’ quantum mechanics, which
we will solve in the next section. For the theory to be unitary, we need that p(h) is

self-adjoint, which depends on the limiting behaviour of fields when the manifold is
not compact. The following observation is a step in this direction.

Proposition 7.1 For a Schwarzschild background, at least on 2-differentiable radial-
only dependent wave functions ¥ (r), p(h) is symmetric if we impose von Neumann

conditions in the sense ofrzl/// — 0asr — ocoand (r —rg)y’ — Oasr — rs‘".

Proof We focus for simplicity on the radial sector of the model, so ¥ = ¥ (r). We
use the measure /— det(g) = r2sin(f) so that the L?-norm for radial functions is
effectively

(Wly) = / [y () |2r2dr (7.3)
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(the sin(f) cancels in expectation values for purely radial calculations, so we ignore
thkils). Then p(h) = %D, where [J acts on radial functions as (1 — ) % + % (2-%) %
Then

(@I0V) = [GY'r(r = rIS =27 / ¢Y'r(r —rdr,

where prime denotes d/dr and where the term from differentiating r(» — r,) in the
integration by parts cancels with the second term of [J. If we choose Neumann con-
ditions as stated then we do not pick up anything from the endpoints. Doing the same
for (¢ |¢) proceeds in the same way and gives the same answer for the second term.

(]

Next, in both space and spacetime cases without external potential, the images in the
Schrodinger representation of (1.3)—(1.4) are set to zero and hence we automatically
have an Ehrenfest theorem,

d A
md—(WIX"IW = (Ylg"" py — TH|¥), (7.4)
s 2

d A
ma(‘!f”’uw” = (I/I|Fvuoggp(l7vpp - )\Ftvspr) + ERvugUpppwf)- (7.5

This differs from classical geodesic flow for the expectation values of the coordinates
because of quantum uncertainties, i.e. since the expectation of a product is not the
product of the corresponding expectations. Similarly if we add an external potential
V. Note that in the Heisenberg picture, the state 1 is fixed and does not evolve in time.
However, the same result applies in the Schrodinger picture, where ¥ now evolves
with s according to (5.4) and operators are considered as fixed questions about the
system and not evolving (in the basic version of the theorem). Then

d m
" (Ylay) = —(¥lph)a —apH)|¥)
s A

and for [p(h), a] we use the expressions previously computed as the coefficient of 6’
in the calculation of da and its representation. As (¥|y) is a constant, this also tells
us the rate of change of the expectation value (a) := (Y |a|y)/(¥|¥). The Ehrenfest
theorem (7.4)—(7.5) in the Schrodinger picture thus looks the same but now with the
s time dependence on the left coming from the state.

Proceeding in the spacetime Schrodinger picture, if we have an eigenvector for the
Hamiltonian with eigenvalue Ex ¢, say, then each of these evolves by —Ayy = Exg ¥
and hence

d =0
m-(laly) =

just as in regular quantum mechanics. In the case of a black hole background and radial
wave functions ¥ (r), we note the following consequence of the Ehrenfest theorem.
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Proposition 7.2 In a Schwarzschild background, if the wave function is differentiable
and has only radial dependence  (r) = 1 + 1Y for real V; then

dilriy) . [

S i [ v = ras = v+ 3 [0 Pre - o |

Ty Ts
if the endpoint limits exist. Hence, unitary evolution of (\r|r|yr) requires that the
second term vanishes, for example if ||*r> — 0 asr — oo and |Y|>*(r —rs) — 0
asr — rj.
Proof By the Ehrenfest theorem and the calculations in Sect. 6.3, since 9, € D(M)
acts as )Lad—r, we have

d{ylrly) rs. 0 2r—ry

r’or
Then we compute

oo 1 [ 00
/ Yr(r —ro)y'dr = E/ r(r —rs)3r|¢|2+i/ r(r —r) Y1y — Yoyrdr

r(r

=[—5— WI]OO—(

)
+i / F(r — ) (Y1 — Y2y,

where we apply integration by parts to the first term. We then insert this back into the
Ehrenfest theorem. O

For example, the ‘atomic’ black hole eigenstates in Sect. 7.2.2 (the type (iii) modes)
are differentiable at any point just above the horizon, bounded there, and decay
exponentially for large r, so the endpoints term vanishes and evolution is unitary
as expected. Moreover, these modes are real and remain real (times a phase that is
independent of r as they evolve), and hence (r) is a constant as expected for evolu-
tion eigenstates. The endpoints limit condition also appears to be true for the horizon
modes arising in the numerical calculations in Sect. 7.2.1, but these are complex so
(r) does not have to be a constant, and indeed we will find that (r) actually increases.

7.2 Pseudo-quantum mechanics in Schwarzschild background

Ordinary quantum mechanics arises as an approximation to solutions of the KG equa-
tion for a fixed mass m and wave functions which, after factoring out a rest mass mode
e~ 7!, are slowly varying with respect to some local laboratory time ¢. In this sec-
tion, we consider something rather different but which nevertheless quite resembles
quantum mechanics. To avoid confusion, we will call it ‘pseudo-quantum mechanics’.
Namely, we look at the above spacetime Schrodinger picture with p(h) the space-
time Laplacian (and no external potential), but reduced in the presence of a time-like
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Killing vector. This extends ideas in [7] to the curved static case. The big difference
is that in pseudo-quantum mechanics the ‘quantum mechanics time’ is the geodesic
parameter time s as explained above and not the spacetime coordinate . We work in
geometric units where the speed of light is ¢ = 1. We continue to focus on a black
hole as representative of our methods.

The required reduction at the noncommutative geometry level is to restrict to func-
tions independent of # and quotient by the time coordinate case of (1.3),(1.4), i.e.

mdt = g"0'3,, dd, =0 (7.6)

to order 1. As explained in Sect. 6.3, the vector field 9; € D(M) appears in the classical
limit as the ‘energy’ p, and the first of (7.6) with m interpreted as the mass of a particle
imposes that 8 = ds for the proper time in the classical approximation and for the
chosen signature. This is part of classically imposing (1.3) whereby

9/2
—ds? = g/wdxudxv = Wguvglwgvﬁpapﬂ =-0"

for a particle of mass m, but we need only impose it for one of the time coordinates to
identify 6’ as proper time, i.e. with the right time dilation factor. We still have a quantum
geodesic flow on this reduced algebra that still lands on the Schrodinger equation and
is now closer to the conventional one for quantum mechanics. This reduced algebra
can be elaborated along the lines of [7], although we do not do so here as we do not
need it explicitly.

The second of (7.6) means we can represent the reduced algebra (and hence the
original algebra) on fixed frequency or more precisely fixed ‘energy’ p; elements of
the form

Y. 0,9), (1.7)

now with such wave functions also varying in s. Here 9; € D(M) in the noncommu-
tative geometry acts as k% and hence has value p; on the above modes. Such modes
are not normalisable and hence not precisely in L>(M) but it is useful to include them
in the discussion (there are standard ways to deal with this issue more precisely). The
associated quantum geodesic flow/spacetime Schrodinger equation on these modes
then looks like

B K2 K2
—A— =——My =(——A+4Y, , 7.8
35 m ¥ = o + Verp)yr (7.8)
where 5
s _1 DP;
Vopr(r) = —(1 — Syt 2L
erf(r) ( r) o
re 0% 1 rg 1 [8° 1 92 9
A=(1- 2 1 2-H 2 4 (2 —— - 4 cot@®— ).
( r)8r2+r( r)8r+r2 (892+sin2(9)8¢2+co()80

This has been set up to resemble some kind of quantum mechanics for a particle of
mass m on a 3-manifold with the spatial part of the metric plus an induced radial
force potential. Although this only looks like (and isn’t) what is normally meant by
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quantum mechanics, it has the merit that the KG flow/spacetime Schrédinger equation
is coordinate invariant; we are only choosing to look at it a certain way with respect to
a chosen coordinate time (and then extending to allow plane waves in this direction).
With this discussion, we are nevertheless led to a precise setting were we can ask
for ¢ to be L? on position space and use standard quantum mechanical methods and
language. As in quantum mechanics, one can either solve this directly by integrating
the first order PDE (7.8) or one can look for eigenvalues E g and eigenfunctions of
the evolution operator, i.e. such that

h2
(—%A + Ver)¥ = Exg,

2
which amounts to (7.7) solving the KG equation [] = m{z" with ‘square mass’

m%(G = —EK(;2m.

We may potentially be interested in all the eigenvalues Ex ¢, not only negative ones,
since there is no specific massive KG field in the picture and we are just using the
KG wave operator [ to define the flow. We illustrate both the direct numerical PDE
method and the eigenfunction method, and can consider the latter as

hZ [72 5
<—%A+ Verr + ﬁ) Y =EY¥; ho=-p = mgs+2mE,

for ¥ (r, 6, ¢), where we subtracted the rest energy to match conventions of the ordi-
nary time-independent Schrédinger equations. We will find solutions Y g for E < 0
that are much like those of a hydrogen atom. Also, to align with ordinary quantum
mechanics, we will be interested in p;, < 0 or equivalently @ > 0 as explained in
the introduction, see [10]. The asymptotic form of solutions of the KG equation in a
Schwarzschild background is known analytically in terms of Whittaker functions [39],
and exact solutions for more general Kerr black holes were noted in [11] in terms of
Heun functions. These can also be solved for exactly using MATHEMATICA, which
is the approach we take. In both cases, graphs are presented in units with & = 1.

7.2.1 Direct integration in the radial case

The simplest solutions are for ¢ = ¥ (r) constant in 6, ¢. Then we can solve this
numerically see Figs. 1 and 2. Calculations are for r; = —p; = m = 1 and are done
numerically for » € (1.0000017s, S0r;) with Neumann boundary conditions of zero
radial derivative along the horizon edge. Figure la, b studies the case of an initial
Gaussian centred at 10r; showing complex oscillations in i and a gradual diffusion
of the probability density |1/|2. Part (b) shows the same model in close up nearer the
horizon and extending a little further in geodesic time s. We see the emergence of
further probability density waves when the region of disturbance reaches the horizon,
at around s = 0.65. Whereas parts (a)—(b) have the initial Gaussian centred far from
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(@

Fig. 1 a Evolution of () initially a Gaussian centred far from the horizon at 10 r; showing complex
waves and diffusion of the Gaussian probability density with motion of the peak towards the horizon b the
same model but in close up near the horizon showing appearance of horizon modes at time s = 0.65. ¢
Evolution of an initial Gaussian centred at 1.4rg close to the horizon. Units of rg = 1
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Fig. 2 a Cross sections of the model in Figure 1a, b showing close-ups of the emergence of probability
density waves when the Gaussian tail starts to interact with the horizon, at around s = 0.65. Note the
different scales in the plots. By s = 3 these horizon modes are all that remain. b The same model in larger
view showing the Gaussian bump absorbed at s = 1.4 into the horizon modes. ¢ The expected value (r)
and d the probability density entropy both increase throughout the process

the horizon, part (c) shows evolution of an initial Gaussian at 1.4r, i.e. near to the
horizon. It is significant that this is not particularly singular in our set up where our
region terminates just above horizon.
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Figure 2a, b looks in cross-section and in close up at these emergent ‘horizon
mode’ probability density waves (their actual wave function is complex oscillatory).
The density waves start very small on the tail of the Gaussian where it interacts with
the horizon as shown at s = 0.65, but by s = 0.9 they are already twice as high as the
peak of the Gaussian, even though most of the probability still resides in the Gaussian
off stage at larger r. But by s = 3, there is almost no trace of the original Gaussian
as the horizon modes have grown and also increased their wavelength considerably.
Part (b) steps back and shows what happens to the Gaussian bump. By s = 1.4 the
oscillations have passed the centre of the Gaussian.

Note that the peak of the Gaussian bump throughout this process has an apparent
motion increasingly rapidly towards the horizon so that by s = 1.1 itis at r = 7.2r;
and by s = 1.4 it appears at about r = 4ry in Fig. 2b underneath the probability
density oscillations (albeit no longer a Gaussian by this point). The picture is thus
of a Gaussian bump ‘particle’ falling into the black by a process of absorption by
waves created at the horizon. This apparent movement of the Gaussian peak towards
the horizon is, however, quite a bit faster than a classical geodesic for the same initial
velocity p;/m, as governed by (6.4) in the form

dr p? T
=4 L == 7.9
ds m? ( r ) (7.9)

Solving this with the same initial point as the initial location of the Gaussian bump,
the point particle is only at 9.65r; at s = 1.1 and 9.55 at s = 1.4 compared to the
above. Yet in spite of the inward motion of what used to be the Gaussian peak, the
expected value of (r) all the while increases as shown in Fig. 2c. This is a somewhat
unexpected effect, but what happens is that the horizon modes, while they increase
with time in height near the horizon, also have increasingly larger wavelength, which
pushes up the expected value of r.

It is tempting to think of the disappearance of the initial Gaussian and its eventual
replacement by the horizon modes as a kind of information loss. To this end, we
plotted the continuous entropy —(In(p)) of the associated classical probability density
p = |¥|*/(¥|¥), which on radial functions amounts to

[y |? /°° [y |? iz,
S = —(1 = — ——— In(———)r~-dr. 7.10
W) == (It ) M) (7.10)

We find in part (d) that this also increases throughput the above process. We similarly
looked at the entropy starting with several other Rxo-valued initial wave functions
with support away from the horizon and r,,,y (or any fixed phase times such func-
tions) and entropy increasing appears to be a general feature for at least this narrow
class, but not for all initial wave functions. There is also a natural relative entropy
S(plp’) = —(In(p/p")) where p is used to compute the expected value (this is called
the Kullback-Leibler divergence [25] in information geometry). However, this quan-
tity relative to the initial state is too noisy to compute numerically due to the essentially
zero probability densities of both parts of the ratio approaching 7,4y
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All of our plots are for s before the point where the region of disturbance reaches
rmax (Otherwise one gets a reflection there and interference from this). Integrity of the
numerics before that point was assessed by computing (yr|yr) which indeed remains
constant up to numerical noise or systemic errors (of less than around +1% over the
range of s plotted). Moreover, changing r,,;, to ten times closer to the horizon does
not visibly change any of the graphs (except for the highly magnified s = 0.65 case
in Fig. 2a which does not significantly change on making r,,;, twice as close). In
particular, the horizon modes do not appear to diverge at the horizon. It should be
stressed, however, that the assumption of an initial Gaussian wave function in r is
entirely hypothetical and not a physical choice. For example, a particle ‘Gaussian
bump’ coming in from r = oo might be expected to have already have evolved to a
complex wave function by the time its region of disturbance reaches radius r,,;, <
r < Fmax SO as to be an initial state for the numerical model.

7.2.2 Black hole atom case

For large r, the potential looks like a 1/r potential (shifted by 1) and we can solve for
something which for large r is like a hydrogen atom or ‘gravatom’. This mirrors the
hydrogen-like atom in [7]. The term gravatom has been used in physics for the loose
context of gravitationally bound states and these are of potential empirical interest
[36], but we are not aware of any theoretical framework to make this precise in the GR
setting needed for a black-hole atom. Although in our case the physical significance
of evolution with respect to s is not yet established, when we focus on stationary
states with respect to the s-evolution, as we do in this section, we do obtain something
that looks like quantum mechanics and is in the same spirit as a quantum-mechanics
interpretation of solutions of the Klein Gordon equation proposed in [15]. We are then
able to study gravatom modes in our framework.

We proceed similar to a hydrogen atom, namely by separation of variables in the
eigenvalue equation. Separating out and solving for the ¢ coordinate dependence fixes
Py as well as p; as parameters and we need only consider eigenstates of the Klein—
Gordon wave operator of the form

pit Pgp®
ere * R(r)F(0).

The radial equation then separates to

2mExg p? re 92 1 re 0 I(1+1)
R 1-H—+-2-3—)|r= R

< h2 +ﬁ2(1—rr—s) ¢ r)8r2+r( r)ar) r2
(7.11)

for some constant /, and the remaining 6 equation is then

2 2
1(1+1)—?—“’ F + 8—+cot(9)i F=0. (7.12)
K2 sin%(9) 962 90
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Fig.3 Spherically symmetric / = 0 evolution eigenfunctions for the pseudo gravatom with pt2 /2m = 0.5.
a shows oscillatory mode (i) with eigenvalue Exg = —0.49, exponentially divergent mode (ii) with
Egc = —0.51 and exponentially decaying ‘atomic’ mode (iii) with Ex G = —0.51. b and ¢ shows the
fractal nature of all three modes approaching the horizon, where successive close ups look the same

The latter is the same as for the angular part of the Laplace equation on R3 and solved
as usual for integral [ by Legendre polynomials P;" (cos(f)) where py = mh and
m = 0,1, ---,1 (these functions combine with the epT¢ to spherical harmonics as
usual). So the only difference for us is the radial equation (7.11).

Note that if we take r¢ = 0 in the 2nd term on the left of (7.11) and work to order
rg in the 1st term then we obtain the usual equation for an energy E eigenstate of a

hydrogen atom, with the correspondence

2 2

pt 2 me
E _—= E, r = —,
kG + 2m sPi 21 h2¢

where m is the reduced electron mass (that takes into account the mass of the nucleus).
e is the electron charge and €( the vacuum permitivity constant. Recall that the ground
state of the hydrogen atom is spherical (the wave function is purely radial) and up to
normalisation is of the form, with energy

_r 47 hteg 12
Y(r)=e %, ay= — E=— 5 (7.13)
me 2mag

Our case is more complicated, but we can expect some similarity in view of the above.

Some solutions are shown in Fig. 3 for vy = p, = m = 1 and pg = 0 (the higher
spin modes follow a similar pattern). In this case i again depends only on the radius.
The radial equation depends critically on Ek g and we find that:

2
(1) For Exg > —5—’;1, there are real oscillatory modes which (up to normalisation)
are well approximated for large r by

V) ~ sin(ar + ﬂ)'

There is a free boundary condition resulting in a phase shift of the form g as stated
for large r.
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2
(ii) For Exg < —;—,’n, solutions typically diverge exponentially to oo at large r,

or

e
)~ —.
r

2
(iii) For Exg < —g—’; and carefully chosen initial conditions, the mode in (ii) can
be suppressed leaving solutions approximately of the form for large r,

Y(r) ~e .

The case (iii) has a finite norm but the other two are not normalisable with respect
to the same r2dr measure as above, due to large r contributions. Remarkably, all
solutions are non-singular as » — r,. The large r frequency/exponential factor is

J12mEgc + p?l

h

o=

We see that the pseudo-gravatom wave functions for/ = 0 match the usual hydrogen
atom at large r, based on the ‘atom-like’ type (iii) modes, but their behaviour near
the horizon is completely different. Namely in the figure parts (b), (c), the modes
are shown again in close up (the type (iii) ‘atomic’ mode is plotted but the other two
increasingly coincide as we near the horizon). We see that the even more close-ups look
the same, a phenomenon that persists on iterating more close-ups all the way down
to machine precision. Thus the solutions, while bounded and not divergent, oscillate
infinitely quickly as r — r, and acquire a fractal nature. This is to be expected due to
the time dilation approaching the horizon. Note that the horizon modes in Sect. 7.2.1,
while they look superficially like type (i) here, are not eigenstates. In fact, they are
complex and decay much faster (namely what appears to be more like 1/ at large
r).

Thus, the probability density |/ (r)|*> of the I = 0 modes, unlike the case of a
hydrogen atom, does not simply decay but rather, approaching the horizon, forms
bands of increasingly small separation. In the example, we see these density peaks for
the ‘atomic’ type (iii) mode at:

35, 15, 5, L5, 1.03, 1.0013, 1.00006,

in units of rg. This banding will be present in any coordinate system. Banding, i.e.
the wave function crossing zero, is a feature of some higher / modes in the case of
the hydrogen atom, but we see it already and in a fractal form here. Indeed, the radial
structure of the modes for small / > 0 in our case appear to qualitatively identical to
the [ = 0 case, while the angular structure of the higher / modes is the same as for a
hydrogen atom. Note, however, that neither £ nor Eg g are forced to be quantised. For

the hydrogen atom, the exponential form ¥ (r) = ¢ “ for the ground state in (7.13)
implies the stated value of ag to avoid a divergence in the eigenvalue equation atr = 0,
while the stated relation between E and a(p comes from the eigenvalue equation at large
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r (and together they fix the discrete value of E for this type of mode). In our case we
have an analogue of the large r restriction, but not of the small » restriction.

8 Concluding remarks

We introduced a new technique for doing some form of quantum mechanics on curved
spacetimes based on the algebra D(M) of differential operators, as generated by com-
plex smooth functions and vector fields on the manifold with the rule that they do not
commute, so [X, f] = AX(f) where A = —ih. The key feature is that apart from
being careful about the ordering, we can work with the usual objects of tensor calculus
familiar to physicists working in GR, in contrast with other approaches to quantum
theory on curved spacetimes where the focus is on operator algebras and functional
analysis [19, 22]. By separating these aspects, we were able to write down D(M)-level
first-order versions of the geodesic equations as setting to zero the kernel expressions
in (3.4) and Proposition 3.5. These equations are generally covariant, being defined
by covariant geometric objects or where not apparently covariant, behaving correctly
after one accounts for the above noncommutativity in patching coordinate charts or
changing bases (Remark 3.9). Moreover, our local versions (1.3)—(1.4) land on the
classical geodesic equation when A — 0, while at order A they contain information
which, when D (M) is represented as operators, encodes the Klein—-Gordon equation
with potential. At order 22, we also saw the Ricci tensor in the commutation relations
in Propositions 3.1 and 3.2.

We also gained a novel way of thinking about the need for these equations, i.e. why
classical and now quantum particles move along geodesics in the first place, as due
in our context to the presence of gravity (curvature) and a resulting nonassociativity
obstruction that geodesic motion kills. This is the content of Corollary 5.1. The full
explanation here lies in the noncommutative differential geometry of D(M) as an
algebra, which in the curved case (in this paper) we were not able to fully understand
but where the flat space ordinary Heisenberg algebra version is [7]. However, by
moving #’ = ds to the denominator and interpreting dx*, dp, as rates of change,
the quantum geodesic equations and associated commutation relations can be used
without knowing their origin in noncommutative geometry and with a possibility of
new effects at order A2 which could be investigated.

On the mathematical side, although we did not aim to develop the higher order
theory other than to compute the breakdown of the Jacobi identity at order A2, there is
a precedent in the use of L, and homotopy algebra methods to describe field theory
in the presence of interactions, see e.g. [21] for a review. Possibly the higher orders
could be treated order by order motivated by such methods. In special cases, it might
also be possible to cast the exterior algebra as quasiassociative, i.e. associative in a
nontrivial monoidal category. This is another direction for further work and could
connect to cochain twist methods [6]. Finally, while the focus of the paper has been
on D(M) constructed at a smooth level, there are many interesting issues as operators
in the Schrodinger representation. The image of D(M) would appear to qualify as
an O*-algebra in the sense of [40], and we also note an extensive literature around
metrics on phase space and the Weyl-H6rmander calculus for the quantisation, see for
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example [38]. A Poisson-level setting behind the flat spacetime/Heisenberg algebra
case is in Appendix A of [7] and a version of it may apply in the D(M) case as a point
of contact.

Next, the parameter s that we used in the spacetime case has its origins as geodesic
proper time and by extension makes sense also at the ‘Heisenberg picture’ level of
evolution in D(M). If we are happy with this when /2 = 0 to describe the motion of
a classical particle, we should be somewhat happy with it in some kind of collective
sense for motion of a quantum particle even if what exactly we mean by “proper time’
is at this point a little fuzzy. We believe that this interpretational conundrum does not
need to be answered immediately but could emerge from applications and experience
over time. Until then, it is fair to say that quantum evolution with respect to s is
of mathematical origin and only quantum mechanics-like, but with hints at potential
physics. In particular, when M is spacetime, we are not doing quantum mechanics
on curved spacetime in the sense pioneered in [14]. We also saw that our Heisenberg
picture was equivalent to a Schrodinger picture where wave-functions are now on
spacetime and s is now the time of a Schrodinger-like evolution (5.4). We looked
at this in Sect. 7 for ‘Hamiltonian’ (7.2), where the wave operator [J replaces the
role of spatial Laplacian and we took external potential V = 0. We also referred to
this as a ‘Klein—Gordon flow’. We are led to this point of view even though wave
functions on spacetime are not usually considered in Physics (but see, for example,
[18]). Moreover, even if one discounts any physical role of s, one can still view (5.4) as
atool to study geometry on a (pseudo)-Riemannian manifold on a par with heat-kernel
expansions or Ricci flow methods. As we are not solving for a fixed mass, this Klein—
Gordon flow captures off-shell information as a self-contained step in the direction of
quantum field theory (which also deals with off-shell modes in computing Feynman
integrals) without being quantum field theory, and could be explored further even if it
is just a tool. We exhibited a class of such flows in Sect. 7.2.1 around a Schwarzschild
background and saw from numerical work that their probability density entropy (7.10)
increases with s in the models that we looked at, as in Fig. 2. The process here suggests
a comparison with information being lost on conversion to Hawking radiation when
matter falls into a black hole; such ideas could be explored further in our parallel
setting. Another question is that the formalism of quantum geodesics which we applied
to D(M) can also be applied directly to M itself as a quantum geodesic flow on this. If
these latter Y are real and positive then this is not really different from a density flow
(where each particle moves on its own geodesic), but when y is complex then new
phenomena are potentially possible. Such quantum geodesic flows directly on M are
different from the Klein—Gordon flows in the present paper, but both could be looked
for other spacetimes of interest.

In Sect. 7.2.2 of the paper, we connected with another point of view on what could
be called quantum mechanics on curved spacetime, namely solutions of the wave
or Dirac equation that are interpreted as quantum-mechanics-like with respect to a
preferred time direction (then there is no external time s and ‘wave functions’ are
on space). This is not new and for black hole backgrounds appears first to have been
considered in [15]. General solutions for this and more generally for Kerr backgrounds
are also known [11]. In our case, such Klein—Gordon solutions appear as stationary
states for the Klein—Gordon flow and we used methods motivated by analogy with
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time independent quantum mechanics, finding ‘gravatom’ states with banding in the
probability density even for orbital angular moment / = 0 and of a fractal nature as
we see in Fig. 3. In our companion paper [10], we do a similar analysis for FLRW
cosmologies, this time using similar methods to those used for quantum mechanical
tunneling now applied to solve the Klein—Gordon equation through a period of rapid
inflation. It would be interesting to look at other spacetimes in the same vein.

Last but not least, while the entire paper as well as [7, 10] is about applying noncom-
mutative geometry to quantum mechanics with classical space or spacetime, the same
formalism can be applied to the case where the space or spacetime is noncommutative
or discrete (the latter also falls within noncommutative geometry with finite-difference
1-forms not commuting with functions). Direct quantum geodesic applications are in
[8, 9, 27], respectively, while quantum mechanics on noncommutative spaces via the
methods of the present paper remains to be considered.
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