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Abstract

The optimisation of the cooling system performance in a tokamak reactor requires the accurate
analysis of the thermo-hydraulic interactions under complex flow regimes. Although computa-
tional fluid dynamics (CFD) provides high-fidelity insight at a lower cost than experimental test-
ing, optimisation remains computationally prohibitive due to the large number of simulations
required. To address this, we introduce Hammerhead, the first open-source, transparent and fully
integrated machine learning (ML)-CFD framework with automated high-fidelity database genera-
tion and modular multi-surrogate modelling for optimisation in pipe flow heat and mass transfer
problems. The software provides seamless Python-OpenFOAM integration for automatic high-
fidelity model database building and multi-surrogate model comparison from 3 ML algorithms
with modular architecture within Python infrastructure. For the high-fidelity database, the soft-
ware constructs a parametric space using up to four shape parameters to deform pipe wall geomet-
ries and perform the conjugate heat transfer simulations. The surrogate models are constructed on
the basis of radial basis function interpolation, feed-forward neural networks, and Gaussian pro-
cesses, and trained on the high-fidelity database to approximate thermo-hydraulic responses effi-
ciently. The framework provides a comparative environment for systematically assessing surrogate
model accuracy and reliability within the same optimisation workflow. The approach offers a prac-
tical tool that increases the feasibility of design optimisation on small datasets for cooling system
applications. On a database of up to 400 cases for a 2D domain, a geometry with thermo-hydraulic
performance enhancement of over 500% with respect to that of a smooth surface pipe at Re = 1000
was found with the aid of surrogate modelling, validated through high-fidelity simulation.

1. Introduction

Cooling systems are critical across a wide range of engineering applications, from laptops to aircraft
engines and thermal power plants. They rely on fluid flow to prevent devices from exceeding thermal
limits or to extract energy from heat sources. While most cooling systems are designed to maximise
thermal extraction with little consideration of hydraulic loss, maximising the energy output of power
plant cooling systems typically requires optimising the coupled thermal [1] and hydraulic mechanisms
of the flow [2]. The trade-off between these mechanisms often implies that increasing thermal power
output comes at the cost of higher hydraulic losses, or vice versa [3], leading to a multi-objective optim-
isation (MOO) problem with non-unique solutions.

The thermo-hydraulic performance (THP) of pipe flows in cooling systems can be optimised through
a range of methods involving numerous parameters. Previous studies, often focusing on either thermal
or hydraulic effects in isolation, have shown that carefully designed surface roughness geometries can
enhance efficiency for the targeted effect [4—6]. In this work, we address the MOO problem for both

© 2026 The Author(s). Published by IOP Publishing Ltd
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THP aspects, with emphasis on shape parametrisation, where geometric parameters control the rough-
ness of the fluid-facing surface of the pipe.

The effect of surface roughness on pipe flow THP has been widely investigated through experiments
and high-fidelity computational fluid dynamics (CFD) [7, 8]. However, when applied to optimisation,
experimental approaches face significant practical challenges, while CFD rapidly becomes computation-
ally prohibitive as the parameter space expands. In such cases, surrogate modelling using machine learn-
ing (ML) [9] can provide an effective alternative, operating on limited datasets and enabling efficient
exploration of parametric spaces to identify optimal solutions [10].

ML-aided CFD has been employed to construct digital twins [11], predict flow variables [12], estim-
ate quantities of interest [13], and address optimisation problems [10, 14]. Within the engineering
domain, surrogate models have been applied to material property prediction [15], stress distribution
analysis [16], and exploration of high-dimensional parametric spaces [17], amongst other tasks. Despite
their success, these studies are typically resource-intensive, application-specific, and rely on ML mod-
els trained on data without a priori knowledge, potentially leading to data bias -as reported in previous
studies [18, 19] and undermining the model’s performance and generalisation.

Optimising THP in pipe flows therefore requires a methodology that combines high-fidelity CFD
with surrogate modelling. The rise of ML underscores the need to integrate advanced algorithms with
high-fidelity models to accelerate engineering design. This motivates the development of a unified tool
that bridges high-fidelity data generation and surrogate modelling, guided by a priori knowledge, to
achieve more efficient design optimisation. To address these challenges, commercial software like Ansys
OptiSLang [20], Cadence [21] and CONVERGE Studio [22] have integrated ML models into their sens-
itivity analysis process. These tools are designed to reduce the computational cost of parametric design
optimisation whilst improving the efficiency of parameter exploration. However, these licensed solutions
operate largely as black boxes: users have limited control over the underlying ML methodology, they
have no external CFD solver compatibility, and modular extensibility is essentially absent. Furthermore,
their optimisation pipelines are primarily tailored to locating local or global minima of the sensitivity
problem, thereby discarding potentially valuable insights obtainable from analysing the broader para-
meter space from the available high-fidelity datasets.

As an alternative to these proprietary environments and a first step towards a community driven,
fully integrated CFD-ML generalised framework, we present Hammerhead, an open-source software
package for CFD-driven, ML-aided THP optimisation.

Hammerhead, developed in Python 3, provides a robust and user-friendly environment for semi-
automated THP optimisation. It includes both a graphical user interface for interactive use and a par-
allelised, console-based interface designed for high-performance computing (HPC) [23] environments.
Key features include geometric design with shape and flow parametrisation, automated body-fitted
mesh generation, and seamless integration with OpenFOAM [24] for high-fidelity CFD simulations. To
enable efficient surrogate modelling, Hammerhead processes simulation data using proper orthogonal
decomposition (POD) [25], and supports a modular architecture for radial basis function (RBF) inter-
polation [26], neural networks (NNs) [27, 28], and Gaussian processes (GPs) [29-31]. In addition, it
provides tools for THP evaluation and shape optimisation through inverse analysis techniques.

The aim of this research is to provide the research community with a novel open-source toolkit that
fully integrates CFD high-fidelity data generation with modular multi-surrogate modelling to automate
the optimisation of cooling systems’ geometry design for THP enhancement. The software is limited to
simplified surface roughness for low Reynolds numbers in the range Re= [500, 8000], but its modular
framework permits adjustments for new geometries, domains and other software with low user cost. The
paper introduces the reader to Hammerhead’s functionality and presents the mathematical formulation
as a basis for the high-fidelity and surrogate modelling processes incorporated in the software. In sum-
mary, the key novelties that Hammerhead provides the research community with are:

e Open-source software for CFD design optimisation, intended for community-driven development.
o Fully integrated CFD-ML framework.

e Automated high-fidelity database generation.

e Seamless integration with OpenFOAM.

e Multi-surrogate modelling with modular architecture.

e End-to-End THP optimisation workflow.

The paper is broken down as follows. Section 2 briefly outlines the numerical model corresponding to
the conjugate heat transfer problem. In this section, the objective functions required for the optimisa-
tion are also presented. Next, section 3 describes the reduced order and ML modelling approach based
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on POD, RBE, NN and GP. Specifically, the focus of POD is that of feature extraction, whilst the rest of
algorithms are used as approximation methods to interpolate data features. Then, section 4 presents the
Hammerhead software package, developed to automate the high-fidelity data generation and surrogate
model training. This includes a brief explanation of Hammerhead’s main function and data processing
capabilities, where information from the high-fidelity simulations is transformed into multi-parameter
and single- and/or multi-output tensors for the surrogate model training. Finally, in section 5 we con-
clude the work carried out outlining its strengths, current limitations and paths of prospective research.

2. Governing equations and numerical methods

This section introduces the mathematical framework that underpins the high-fidelity model and MOO
functions used in this work. Description of the computational domain, governing equations, phys-

ical assumptions, interface and boundary conditions are presented. As the work focuses on optim-
ising the energy output of a cooling system, the proposed MOO functions are given by the flow
dissipation rate and advected heat flux, which are naturally coupled, and are evaluated at the inlet

and outlet of the modelled pipe. Under the assumption of stationary flow, the OpenFOAM solver
chtMultiRegionSimpleFoam [32] performs a steady-state simulation of the numerical model: a
domain with modular surface geometry using Hammerhead’s interface, coupled to OpenFOAM’s body-
fitting mesh generation tool blockMesh.

2.1. Mathematical formulation

The problem considered is formulated as that of conjugate heat transfer, where the flow is assumed to be
Newtonian, steady-state, and incompressible. The conservation of mass, linear momentum and energy,
under the assumption of constant thermophysical properties [7, 33] are

V-v=0 in O (1a)
pV-(v@v)=-Vp+V- [u (Vv—i— (VV)TH in Q, (1b)
V- (pvh) =V - (ksVT)+ V- (pv) in Q, (1c)

where v denotes the velocity field, p is the fluid density, p is the pressure field, i is the dynamic viscos-
ity of the fluid, h is the specific enthalpy, k; is the (isotropic) thermal diffusivity and T is the temperat-
ure, all defined in the fixed control volume of the fluid region €. The solid region ) for the conjugate
heat problem is described only by the thermal energy equation [34] and interface conditions between the
fluid and the solid as

V- (ksVT)=0 in Q, (2a)
T|Qf = T|st (deT)‘Qf “nlr, = (deT)|Qs -n|r, on Iy, (2b)

where Ty is the surface interface between solid and fluid regions and n|p, is the interface normal vec-

tor. The Reynolds number Re = %L and Prandtl number Pr= p% are given in terms of a representative

length L, the dynamic viscosity of the fluid 4, the thermal diffusivity of the fluid a = 2%, with ¢, the

specific heat coefficient, and the averaged flow velocity defined as ¥ = V/A, where V is the volumetric
flow rate and A is the cross-sectional area. The problem considered encompasses a range of values for
Re and a single value for Pr, namely, Re = [500,8000] and Pr = 0.2414. This Prandtl value was selected
to reflect the thermophysical properties of Helium, as it is considered suitable for a fusion-relevant cool-
ing system [35, 36]. The verified regime of Reynolds numbers is considered as an exploratory research
that includes both laminar and turbulent flows with a non-prohibitive computational cost; this is used to
study the influence of surface roughness on the flow and benchmark the surrogate models’ performance
within both regimes.

2.1.1. Objective functions
As the MOO problem is approached in this work from the perspective of energy output optimisation,

the viscous dissipation rate D and advected heat flux Q are considered the appropriate objective func-
tions [1, 3], defined as

D=ff(v7p>=—/(er (p+ pk)v-ndly, (3)

Q=fiT) :/ag (pspT) v-ndl¢— D, (4)

3



10P Publishing Mach. Learn.: Sci. Technol. 7 (2026) 015011 D M Segura Galeana et al

Wy

.
~
&

&

Figure 1. Domains of internal flow in a pipe represented by: (a) 2D flow over a smooth surface; (b) 2D flow over a rough surface;
(c) axisymmetric flow over smooth surface; (d) axisymmetric flow over rough surface.

where k= 1v-v is the kinetic energy and 9 is the fluid bounding surface. Due to the nature of wall
boundary conditions (i.e. v-n=0), (3) and (4) are only evaluated at the inlet and outlet boundaries,
thus reducing the data size and computational cost, making it suitable for large databases. In addition to
this, the description of advected heat flux from (4) already incorporates (3), thus the global maximum

of Q from (4) within range of optimisation for D is considered to be the THP ‘metric, removing the

need for a sensmVlty analysis to evaluate the MOO problem. The THP metric Q Qr / Qo is computed
from (4), where Q, refers to the baseline smooth pipe case, and Q; represents an individual rough pipe
case.

2.2. Computational domain

In this study, the computational domain of the pipe is treated through two distinct configurations: a
two-dimensional cross-section and an axisymmetric wedge, as illustrated in figure 1. Both configurations
include fluid € and solid ) regions, the latter to address the conjugate heat transfer problem. The fluid
bounding surface 0€}s incorporates the part where symmetric boundary conditions are applied, that is
I'?™, and the solid bounding surface d€) incorporates the pipe outer wall I',. Hammerhead has been
designed to consider the geometry of the flow-facing surface as a double harmonic function, which in

the simpler two dimensional case, can be expressed as

Nh

r(x)=ro+ ZAi (cos(mkix)+1), (5)

i=1

where rj is the baseline radius of the pipe, Ny, is the number of harmonics, and A;, k; represent the
amplitude and wavenumber the of ith harmonic, respectively. Currently, Hammerhead supports a
maximum of Ny, =2 harmonics. As a result, the computational domain mesh is generated using
OpenFOAM’s blockMesh tool, with fully structured meshes applied to all regions, and a maximum
grid resolution for y+ =1 * at Re = 9000 [37]. Shared geometric parameters featuring in both two-
dimensional cross-section and axisymmetric wedge domains are pipe length L =3 m, pipe radius r =
0.2 m, and wall thickness = 0.06 m. The axisymmetric wedge has an additional parameter: the wedge
angle 6 = 20°.

4 Dimensionless wall distance used to estimate grid resolution for the required level of accuracy in wall-bounded flows.
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Table 1. Mesh parameters and maximum non-orthogonality of smooth and micro-structured surface examples. The 2D and wedge
domains share these parameters on the x- and y- axes, while the 2D uses a single cell in the z-axis and the wedge has 8 cells.

h Ay y-cell count x-cell count z-cell count y-expansion ratio

0.01 7.14e7* 100 1100 {1, 8} 1.02

Maximum non-orthogonality [°]

Al=0m A; =0.001 m A =0.01m

0 29.3 44.9

Table 2. Average measured rates of convergence for the numerical solution for each flow variable field.

Domain Re v, v, qv, qr qp
2D 8000 1.495 1.2 1.7 2.18
Wedge 500 1.595 2.4 1.165 1.58 2.38
1 —— v,
10t o
E vy

0 J
10; p

1071 o /
1072 4 /

1073 <4 T T .
102 2 x 1072 3x 10724 x 1072

h

Figure 2. Relative norm L? error ||&/|| 2 against h for flow over a 2D smooth surface in Re = 8000.

Fully developed laminar flow and heat transfer are assumed at the inlet, with zero-gradient boundary
conditions imposed for pressure and temperature. A constant pressure of zero is applied at the outlet,
with zero-gradient boundary conditions imposed for velocity and temperature. Non-slip conditions are
enforced at the wall, and a zero-gradient condition is applied to all variables at the symmetry bound-
aries. The temperature applied on the outer wall Iy, is considered constant, with an initial solid/fluid
temperature ratio % = 0.6, Pr = 0.2414, and thermal conductivity ratio % = 21.6652.

The mesh paranﬁeters are shown in table 1, and computations are performed with the OpenFOAM
solver chtMultiRegionSimpleFoam [24, 32] using the SIMPLE algorithm [38] and a combination of
first- and second-order schemes. The model grid independence assessment via mesh refinement has been
carried out in [39], using 2 levels of coarser grids and a finer reference grid, with refinement ratios of 2
between each level. Examples of the average measured rates of convergence based on a relative norm L?
error ||e,||;2 found in this study are presented in table 2, and the convergence slope between each grid
refinement level for the 2D domain is shown in figure 2. The expected rate of convergence is between
1 and 2 for the first and second order schemes selected. These results show enough accuracy and are

regarded as mesh independent.

3. Surrogate modelling

This section presents an overview of the POD method employed as a dimensional reduction technique,
followed by a brief description of the ML algorithms available in Hammerhead. The equations defined
here outline the fundamental principles of each algorithm and are implemented using the open-source
packages SciPy [40], PyTorch [41] and GPyTorch [42], to provide modular-architecture RBF, NN and
GP classes, respectively.

POD is used to reduce the computational complexity of datasets, being noteworthy due to its wide-
spread use for feature extraction [25, 43, 44], where in recent years the method has been applied to

5
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parametric problems [12, 45-47]. However, to produce a surrogate model, this method requires integra-
tion with other algorithms such as RBF interpolation, which is attractive for complex parametric spaces
as it uses a linear combination of kernel-based type functions to estimate high dimensionality prob-
lems [12, 26, 48] and has verified accuracy [12, 46, 49].

Competing algorithms that can be used to produce surrogate models like NNs or GPs are more com-
plex and computationally expensive than RBE, but the increasing abundance of data and processing
power have allowed these to outperform simple interpolation methods. For NN, architectures such as
deep, convolutional and recurrent networks allow the models to accurately approximate non-linear prob-
lems [9, 27, 50-52], and similarly, the advantage of GPs [29, 53, 54] as stochastic processes is their abil-
ity to adaptively model parametric regions of interest.

3.1. Proper orthogonal decomposition

In optimisation problems, the computational cost of the models scale up when the dimensionality of the
problem is increased. A feature extraction method is proposed to approximate lower-rank matrices of the
high-fidelity database as a higher dimensional matrix, to reduce the inlet and outlet boundary datapoints
and eliminate mesh dependence for the surrogate models. Consider a set of high fidelity solutions Y; =
Y(w;) € RN, i =1...N,, each corresponding to a different set of parameters w; € IR™, arranged into
the form of a snapshot matrix D € IRN*N¢ a5

D=[Y,Y,,....Yy]". (6)

The kth rank truncation of the matrix D can be computed through a singular value decomposition [25,
44] so that D = HEG", where H € IRNV*N and G' € RN*Ne gre unitary matrices and 3 € IRN*N s a
block diagonal matrix with uncorrelated singular values arranged in decreasing order. Snapshot matrix D
is then truncated by

D~ Dk = sz)k(;;f7 (7)

where k represents the number of singular values retained for the reconstruction. A low-dimensional
matrix P = Hy X, € IRY x IRF is constructed within a subspace of the high-dimensional matrix D and
represents the original matrix D in a lower dimension k << Ny [43, 55], used to perform the surrogate
modelling computations at lower computational cost.

3.2. ML algorithms
Three ML algorithms area available in Hammerhead and will be described in what follows.

3.2.1. Radial basis function
The interpolated solution Y(w) can be obtained by exploiting the lower-rank matrix Py interpolated
through basis functions of the form

k

Y(w) =Y wie (||lw—wjll) PE;, (8)
j=1

where Y(w) denotes the solution interpolation for parameters w, ¢ is a pre-established kernel func-
tion, E; is a unit vector in the jth direction, and w; is an unknown weighting coefficient that needs to
be found through optimisation. If the data point on features w; is recognised as the centre of the ker-
nel ¢, the available data in the snapshot matrix can be directly used to interpolate the response function
Y(w) [56]. The linear system is solved for the weight coefficients w; with respect to the available data
matrix Dy.

3.2.2. Neural network
Consider a feedforward network of L layers with N neurons per layer. Each layer [=1,...,L has a weight
matrix W' € RY x RV ~1, a bias unit vector b related to the weight matrix, supplemented by the input

vector of featuresw, and the output vector of hypothesis h [9, 27]. The forward computations of each
layer are

N
7 =W'g (Zli1 +b) = Zwﬁgg (Zﬁ_l + bl) , 9)

i=1

6
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where
"=w, Z'=h. (10)

The individual functions of the vector function g' = [gll, e gMT are referred to as the activation func-
tions of each unit [50, 51]. The chosen equation for all g/ for the ith neuron is the sigmoid. The hypo-
thesis h then becomes the NN’s approximation of Y from (6). The weight coefficients W are obtained
through backpropagation [50, 57] using the mean square error J gradient for multilayer networks

1 Ns
T (W)= 32D _I1Yy (wq) =y, (we, W) I (11)
Sq:]

3.2.3. GP
The Gaussian distribution [29, 58] of a real process f(w) is defined by

f(w)NN(u(w),K(w,w’)), (12)

where p is the mean function, and K is the covariance function or kernel. Let y be the known values of

function f from the observed data at w, where noisy observations can be accounted for with the error
e~N(0,I0?) as

y(w)=f(w)+e, (13a)
y(w) ~ (p(w) K(w,w')+0I). (13b)

where ¢? is the variance parameter. Consider f, as a set of function values at new location points w,
from a test set. The conditional distribution of f, with a given f is computed using the multivariate nor-
mal theorem [54]

f.ly ~ N (fcov(f.)), (14)
where
f:=E[f,|w,y,w.] =K (K+0I) 'y, (15)
cov(f.) =K. —K! (K+0°T) K. (16)
In the previous equations, p (w;),i = 1,...,n, corresponds to the training means and analogously, .,

to the test means, and the covariance terms are K = (w,w’) for training set, K, = (w,w,) for training-
test set, and K. = (w.,w]) for test set [29, 54]. This is the posterior distribution for any random set
of cases w, when a training set w is available, and constitutes the central equation for GP predictions.
The mean and covariance functions are parametrised and updated through a process similar to the mean
square error gradient based on the log marginal likelihood Lj [53]

1 1
Ly =logp (flw,W) = —EfTK*If— Elog|K\ - %logZﬂ'. (17)

The benchmark of these algorithms has been carried out in [39], using the 2D pipe cross-section
examples within Re = [500, 8000] regimes. Multiple models were constructed with varying architec-
tures (different kernels for RBF and GP, variations on neuron and layer count for NNs), amount of
input features (2 and 4 for shape parameter analysis, 3 and 5 when including Re as a parameter), out-
put dimension size (single point from dissipation rate and advected heat flux, 100 points from inlet and
outlet boundary mesh points, or the low-dimensional representation of the mesh points resulting from
POD) and training set size. A summary of the a priori considerations and the metrics used to analyse the
models’ performance is presented in table 3. Dimension sensitivity refers to the scalability of the model
architecture and their performance characteristics when increasing the input and output dimensions. The
convergence and over-fitting metrics reference the resulting mean square error J and maximum relative
error Ery,.x from the training and validation sets, respectively. An example case study resulting from this
benchmark is presented in section 4.2.



10P Publishing

Mach. Learn.: Sci. Technol. 7 (2026) 015011 D M Segura Galeana et al

Table 3. Comparison of performance metrics of the selected algorithms. *These metrics are based on the 2D cross-section of a pipe
within Re = [500, 8000] on databases of 600 cases, training with 65% of the total. **Computational cost of each algorithm depends on
amount of features (Ranging from 2 to 5 in the analysis), output size (1 if O, 5 if P or 100 if the mesh datapoints are used) and database
size (usually 65% of 600 cases; however, GP on 5 features uses only 10% due to the memory cost of the feature covariance matrix).

RBF

NN

GP

Method Linear kernel based

interpolation

Non-linear statistical
learning

Kernel based predictive
probability distribution

Dimension sensitivity Memory cost increases
quadratically with the
amount of data points in

the matrix [59]

Networks’ complexity
increases non-linearly with
the amount of features and
output size

Cubic computational
complexity dependent on
amount of features [52]

Convergence J* ~107%5 ~107° ~107?
Over-fitting Ermax ™ ~107! ~1072 ~107!
Computational cost [1, 15] s [5, 2425] s [1, 3000] s

(training)™*

4. Software package

Hammerhead has been developed as a software package to semi-automate the THP optimisation process
of cooling systems based on shape and flow parameters using a mix of high-fidelity simulations and sur-

rogate models. Hammerhead’s functions can be executed either sequentially as an integrated workflow,
or independently, as shown in figure 3, provided the necessary input data for each component is avail-
able. Below is a list of the main functions implemented in Hammerhead, along with a brief description
of each step.

o High-fidelity database population: a database is built using OpenFOAM’s chtMultiRegionSimple
Foam solver with flow and shape parameters based on Re and equation (5), which can be set pro-
grammatically or via the ‘High-Fidelity Model settings’ window shown in figure 4. By default,
chtMultiRegionSimpleFoam is the only solver supported by Hammerhead, with compatibility
verified for OpenFOAM versions v2106 and v2212. However, Hammerhead’s modular architecture
enables straightforward adaptation for other solvers or OpenFOAM versions through minor modifica-
tions to the source code or configuration files.

e Tensor data update: hammerhead uses the high-fidelity database from the previous step to convert the
available data into tensors optimised for surrogate modelling, as detailed in section 4.1.

o Surrogate model training: the ML algorithms RBF, NN, and GP are trained using the processed tensor
data. Each model is implemented with a modular architecture that can be selected via the ‘Surrogate
Model settings’ interface presented in figure 5. Hammerhead includes the boundaries of the paramet-
ric space in the training set, while the remaining parameter space is randomly partitioned into train-
ing and validation sets based on the specified validation split parameter. This approach helps
minimise the risk of data bias and extrapolation.

e Optimal parameter search: the optimisation process uses the trained surrogate models to predict the

shape and flow parameters corresponding to the global maximum of Q as THP metric within the spe-
cified parametric space bounds.

o Plotting and data visualisation: the trained models are used to generate THP predictions, assess ML
architecture performance, and track the evolution of the THP optimisation process. ML perform-
ance analysis is further divided into individual model evaluations, relative error metrics (figure 8), and
architectural benchmarking (figure 6). Prediction results include THP distributions and variable pro-
files 10). Figures illustrating examples of additional model statistics are available in the supplementary
material.

All computations are parallelised using Python’s multiprocessing package to utilise the available
system resources, with the exception of surrogate model training, where multithreading is handled auto-
matically by the PyTorch package.
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Figure 3. Hammerhead flowchart, where software decisions are marked as yellow, user inputs are purple and Hammerhead func-
tions handle the actions in blue [39].

4.1. Data processing for surrogate models

Hammerhead transforms data from the high-fidelity database into two sets of PyTorch tensors: input
of features and output of results. The input tensors contain harmonic amplitude A; and wavenum-
ber k; as shape parameters, and the Reynolds number Re as a flow parameter. The dimension of these

tensors depends on the number of harmonics N, and the inclusion of Re as an input feature, with sizes
defined as
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Figure 4. Hammerhead ‘High-Fidelity Model settings’ window. This interface allows for the selection of amplitudes, wave num-
bers, and Reynolds number, which are used to generate the pipe surface geometry based on (5) and to update the inlet velocity
profile. The window also shows the number of cases currently available in the database, and the number of new cases queued for

wz—[Al, ]
= [A1,ki, Re],

[A kl’A27k2]

Ws = [ 1,k1,A2,k2,R€],

when Re = constant, N, = 1, (18a)
when N, =1, (18b)
when Re = constant, N}, = 2, (18¢)
when Ny, = 2. (18d)

The output tensors are associated with one of three dimensions Ny, depending on how the data is
processed prior to training the surrogate models. The lumped (L-) x< is the only single-output tensor,
with N, = 1, containing the dissipation rate f; and advected heat flux f;, from (3) and (4), respect-
ively’. The spatial (S-) x'7 is a mesh-dependent multi-output tensor, with N, = 100, containing the grid
information of inlet and outlet boundary values of the flow variables. Lastly, the modal (M-) is a mesh-
independent multi-output tensor x¥ extracted from the columns of matrix Py, with 1 < N, < 100. The

resulting tensor shapes are

Q= [ffufh]a

Xl"f — [inn Tin’pin Ve out Tout pout]
in pout pout pout
P PO PR PO

= [P}, PY

where N, =1
where N, = 100,
where 1 < N, < 100.

(19a)
(19b)
(19¢)

5 Dissipation rate and advected heat flux are treated as independent variables, resulting in two lumped output tensors and therefore two
surrogate models, each with a one-dimensional output.
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Figure 5. Hammerhead ‘Surrogate Model settings’ window. This interface allows for the selection of ML algorithms, output
dimensions, and architectural configurations for surrogate model training. A summary of each active algorithm, global model
parameters and the available training data are also provided.

4.2. Outcomes of example case

An example outcome obtained with Hammerhead is the optimisation of surface roughness geometric
parameters for a 2D pipe cross-section to maximise Q within Re = 1000. An in-depth analysis of the
high-fidelity data containing information of around 10,000 cases within Re = [500, 8000] and a full
benchmark of surrogate models were carried out in [39]. For this example, an initial benchmark of

a NN trained on the low-rank matrix approximation of the boundary values with 65% of 600 high-
fidelity model cases, is presented in figure 6. This study allowed us to understand the architecture best
fit to approximate our specific problem, which is a network of 3 layers and 128 neurons per layer with a
cross-validation as shown in figure 7.

A better understanding of the relative error between the surrogate model approximations and the
high fidelity data across the data points is visible in figure 8, which presents a comparison with the GP
surrogate model. The M-NN model shows a best fit to the data points, but the GP shows the confidence
region even in points not available in the high-fidelity database. The M-NN model was used to predict
the boundary values of the smooth surface case (baseline) alongside a gradient-based inverse analysis to
produce a new set of geometric parameters that would optimise the net power output in the form of Q
from (4), as shown in figure 9. The flow variable profiles of resulting boundary approximations of the
baseline and optimised surfaces are shown in figure 10. The overlined variables ¢ are the normalised
values of each quantity of interest from (3) and (4) as ¢ = ¢ /0", where the subscripts m and 0 repres-
ent each case with surface roughness and the baseline smooth surface case, respectively. A high-fidelity
model was built using such parameters to confirm the model’s accuracy and credibility of the findings.
The high-fidelity boundary values of the baseline and optimised surfaces are shown in figure 11.

0 The definition of f;, in the figures neglects the dissipation rate to observe the impact that both dissipation and advected heat have in
the net power output Q.

11
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Figure 6. Benchmarking of surrogate model architectures using the training loss J as the evaluation metric, defined as the mean
squared error between the surrogate model predictions and the training data (M-NN, 35% validation split, Re = 1000, A; =
[0,0.01]m, ki = [0,60], 5 random initialisations per architecture). The examples shown correspond to multi-output models,
where the benchmark plots display inlet and outlet flow variables, pressure p, temperature T, and axial velocity vx. For single-
output neural network models, the predictions instead are the dissipation rate f; (3) on the left, and advected heat flux f, (4) on
the right, in place of the flow variables.

The computational cost of a single high-fidelity simulation has a range of [2, 6] h, resulting in an
average CPU cost of 2400 h for 600 simulations, or 1560 h considering just the training set of 65% the
total amount of cases. However, the training cost of this model was around 1600 s, with the inverse
problem resulting in CPU time cost of = 30 s, and each prediction has a cost of << 1 s. The net power

output values found in the high-fidelity data prior to using the surrogate model were Q=4.79 com-

pared to Q = 5.818, over 100% increase in power output optimisation within low dissipation rate

regime fr.

12
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Figure 7. Surrogate models training and validation loss J, defined as the mean squared error between the surrogate model pre-
dictions and the training/validation data (M-NN, 3 layer, 128 neurons, 35% validation split, Re = 1000, A; = [0,0.01] m,

ki =[0,60]). The example shown corresponds to an M-NN, which shares the display with S-output models where the loss plots
show inlet and outlet flow variables, pressure p, temperature T, and axial velocity v.. For models with L-output, the predictions
instead are the dissipation rate f; on the left, and advected heat flux f; on the right.
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Figure 8. Left plot: THP 6 surrogate model prediction (pink dot) with the corresponding high-fidelity data (black cross), from

a subset of 100 sampled cases in ascending value of Q on models trained at 35% validation split, Re = 1000, A; = [0,0.01] m,

ki = [0, 60] with algorithm and architecture (a) M-NN, 3 layers with 128 neurons each and (b) M-GP, Matern kernel. GP predicts
the confidence region from the normal distribution of the kernel (semi-transparent pink bars) alongside the mean predictions
(pink dots), while NN and RBF report mean predictions only. Right plot: Relative error between the THP Q surrogate model
prediction and the corresponding high-fidelity data, for all available cases.
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Figure 9. THP Q maximisation history plot (M-NN, 3 layers, 128 neurons per layer, 35% validation split, Re = 1000, A; =
[0,0.01] m, ki = [0,60]). The optimal features corresponding to the maximum Q are also reported: for this model, as A; =0,
the harmonic does not contribute to the geometry of the pipe roughness, regardless of the associated value of the k; parameter.
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rough surface plate with highest Q,, vs baseline Qy predicted by the M-NN surrogate model at Re = 1000.
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Figure 11. From top to bottom, high fidelity verification of profile plots of pressure p, stream-wise velocity v, and temperature T
fields of 2D flow over a rough surface at Re = 1000.

5. Conclusions

This paper has introduced Hammerhead, an open-source software package designed to automate ML-
aided heat and mass transfer optimisation in pipe systems. Developed in Python 3, Hammerhead bridges
the CFD and ML domains by automating the generation of a high-fidelity database and integrating

it into the training of modular surrogate models. It also provides functionality for benchmarking the
performance of different surrogate modelling approaches. The high-fidelity database is generated in
OpenFOAM chtMultiRegionSimpleFoam, leveraging the body-fitted mesh generation capabilities of
blockMesh, which facilitate seamless integration and automation with Python. Surrogate models are
trained using RBEF, NN, or GP algorithms, with Hammerhead’s modular ML classes supporting multiple
architectures. To reduce the risk of ill-posed predictions, the training dataset is pre-allocated to include
the parametric space boundaries as an a priori constraint, independent of the randomised validation
split. This results in an efficient and unified framework for optimisation and surrogate model develop-
ment, while reducing the time required for mesh generation and high-fidelity data production.
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With the aid of surrogate modelling we were able to find a geometry with Q optimisation of over
500% while the maximum Q optimisation observed with high-fidelity on the database of 600 cases was
around 480%, resulting in a computational cost of 2400 h. This suggest an offline CPU gain of 35% for
the example analysed here. The in-depth analysis of the high-fidelity data from the exploratory study, as
well as a full benchmark of the surrogate models used in the optimisation process were carried out in
[39] and will be presented in a follow-up article.

5.1. Potential impact
The production of Hammerhead gives rise to potential implications:

o Fully integrated CFD-ML framework for data generation with modular multi-surrogate THP
optimisation.

e Open-source and modular alternative to commercial tools, giving users full transparency and control
over the modelling process.

e Automated high-fidelity database generation with body-fitted meshes based on shape/flow parametrisa-
tion and CFD execution, both through seamless integration with OpenFOAM, enabling reproducible
high-fidelity simulations without user intervention.

e Multi-surrogate modelling with modular architecture, supporting interchangeable surrogate models,
including POD-based feature extraction for pre-processing of the data, RBF interpolation, NNs, and
GPs, allowing users to tailor the surrogate strategy to the problem and benchmark their approach
within the same workflow.

e Parametric knowledge based modelling, designed to prioritise the boundaries of the parameter space
to reduce data bias and improve the robustness and generalisation of surrogate models.

e HPC-ready and user-friendly interfaces, including a graphical interface for interactive exploration and
a console interface suitable for HPC environments.

e End-to-End THP optimisation workflow, providing tools for THP evaluation and inverse analysis for
parameter optimisation based on the high-fidelity and surrogate modelling approximations.

e Designed for community-driven development, built entirely in Python and openly accessible,
Hammerhead offers a flexible foundation that can be extended to new geometries, flow regimes, sur-
rogate models, and external software with minimal user cost.

5.2. Limitations and future work
At present, Hammerhead has limited compatibility: it is specifically tailored to OpenFOAM
chtMultiRegionSimpleFoam solver and does not natively support alternative solvers, mesh configur-
ations, or geometries beyond those defined by the implemented harmonic function, unless modifica-
tions are made to the source code. Although the ML algorithms and parametric space are modular, their
configurations are semi-fixed and predefined within the software. Extending compatibility to a broader
range of high-fidelity modelling methods and surrogate approaches across higher-dimensional parameter
spaces will be the focus of future research.

Furthermore, although Hammerhead can identify optimal geometries, it does not yet update the
high-fidelity database automatically with these optimised parameters. Instead, the user must manu-
ally run additional simulations for verification, and subsequently retrain the surrogate model if further
optimisation is required. Incorporating this feature would further reduce the computational cost of the
design process. Overall, Hammerhead represents an important step toward a generalised toolkit for auto-
mated, ML-aided engineering design optimisation-one that is intended to evolve into a method-agnostic
framework in future developments.

Data availability statement

No new data was created or analysed in this study. Data pertaining verification and validation of the
high-fidelity models as well as the use case of the software is available upon user request. The source
code is available on GitHub at https://github.com/Dani-Darko/Hammerhead [60] (commit cd59923 at
date of manuscript submission).
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