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 a b s t r a c t

This paper presents a new first-order hyperbolic framework with relaxation (or dissipation) terms 
for large strain viscoelastic solids. The framework is based on a compressible Maxwell-type vis-
coelastic model and integrates linear momentum conservation, geometric conservation laws, and 
evolution equations for internal variables. First, we propose a polyconvex strain energy function 
that is jointly convex with respect to the deformation measures and internal variables. Second, we 
introduce a generalised convex entropy function to symmetrise the hyperbolic system in terms of 
dual conjugate (entropy) variables. Third, we demonstrate that the system is hyperbolic (i.e., real 
wave speeds) under all deformation states, and that the relaxation terms correctly capture vis-
coelastic dissipation. Fourth, we present an upwinding Smoothed Particle Hydrodynamics (SPH) 
[1–3] scheme that enforces the second law of thermodynamics semi-discretely and uses the time 
rate of the generalised convex entropy to monitor internal dissipation and stabilise the simula-
tion. Finally, the proposed framework is validated through numerical examples and benchmarked 
against the in-house Updated Reference Lagragian SPH [2,3] and vertex-centred finite volume 
[4–7] algorithms, demonstrating stability, accuracy, and consistent energy dissipation.

1.  Introduction

Viscoelastic materials exhibit both elastic and viscous behaviour and can store energy whilst dissipating it over time. This dual 
response makes them indispensable in impact and shock problems, where controlled energy and damping are required. Applications 
include protective structures, vibration and noise reduction systems, flexible wave energy converters, and a wide range of engineered 
and biological materials. To model these behaviours, we require frameworks that can capture large deformations together with 
time-dependent dissipation.
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$\boldsymbol {x} = \boldsymbol {\phi } (\boldsymbol {X}, t)$


\begin {equation}\frac {\partial \boldsymbol {p}_R}{\partial t} - \text {DIV} \boldsymbol {P} = \boldsymbol {f}_{R}; \qquad \boldsymbol {p}_R = \rho _R \boldsymbol {v}, \label {eqn:linear_momentum}\end {equation}
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\begin {equation*}\Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}) = \tilde {\Psi } (\boldsymbol {C}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}); \qquad \boldsymbol {C} = \boldsymbol {F}^T \boldsymbol {F}.\end {equation*}
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\begin {equation}\label {eqn:classical_strain_energy} \Psi \left ( \boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1} \right ) = \Psi _{\infty } (\boldsymbol {F}) + \sum _{\alpha =1}^{n_{\text {M}}} \Psi _{\alpha } \left ( \boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1} \right ).\end {equation}
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$\boldsymbol {C}^{-1} = \boldsymbol {F}^{-1} \boldsymbol {F}^{-T}$


\begin {equation}\Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1} = \boldsymbol {C}^{-1}) = 0; \qquad \frac {\partial \Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1})}{\partial \boldsymbol {F}}\bigg \vert _{\boldsymbol {C}_{v_{\alpha }}^{-1} = \boldsymbol {C}^{-1}} = \boldsymbol {0}; \qquad \frac {\partial \Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1}) }{\partial \boldsymbol {C}_{v_{\alpha }}^{-1}}\bigg \vert _{\boldsymbol {C}_{v_{\alpha }}^{-1} = \boldsymbol {C}^{-1}} = \boldsymbol {0}. \label {Xeqn4}\end {equation}
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\begin {equation}\label {eqn:Dissipation} \begin {aligned} 0 \leq \dot {\mathcal {D}}_{\text {int}} &= \boldsymbol {P} : \dot {\boldsymbol {F}} - \dot {\Psi } (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}) \\ &= \left ( \boldsymbol {P} - \frac {\partial \Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {F}} \right ) : \frac {\partial \boldsymbol {F}}{\partial t} - \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\partial \Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {C}_{v_{\alpha }}^{-1}} : \frac {\partial \boldsymbol {C}_{v_{\alpha }}^{-1}}{\partial t}. \end {aligned}\end {equation}
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$\boldsymbol {P} - \frac {\partial \Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {F}}$


\begin {equation}\label {eqn:first Piola} \boldsymbol {P} (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}) = \boldsymbol {P}_{\infty } (\boldsymbol {F}) + \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {P}_{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1}); \qquad \boldsymbol {P}_{\square } = \frac {\partial \Psi _{\square }}{\partial \boldsymbol {F}}; \qquad \square = \{\infty , \alpha \}.\end {equation}


\begin {equation}\label {eqn:dissipation_inequality} 0 \leq \dot {\mathcal {D}}_{\text {int}} = - \sum _{\alpha =1}^{n_{\text {M}}} \frac {\partial \Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {C}_{v_{\alpha }}^{-1}} : \frac {\partial \boldsymbol {C}_{v_{\alpha }}^{-1}}{\partial t}.\end {equation}
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\begin {equation}\label {eqn:Concise form} \frac {\partial \boldsymbol {\mathcal {U}}}{\partial t} + \sum _{I = 1}^3 \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial X_I} = \boldsymbol {\mathcal {S}} (\boldsymbol {\mathcal {U}}); \qquad \boldsymbol {\mathcal {S}} (\boldsymbol {\mathcal {U}}) = \boldsymbol {\mathcal {S}}_{\text {ext}} + \boldsymbol {\mathcal {R}} (\boldsymbol {\mathcal {U}}); \qquad \boldsymbol {\mathcal {R}} (\boldsymbol {\mathcal {U}}) = \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\mathcal {R}}_{\alpha } (\boldsymbol {\mathcal {U}}).\end {equation}
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$\boldsymbol {\mathcal {A}}_I = \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}$


$\boldsymbol {\mathcal {A}}_0 = \left [ \frac {\partial ^2 S}{\partial \boldsymbol {\mathcal {U}} \partial \boldsymbol {\mathcal {U}}} \right ]^{-1}$
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$\delta \boldsymbol {\mathcal {U}} = \boldsymbol {\mathcal {U}} - \bar {\boldsymbol {\mathcal {U}}}$


\begin {equation}\boldsymbol {\mathcal {F}}_I (\boldsymbol {\mathcal {U}}) \approx \boldsymbol {\mathcal {F}}_I (\bar {\boldsymbol {\mathcal {U}}}) + \underbrace {D \boldsymbol {\mathcal {F}}_I [\delta \boldsymbol {\mathcal {U}}]}_{\frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}} \delta \boldsymbol {\mathcal {U}}}; \qquad \boldsymbol {\mathcal {S}}(\boldsymbol {\mathcal {U}}) \approx \boldsymbol {\mathcal {S}} (\bar {\boldsymbol {\mathcal {U}}}) + \underbrace {D \boldsymbol {\mathcal {S}} [\delta \boldsymbol {\mathcal {U}}]}_{\frac {\partial \boldsymbol {\mathcal {S}}}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}} \delta \boldsymbol {\mathcal {U}}}. \label {Xeqn9}\end {equation}


$\boldsymbol {\mathcal {A}}_I (\bar {\boldsymbol {\mathcal {U}}}) = \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}}$


$\boldsymbol {\mathcal {J}} (\bar {\boldsymbol {\mathcal {U}}}) = \frac {\partial \boldsymbol {\mathcal {S}}}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}} = \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\partial \boldsymbol {\mathcal {R}}_{\alpha }}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}}$
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\begin {equation}\label {eqn:linearised_system} \frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial t} + \sum _{I = 1}^3 \boldsymbol {\mathcal {A}}_I (\bar {\boldsymbol {\mathcal {U}}}) \frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial X_I} = \boldsymbol {\mathcal {J}} (\bar {\boldsymbol {\mathcal {U}}}) \delta \boldsymbol {\mathcal {U}}.\end {equation}
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\begin {equation}\Psi \left ( \boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1} \right ) = W ({\boldsymbol {\mathcal {X_Y}}}), \label {eqn:convex_multivariable_a}\end {equation}


\begin {equation}W ({\boldsymbol {\mathcal {X_Y}}}) = W_{\infty } (\boldsymbol {\mathcal {X}}) + \sum _{\alpha = 1}^{n_{\text {M}}} W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }); \quad \boldsymbol {\mathcal {X_Y}} = \{ \boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}} \}; \quad \boldsymbol {\mathcal {Y}} = \{ \boldsymbol {\mathcal {Y}}_{1}, \boldsymbol {\mathcal {Y}}_{2}, \ldots \boldsymbol {\mathcal {Y}}_{n_{\text {M}}} \}. \label {eqn:convex_multivariable_b}\end {equation}
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\begin {equation}\boldsymbol {\mathcal {Y}}_{\alpha } = \{ \boldsymbol {Y}_{\alpha }, y_{\alpha } \}; \qquad \boldsymbol {Y}_{\alpha } = \boldsymbol {C}_{v_{\alpha }}; \qquad y_{\alpha } = \det \left (\boldsymbol {C}_{v_{\alpha }}^{-1}\right ). \label {Xeqn13}\end {equation}
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$\boldsymbol {\Sigma }_{\square } = \frac {\partial W}{\partial \square }$


$\square = \{ \boldsymbol {F}, \boldsymbol {H}, J\}$
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\begin {equation}\begin {aligned} \boldsymbol {P} : \frac {\partial \boldsymbol {F}}{\partial t}\bigg \vert _{\boldsymbol {\mathcal {Y}}} = \frac {d W}{d t}\Bigg \vert _{\boldsymbol {\mathcal {Y}}} = \left ( \boldsymbol {\Sigma }_{\boldsymbol {F}} + \boldsymbol {\Sigma }_{\boldsymbol {H}} \Cross \boldsymbol {F} + \Sigma _{J} \boldsymbol {H} \right ) : \frac {\partial \boldsymbol {F}}{\partial t}\bigg \vert _{\boldsymbol {\mathcal {Y}}}, \end {aligned} \label {Xeqn14}\end {equation}


$\left [ \bullet \right ] \bigg \vert _{\square }$


$\square $


\begin {equation}\label {eqn:first_Piola} \boldsymbol {P} = \boldsymbol {\Sigma }_{\boldsymbol {F}} + \boldsymbol {\Sigma }_{\boldsymbol {H}} \Cross \boldsymbol {F} + \Sigma _{J} \boldsymbol {H}.\end {equation}
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\begin {equation}\boldsymbol {\Sigma }_{\square } (\boldsymbol {\mathcal {X_Y}}) = \boldsymbol {\Sigma }_{\square }^{\infty } (\boldsymbol {\mathcal {X}}) + \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\Sigma }_{\square }^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }); \qquad \boldsymbol {\Sigma }_{\square }^{\infty } = \frac {\partial W_{\infty }}{\partial \square }; \qquad \boldsymbol {\Sigma }_{\square }^{\alpha } = \frac {\partial W_{\alpha }}{\partial \square }; \qquad \square = \{ \boldsymbol {F}, \boldsymbol {H}, J \}. \label {Xeqn16}\end {equation}
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\begin {equation}\label {eqn:inequality} 0 \leq \dot {\mathcal {D}}_{\text {int}} = - \frac {d W}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} = - \left ( \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\Sigma }_{\boldsymbol {Y}_{\alpha }} : \frac {d \boldsymbol {Y}_{\alpha }}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} + \sum _{\alpha = 1}^{n_{\text {M}}} \Sigma _{y_{\alpha }} \frac {d y_{\alpha }}{\partial t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} \right ),\end {equation}


$\boldsymbol {\Sigma }_{\square } = \frac {\partial W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha })}{\partial \square }$


$\square = \{\boldsymbol {Y}_{\alpha }, y_{\alpha } \}$


$\dot {\mathcal {D}}_{\text {int}} \geq 0$


$\boldsymbol {\mathcal {Y}}$


$[ \mathbb {H}_W ]$


$W$


$W$


$\boldsymbol {\mathcal {X_Y}}$


\begin {equation}\label {eqn:Hessian_viscoelasticity_general} [\mathbb {H}_W] = [\mathbb {H}_W^{\infty }] + \sum _{\alpha =1}^{n_{\text {M}}} [\mathbb {H}_W^{\alpha }].\end {equation}
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\begin {equation}\label {eqn:Hessian_definition} \begin {aligned} [\mathbb {H}_W^{\square }] = \left [ \begin {array}{c|c} \mathbb {H}_{\boldsymbol {\chi \chi }}^{\square } & \mathbb {H}_{\boldsymbol {\chi } \boldsymbol {\mathcal {Y}}_{\alpha }}^{\square } \\ \mathbb {H}_{\boldsymbol {\mathcal {Y}}_{\alpha } \boldsymbol {\chi } }^{\square } & \mathbb {H}_{\boldsymbol {\mathcal {Y}}_{\alpha } \boldsymbol {\mathcal {Y}}_{\alpha }}^{\square } \end {array} \right ] &= \left [ \begin {array}{ccc|cc} W_{\boldsymbol {FF}}^{\square } & W_{\boldsymbol {FH}}^{\square } & W_{\boldsymbol {F}J}^{\square } & W_{\boldsymbol {F} \boldsymbol {Y}_{\alpha }}^{\square } & W_{\boldsymbol {F} y_{\alpha }}^{\square } \\ W_{\boldsymbol {HF}}^{\square } & W_{\boldsymbol {HH}}^{\square } & W_{\boldsymbol {H}J}^{\square } & W_{\boldsymbol {H} \boldsymbol {Y}_{\alpha }}^{\square } & W_{\boldsymbol {H} y_{\alpha }}^{\square } \\ W_{J\boldsymbol {F}}^{\square } & W_{J\boldsymbol {H}}^{\square } & W_{JJ}^{\square } & W_{J \boldsymbol {Y}_{\alpha }}^{\square } & W_{J y_{\alpha }}^{\square } \\ W_{\boldsymbol {Y}_{\alpha } \boldsymbol {F}}^{\square } & W_{\boldsymbol {Y}_{\alpha } \boldsymbol {H}}^{\square } & W_{\boldsymbol {Y}_{\alpha }J}^{\square } & W_{\boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }}^{\square } & W_{\boldsymbol {Y}_{\alpha } y_{\alpha }}^{\square } \\ W_{y_{\alpha } \boldsymbol {F}}^{\square } & W_{y_{\alpha } \boldsymbol {H}}^{\square } & W_{y_{\alpha }J}^{\square } & W_{y_{\alpha } \boldsymbol {Y}_{\alpha } }^{\square } & W_{y_{\alpha } y_{\alpha }}^{\square } \\ \end {array} \right ]. \end {aligned}\end {equation}
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$\boldsymbol {A}, \boldsymbol {B} \in \{ \boldsymbol {F}, \boldsymbol {H}, J, \boldsymbol {Y}_{\alpha }, y_{\alpha } \}$
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\begin {equation}\label {eqn:long_term_MR} W_{\infty } \left ( \boldsymbol {\mathcal {X}} \right ) = \xi \left ( \boldsymbol {F} : \boldsymbol {F} - 3 \right ) + \zeta \left ( \boldsymbol {H} : \boldsymbol {H} - 3 \right ) + f (J); \quad f (J) = - 2 \left ( \xi + 2 \zeta \right ) \ln J + \frac {\hat {\lambda }}{2} (J - 1)^2.\end {equation}
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\begin {equation*}\lambda = \frac {E \nu }{(1 + \nu ) (1 - 2 \nu )}; \qquad \mu = \frac {E}{2 (1 + \nu )}.\end {equation*}
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$\{\hat {\lambda }, \xi , \zeta \} \geq 0$


$W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha })$


\begin {equation}\label {eqn:viscous_potential_convex2} W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) = \frac {\mu _{\alpha }}{2} \left [ \boldsymbol {C} : \boldsymbol {Y}_{\alpha }^{-1} - 3 - \ln \left ( J^2 y_{\alpha } \right )\right ],\end {equation}
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$\square = \{ \boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha } \}$
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$\{ \delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } \}$


\begin {equation}\label {eqn:first_directional_derivative} \begin {aligned} D W_{\alpha } [\delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } ] &= \frac {\mu _{\alpha }}{2} \left [ \text {tr} \left ( \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {F}^T + \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {F}^T + \boldsymbol {F} \delta \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {F}^T \right ) - 2 J^{-1} \delta J - y_{\alpha }^{-1} \delta y_{\alpha }\right ]. \end {aligned}\end {equation}


$\delta \boldsymbol {Y}_{\alpha }^{-1} = D \boldsymbol {Y}_{\alpha }^{-1} [\delta \boldsymbol {Y}_{\alpha }] = - \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1}$
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$\text {tr} (\boldsymbol {A} \boldsymbol {B}^T) = \text {tr} (\boldsymbol {B} \boldsymbol {A}^T)$


\begin {equation}D W_{\alpha } [\delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } ] = \frac {\mu _{\alpha }}{2} \left [ \text {tr} \left ( 2 \delta \boldsymbol {F} \boldsymbol {K}^T - \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ) - 2 J^{-1} \delta J - y_{\alpha }^{-1} \delta y_{\alpha } \right ]; \quad \boldsymbol {K} = \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}. \label {Xeqn25}\end {equation}


\begin {equation}\label {eqn:second_derivative_1} \begin {aligned} D^2 W_{\alpha } [\delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } ] &= \mu _{\alpha } \left [ \text {tr} \left ( \delta \boldsymbol {F} \delta \boldsymbol {K}^T - \delta \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ) + J^{-2} (\delta J)^2 + \frac {1}{2} y_{\alpha }^{-2} (\delta y_{\alpha })^2 \right ]. \end {aligned}\end {equation}
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$\delta \boldsymbol {K} = D \boldsymbol {K} [\delta \boldsymbol {F}, \delta \boldsymbol {Y}_{\alpha }] = D \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} [\delta \boldsymbol {F}, \delta \boldsymbol {Y}_{\alpha }] = \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} - \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1}$


\begin {equation}\begin {aligned} \text {tr} \left ( \delta \boldsymbol {F} \delta \boldsymbol {K}^T - \delta \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ) &= \text {tr} \left [ \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {F}^T - 2 \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T + \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ] \\ &= \left ( \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1/2} - \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1/2} \right ) : \left ( \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1/2} - \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1/2} \right ) \geq 0. \end {aligned} \label {Xeqn27}\end {equation}
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\begin {equation}\label {eqn:internal_evolution_equations} \frac {d \boldsymbol {Y}_{\alpha }}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} = \underbrace { \frac {1}{\tau _{\alpha } } \left ( \boldsymbol {Y}_{\alpha } - \boldsymbol {Y}_{\alpha } \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha } \right )}_{\boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{\alpha }}}; \qquad \frac {d y_{\alpha }}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} = \underbrace { \frac {1}{\tau _{\alpha }} y_{\alpha } \left ( \boldsymbol {C}^{-1} : \boldsymbol {Y}_{\alpha } - 3 \right )}_{\mathcal {R}_{y_{\alpha }}}.\end {equation}
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$\boldsymbol {Y}_{\alpha }$
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$\frac {\partial \boldsymbol {Y}_{\alpha }^{-1}}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} = - \boldsymbol {Y}_{\alpha }^{-1} \frac {d \boldsymbol {Y}_{\alpha }}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} \boldsymbol {Y}_{\alpha }^{-1}$


$\boldsymbol {Y}_{\alpha }$


\begin {equation}\label {eqn:evolution_Cv_1} \frac {d \boldsymbol {Y}_{\alpha }^{-1}}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} = \frac {1}{\tau _{\alpha }} \left ( \boldsymbol {C}^{-1} - \boldsymbol {Y}_{\alpha }^{-1} \right ).\end {equation}
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$\dot {\mathcal {D}}_{\text {int}} \geq 0$
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\begin {equation}\dot {\mathcal {D}}_{\text {int}} = - \left ( \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\Sigma }_{\boldsymbol {Y}_{\alpha }} : \frac {d \boldsymbol {Y}_{\alpha }}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} + \sum _{\alpha = 1}^{n_{\text {M}}} \Sigma _{y_{\alpha }} \frac {d y_{\alpha }}{\partial t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} \right ). \label {Xeqn30}\end {equation}


$\boldsymbol {{\Sigma _{\boldsymbol {Y}}}_{\alpha }}$


$\Sigma _{y_{\alpha }}$


\begin {equation}\label {eqn:thermodynamic_conjugate_stresses} \boldsymbol {\Sigma }_{\boldsymbol {Y}_{\alpha }} = - \frac {\mu _{\alpha }}{2} \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1}; \qquad \Sigma _{y_{\alpha }} = - \frac {\mu _{\alpha }}{2} y_{\alpha }^{-1}.\end {equation}


$\boldsymbol {Y}_{\alpha }$


$y_{\alpha }$


\begin {equation}\begin {aligned} \dot {\mathcal {D}}_{\text {int}} &= \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\mu _{\alpha }}{2 \tau _{\alpha }} \left [ \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1} : (\boldsymbol {Y}_{\alpha } - \boldsymbol {Y}_{\alpha } \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha }) + \boldsymbol {C}^{-1} : \boldsymbol {Y}_{\alpha } - 3\right ] = \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\mu _{\alpha }}{2 \tau _{\alpha }} \text {tr} \left [ \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1} + \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha } - 2 \boldsymbol {I} \right ]. \end {aligned} \label {Xeqn31}\end {equation}


$\text {tr} \left (\boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1}\right ) = \text {tr} \left (\boldsymbol {Y}_{\alpha }^{-1/2} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1/2} \right )$


$\text {tr} (\boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha }) = \text {tr} (\boldsymbol {Y}_{\alpha }^{1/2} \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha }^{1/2})$


$\boldsymbol {M} = \boldsymbol {Y}_{\alpha }^{-1/2} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1/2}$


\begin {equation}\dot {\mathcal {D}}_{\text {int}} = \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\mu _{\alpha }}{2 \tau _{\alpha }} \text {tr} \left [ \boldsymbol {M} + \boldsymbol {M}^{-1} - 2 \boldsymbol {I} \right ]. \label {Xeqn32}\end {equation}


$\boldsymbol {M}$


\begin {equation}\boldsymbol {M} = \sum _{I = 1}^3 \lambda _I \boldsymbol {N}_I \otimes \boldsymbol {N}_I; \qquad \boldsymbol {M}^{-1} = \sum _{I = 1}^3 \lambda _I^{-1} \boldsymbol {N}_I \otimes \boldsymbol {N}_I, \label {Xeqn33}\end {equation}


$\lambda _I > 0$


$\boldsymbol {N}_I$


\begin {equation}\dot {\mathcal {D}}_{\text {int}} = \sum _{\alpha = 1}^{n_{\text {M}}} \left [\frac {\mu _{\alpha }}{2 \tau _{\alpha }} \sum _{I = 1}^3 \left ( \lambda _I + \lambda _I^{-1} - 2 \right ) \right ] \geq 0, \label {Xeqn34}\end {equation}


$\lambda _I + \lambda _I^{-1} \geq 2$


$\alpha $


$\boldsymbol {\mathcal {X}}$


$\boldsymbol {F}$


$\boldsymbol {H}$


$J$


\begin {equation*}\frac {\partial \boldsymbol {F}}{\partial t} = \boldsymbol {\nabla }_0 \boldsymbol {v}; \qquad \frac {\partial \boldsymbol {H}}{\partial t} = \text {CURL} \left ( \boldsymbol {v} \Cross \boldsymbol {F} \right ); \qquad \frac {\partial J}{\partial t} = \text {DIV} \left ( \boldsymbol {H}^T \boldsymbol {v} \right ).\end {equation*}


$\boldsymbol {\mathcal {U}}$


$\boldsymbol {\mathcal {F}}_I$


$\boldsymbol {\mathcal {S}}_{\text {ext}}$


$\boldsymbol {\mathcal {R}}$


\begin {equation}\label {eqn:conservation_variables_2} \boldsymbol {\mathcal {U}} = \left [ \begin {array}{c} \boldsymbol {p}_R \\ \boldsymbol {F} \\ \boldsymbol {H} \\ J \\ \boldsymbol {Y}_{1} \\ y_{1} \\ \vdots \\ \boldsymbol {Y}_{n_{\text {M}}} \\ y_{n_{\text {M}}} \\ \end {array} \right ]; \quad \boldsymbol {\mathcal {F}}_I = - \left [ \begin {array}{c} \boldsymbol {P} \boldsymbol {E}_I \\ \boldsymbol {v} \otimes \boldsymbol {E}_I \\ \boldsymbol {F} \Cross \left ( \boldsymbol {v} \otimes \boldsymbol {E}_I \right ) \\ \boldsymbol {H} : \left ( \boldsymbol {v} \otimes \boldsymbol {E}_I \right ) \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ]; \quad \boldsymbol {\mathcal {S}}_{\text {ext}} = \left [ \begin {array}{c} \boldsymbol {f}_R \\ \boldsymbol {0} \\ \boldsymbol {0} \\ 0 \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ]; \quad \boldsymbol {\mathcal {R}} = \left [ \begin {array}{c} \boldsymbol {0} \\ \boldsymbol {0} \\ \boldsymbol {0} \\ 0 \\ \boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_1} \\ \mathcal {R}_{y_1} \\ \vdots \\ \boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{n_{\text {M}}}} \\ \mathcal {R}_{y_{n_{\text {M}}}} \end {array} \right ],\end {equation}


$\boldsymbol {E}_I$


$\boldsymbol {\mathcal {X}}$


$\boldsymbol {N}$


$\boldsymbol {\mathcal {F}}_{\boldsymbol {N}} = \sum _{I = 1}^3 \boldsymbol {\mathcal {F}}_I N_I$


$\sum _{\alpha = 1}^{n_{\text {M}}} - \boldsymbol {\mathcal {V}}^T \boldsymbol {\mathcal {R}}_{\alpha } = \dot {\mathcal {D}}_{\text {int}} \geq 0$


$\boldsymbol {F}$


$\boldsymbol {H}$


\begin {equation}\label {eq:2GE-system-strong-constraints} \text {CURL} \boldsymbol {F} = \boldsymbol {0}; \quad \text {DIV} \boldsymbol {H} = \boldsymbol {0}.\end {equation}


$\boldsymbol {F}$


$\boldsymbol {H}$


$\boldsymbol {F}$


$J$


$\{ \boldsymbol {p}_R, \boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha } \}$


$\boldsymbol {p}_R$


$\boldsymbol {\mathcal {X}}$


$\boldsymbol {C}_{v_{\alpha }}$


$\boldsymbol {C}_{v_{\alpha }}^{-1}$


$\boldsymbol {\phi }$


\begin {equation}\frac {\partial \boldsymbol {\phi } (\boldsymbol {X}, t)}{\partial t} = \boldsymbol {v} (\boldsymbol {X}, t). \label {Xeqn37}\end {equation}


$S (\boldsymbol {X}, t)$


\begin {equation}S (\boldsymbol {X}, t) = \frac {1}{2 \rho _R} \boldsymbol {p}_R \cdot \boldsymbol {p}_R + W (\boldsymbol {\mathcal {X_Y}}). \label {Xeqn38}\end {equation}


$\boldsymbol {\mathcal {V}}$


$\boldsymbol {\mathcal {U}}$


$\boldsymbol {\mathcal {V}}$


\begin {equation}\label {eqn:conjugate_variables} \boldsymbol {\mathcal {V}} = \frac {\partial S}{\partial \boldsymbol {\mathcal {U}}} = \left [ \begin {array}{c} \frac {\partial S}{\partial \boldsymbol {p}_R} \\ \frac {\partial S}{\partial \boldsymbol {F}} \\ \frac {\partial S}{\partial \boldsymbol {H}} \\ \frac {\partial S}{\partial J} \\ \frac {\partial S}{\partial \boldsymbol {Y}_{1}} \\ \frac {\partial S}{\partial y_{1}} \\ \vdots \\ \frac {\partial S}{\partial \boldsymbol {Y}_{n_{\text {M}}}} \vspace {1mm} \\ \frac {\partial S}{\partial y_{n_{\text {M}}}} \end {array} \right ] = \left [ \begin {array}{c} \boldsymbol {v} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {F}} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {H}} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial J} \vspace {1mm} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {Y}_{1}} \vspace {1mm} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial y_{1}} \vspace {1mm} \\ \vdots \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {Y}_{n_{\text {M}}}} \vspace {1mm} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial y_{n_{\text {M}}}} \end {array} \right ] = \left [ \begin {array}{c} \boldsymbol {v} \vspace {1mm} \\ \boldsymbol {\Sigma _F} \vspace {1mm} \\ \boldsymbol {\Sigma _H} \vspace {1mm} \\ \Sigma _J \vspace {1mm} \\ \boldsymbol {\Sigma }_{\boldsymbol {Y}_{1}} \vspace {1mm} \\ \Sigma _{y_{1}} \\ \vdots \\ \boldsymbol {\Sigma }_{\boldsymbol {Y}_{n_{\text {M}}}} \vspace {1mm} \\ \Sigma _{y_{n_{\text {M}}}} \end {array} \right ].\end {equation}


\begin {equation}\boldsymbol {\mathcal {A}}_0 = \frac {\partial \boldsymbol {\mathcal {U}}}{\partial \boldsymbol {\mathcal {V}}}; \qquad \boldsymbol {\mathcal {A}}_I = \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}; \qquad \tilde {\boldsymbol {\mathcal {A}}}_I = \boldsymbol {\mathcal {A}}_I \boldsymbol {\mathcal {A}}_0. \label {Xeqn40}\end {equation}


\begin {equation}\frac {\partial \boldsymbol {\mathcal {U}}}{\partial t} = \boldsymbol {\mathcal {A}}_0 \frac {\partial \boldsymbol {\mathcal {V}}}{\partial t}; \qquad \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial X_I} = \tilde {\boldsymbol {\mathcal {A}}}_I \frac {\partial \boldsymbol {\mathcal {V}}}{\partial X_I}. \label {Xeqn41}\end {equation}


\begin {equation}\boldsymbol {\mathcal {A}}_0 \frac {\partial \boldsymbol {\mathcal {V}}}{\partial t} + \sum _{I = 1}^3 \tilde {\boldsymbol {\mathcal {A}}}_{I} \frac {\partial \boldsymbol {\mathcal {V}}}{\partial X_I} = \boldsymbol {\mathcal {S}}. \label {Xeqn42}\end {equation}


$\boldsymbol {\mathcal {A}}_0 = \left [ \frac {\partial ^2 S}{\partial \boldsymbol {\mathcal {U}} \partial \boldsymbol {\mathcal {U}}} \right ]^{-1} = \left [ \begin {array}{cc} \rho _R \boldsymbol {I} & \boldsymbol {0} \\ \boldsymbol {0} & [\mathbb {H}_W]^{-1} \end {array} \right ]$


$\tilde {\boldsymbol {\mathcal {A}}}_I$


\begin {equation}\label {eqn:symmetric_indicial} \left [\boldsymbol {\mathcal {A}}_0 \right ]\frac {\partial }{\partial t} \left [ \begin {array}{c} v_j \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {F}} \right ]_{lL} \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {H}} \right ]_{lL} \\ \Sigma _{J} \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{1}} \right ]_{NO} \\ \Sigma _{y_{1}} \\ \vdots \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{n_{\text {M}}}} \right ]_{NO} \\ \Sigma _{y_{n_{\text {M}}}} \end {array} \right ] - \left [\tilde {\boldsymbol {\mathcal {A}}}_I\right ] \frac {\partial }{\partial X_I} \left [ \begin {array}{c} v_k \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {F}} \right ]_{kK} \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {H}} \right ]_{kK} \\ \Sigma _{J} \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{1}} \right ]_{NO} \\ \Sigma _{y_{1}} \\ \vdots \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{n_{\text {M}}}} \right ]_{NO} \\ \Sigma _{y_{n_{\text {M}}}} \end {array} \right ] = \left [ \begin {array}{c} \left [\boldsymbol {f}_R\right ]_i \\ \boldsymbol {0} \\ \boldsymbol {0} \\ 0 \\ \left [\boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{1}}\right ]_{KM} \\ \mathcal {R}_{y_{1}} \\ \vdots \\ \left [\boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{n_{\text {M}}}}\right ]_{KM} \\ \mathcal {R}_{y_{n_{\text {M}}}} \\ \end {array} \right ].\end {equation}


$\boldsymbol {\mathcal {A}}_0^{-1}$


$\tilde {\mathcal {A}}_I$


\begin {equation}\left [\tilde {\boldsymbol {\mathcal {A}}}_I\right ] = \left [ \begin {array}{ccccccccc} \boldsymbol {0} & \delta _{ik} \delta _{KI} & \mathcal {E}_{ijk} \mathcal {E}_{IJK} F_{jJ} & H_{iI} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \delta _{ik} \delta _{JI} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \mathcal {E}_{ijk} \mathcal {E}_{JKI} F_{jK} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ H_{kI} & \boldsymbol {0} & \boldsymbol {0} & 0 & \boldsymbol {0} & 0 & \cdots & \boldsymbol {0} & \boldsymbol {0}\\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0}\\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & 0 & \boldsymbol {0} & 0 & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0}\\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & 0 & \boldsymbol {0} & 0 & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \end {array} \right ]. \label {Xeqn47}\end {equation}


\begin {equation}\label {eqn:wave_solution} \delta \boldsymbol {\mathcal {U}} (\boldsymbol {X}, t) = \text {Re} \left [\boldsymbol {\mathcal {U}}_{j} e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j} t)} \right ],\end {equation}


$k_j$


$\boldsymbol {\mathcal {U}}_j$


$c_j$


$\boldsymbol {N}$


$\text {Re}[\bullet ]$


$\delta \boldsymbol {\mathcal {U}}(\boldsymbol {X}, t)$


$c_j$


$c_{j} = c_{j}^R + \mathrm {i} c_{j}^I$


\begin {equation}\delta \boldsymbol {\mathcal {U}} (\boldsymbol {X}, t) = \text {Re} \left [\left (\boldsymbol {\mathcal {U}}_{j} e^{k_{j} c_{j}^{I} t } \right ) e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j}^R t)} \right ]. \label {Xeqn49}\end {equation}


$c_j^R$


$c_j^I$


$c_j^I \leq 0$


\begin {equation}\frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial t} = \text {Re} \left [- c_{j} \mathrm {i} k_{j} e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j} t)} \boldsymbol {\mathcal {U}}_{j} \right ]; \qquad \frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial X_I} = \text {Re} \left [\mathrm {i} k_{j} e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j} t)} N_I \boldsymbol {\mathcal {U}}_{j} \right ]. \label {Xeqn50}\end {equation}


\begin {equation}\text {Re} \left [c_{j} \boldsymbol {\mathcal {U}}_{j} \right ] = \text {Re} \left [ \left (\boldsymbol {\mathcal {A}}_{\boldsymbol {N}} + \frac {\mathrm {i}}{k_{j}} \boldsymbol {\mathcal {J} }\right )\boldsymbol {\mathcal {U}}_{j} \right ]; \qquad \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} = \sum _{I = 1}^3 \boldsymbol {\mathcal {A}}_{I} N_I. \label {Xeqn51}\end {equation}


$c_{j} = c_{j}^R + \mathrm {i} c_{j}^I$


$\boldsymbol {\mathcal {U}}_{j} = \boldsymbol {\mathcal {U}}_{j}^R + \mathrm {i} \boldsymbol {\mathcal {U}}_{j}^I$


\begin {equation}\text {Re} \left [ c_{j} \boldsymbol {\mathcal {U}}_{j} \right ] = c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R - c_{j}^I \boldsymbol {\mathcal {U}}_{j}^I, \label {Xeqn52}\end {equation}


\begin {equation}\text {Re} \left [ \left (\boldsymbol {\mathcal {A}}_{\boldsymbol {N}} + \frac {\mathrm {i}}{k_{j}} \boldsymbol {\mathcal {J} }\right )\boldsymbol {\mathcal {U}}_{j} \right ] = \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} \boldsymbol {\mathcal {U}}_{j}^R - \frac {1}{k_{j}} \boldsymbol {\mathcal {J}} \boldsymbol {\mathcal {U}}_{j}^I. \label {Xeqn53}\end {equation}


\begin {equation}c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R - c_{j}^I \boldsymbol {\mathcal {U}}_{j}^I = \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} \boldsymbol {\mathcal {U}}_{j}^R - \frac {1}{k_{j}} \boldsymbol {\mathcal {J}} \boldsymbol {\mathcal {U}}_{j}^I. \label {Xeqn54}\end {equation}


$\boldsymbol {\mathcal {J}} = \boldsymbol {0}$


$\boldsymbol {\mathcal {U}}_{j}^I = \boldsymbol {0}$


\begin {equation}\label {eqn:hyperbolic_classical} c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R = \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} \boldsymbol {\mathcal {U}}_{j}^R,\end {equation}


$\boldsymbol {\mathcal {A}}_{\boldsymbol {N}} = \boldsymbol {0}$


$\boldsymbol {\mathcal {U}}_{j}^R = \boldsymbol {0}$


$\omega _{j}^{I}$


\begin {equation}\omega _{j}^I \boldsymbol {\mathcal {U}}_{j}^I = \boldsymbol {\mathcal {J}}\boldsymbol {\mathcal {U}}_{j}^I; \qquad \omega _{j}^I = k_{j} c_{j}^I, \label {Xeqn56}\end {equation}


$D \boldsymbol {\mathcal {F}}_{\boldsymbol {N}} [\boldsymbol {\mathcal {U}}_{j}^R] = c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R$


\begin {equation}\begin {aligned} - \left [ \begin {array}{c} D \left ( \boldsymbol {P} \boldsymbol {N} \right ) [\boldsymbol {F}_{j}, \boldsymbol {H}_{j}, J_{j}, \boldsymbol {Y}_{1}^j, y_{1}^j, \ldots , \boldsymbol {Y}_{n_{\text {M}}}^j, y_{n_{\text {M}}}^j] \\ \label {eqn:p_alpha} D \left ( \frac {1}{\rho _{R}} \boldsymbol {p}_R \otimes \boldsymbol {N} \right ) [\boldsymbol {p}^{j}_{R}] \\ D \left ( \boldsymbol {F} \Cross \left ( \frac {1}{\rho _{R}} \boldsymbol {p}_R \otimes \boldsymbol {N} \right ) \right ) [\boldsymbol {p}^{j}_{R}, \boldsymbol {F}_{j}] \\ D \left ( \boldsymbol {H} : \left ( \frac {1}{\rho _{R}} \boldsymbol {p}_R \otimes \boldsymbol {N} \right ) \right ) [\boldsymbol {p}^{j}_{R}, \boldsymbol {H}_{j}] \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ] = c_{j}^R \left [ \begin {array}{c} \boldsymbol {p}^{j}_R \\ \boldsymbol {F}_{j} \\ \boldsymbol {H}_{j} \\ J_{j} \\ \boldsymbol {Y}_{1}^j \\ y_{1}^j \\ \vdots \\ \boldsymbol {Y}_{n_{\text {M}}}^j \\ y_{n_{\text {M}}}^j \end {array} \right ]. \end {aligned}\end {equation}


$\{ \boldsymbol {\mathcal {Y}}_1^j, \ldots , \boldsymbol {\mathcal {Y}}_{n_{\text {M}}}^j \}$


$\boldsymbol {F}_{j}$


$\boldsymbol {H}_{j}$


$J_{j}$


$c_{j}^R \neq 0$


\begin {equation}\begin {aligned} \label {eqn:Falpha} \boldsymbol {F}_{j} &= - \frac {1}{c_{j}^R} \boldsymbol {v}_{j} \otimes \boldsymbol {N}; \qquad \boldsymbol {H}_{j} &= - \boldsymbol {F} \Cross \left (\frac {1}{c_{j}^R} \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ); \qquad J_{j} &= - \boldsymbol {H} : \left (\frac {1}{c_{j}^R} \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ). \end {aligned}\end {equation}


$\boldsymbol {p}^{j}_{R}$


\begin {equation}- c_{j}^R \boldsymbol {p}_R^{j} = - \rho _{R} c_{j}^R \boldsymbol {v}_{j} = D \left ( \boldsymbol {P} \boldsymbol {N} \right ) \left [ \boldsymbol {F}_{j}, \boldsymbol {H}_{j}, J_{j}, \boldsymbol {0}, 0, \ldots , \boldsymbol {0}, 0 \right ]. \label {Xeqn59}\end {equation}


$\delta \boldsymbol {v}$


$\boldsymbol {P}$


$\boldsymbol {H}_{j} = \boldsymbol {F}$


$\boldsymbol {F}_{j}$


\begin {equation}\label {eqn:hadmard} \rho _{R} \left (c_{j}^R\right )^2 \delta \boldsymbol {v} \cdot \boldsymbol {v}_{j} = \left [ \begin {array}{c} \left ( \delta \boldsymbol {v} \otimes \boldsymbol {N} \right ) : \\ \boldsymbol {F} \Cross \left ( \delta \boldsymbol {v} \otimes \boldsymbol {N} \right ) : \\ \boldsymbol {H} : \left ( \delta \boldsymbol {v} \otimes \boldsymbol {N} \right ) \end {array} \right ]^T \left [ \mathbb {H}_{\boldsymbol {\chi } \boldsymbol {\chi }} \right ] \left [ \begin {array}{c} : \left (\boldsymbol {v}_{j} \otimes \boldsymbol {N} \right )\\ : \boldsymbol {F} \Cross \left ( \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ) \\ \boldsymbol {H} : \left ( \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ) \end {array} \right ].\end {equation}


$[\mathbb {H}_{\boldsymbol {\chi \chi }}]$


$\delta \boldsymbol {v} = \boldsymbol {v}_{j}$


$\boldsymbol {N}$


$\boldsymbol {N}$


$c_p$


$\boldsymbol {v}_{j} = \boldsymbol {n}$


$\boldsymbol {n}$


$\boldsymbol {t}_{1,2} = \boldsymbol {FT}_{1,2} / \Vert \boldsymbol {FT}_{1,2} \Vert $


$\delta \boldsymbol {v} = \boldsymbol {v}_{j} = \boldsymbol {n}$


$\{W_{\boldsymbol {F} \boldsymbol {F}}^{\infty }, W_{\boldsymbol {H} \boldsymbol {H}}^{\infty }, W_{JJ}^{\infty }, W_{\boldsymbol {F} \boldsymbol {F}}^{\alpha }, W_{JJ}^{\alpha } \}$


$[\mathbb {H}_{\boldsymbol {\chi \chi }}]$


\begin {equation}c_{1,2} = \pm c_p, \label {Xeqn62}\end {equation}


$c_p$


\begin {equation}\label {eqn:pressure_wave} c_p = \sqrt {\left (\frac {2 \xi + 2 \zeta \Lambda _T^2 + f^{\prime \prime }_{\infty } \Lambda _{\boldsymbol {H}}^2}{\rho _R}\right ) + \sum _{\alpha = 1}^{n_{\text {M}}} \left (\frac {\mu _{\alpha } \boldsymbol {N} \cdot \left (\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {N}\right ) + \mu _{\alpha } \Lambda _{\boldsymbol {H}}^2 J^{-2}}{\rho _R}\right )}.\end {equation}


$\boldsymbol {\mathcal {U}}_{\alpha }$


\begin {equation}\label {eqn:eigenvector_1} \boldsymbol {\mathcal {U}}_{1, 2}^R = \left [ \begin {array}{c} \boldsymbol {n} \\ - \frac {1}{c_{1, 2}} \boldsymbol {n} \otimes \boldsymbol {N} \\ - \frac {1}{c_{1, 2}} \boldsymbol {F} \Cross \left (\boldsymbol {n} \otimes \boldsymbol {N} \right ) \\ - \frac {1}{c_{1, 2}} \boldsymbol {H} : \left (\boldsymbol {n} \otimes \boldsymbol {N} \right ) \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ].\end {equation}


$\boldsymbol {v}_{j} = \boldsymbol {t}_{1,2}$


\begin {equation}\label {eqn:shear_wave} c_{3, 4}^R = \pm c_{s_1}; \qquad c_{5, 6}^R = \pm c_{s_2},\end {equation}


\begin {equation}\label {eqn:shear_wave2} c_{s_1} = \sqrt {\left ( \frac {2 \xi + 2 \zeta \lambda _2^2}{\rho _{R}} \right ) + \sum _{\alpha = 1}^{n_{\text {M}}} \left ( \frac { \mu _{\alpha } \boldsymbol {N} \cdot \left (\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {N}\right )}{\rho _{R}} \right ) }; \quad c_{s_2} = \sqrt { \left ( \frac {2 \xi + 2 \zeta \lambda _1^2}{\rho _{R}} \right ) + \sum _{\alpha = 1}^{n_{\text {M}}} \left ( \frac {\mu _{\alpha } \boldsymbol {N} \cdot \left (\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {N}\right )}{\rho _{R}} \right ) }.\end {equation}


$\lambda _{1,2}^2$


$\boldsymbol {\Lambda }_T$


\begin {equation}\boldsymbol {\Lambda }_T = \lambda _1^2 \boldsymbol {t}_1 \otimes \boldsymbol {t}_1 +\lambda _2^2 \boldsymbol {t}_2 \otimes \boldsymbol {t}_2. \label {Xeqn67}\end {equation}


\begin {equation}\label {eqn:eigenvector_2} \boldsymbol {\mathcal {U}}_{3, 4}^R = \left [ \begin {array}{c} \boldsymbol {t}_1 \\ - \frac {1}{c_{3, 4}} \boldsymbol {t}_1 \otimes \boldsymbol {N} \\ - \frac {1}{c_{3, 4}} \boldsymbol {F} \Cross \left (\boldsymbol {t}_1 \otimes \boldsymbol {N} \right ) \\ 0 \\ \boldsymbol {0}\\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ]; \qquad \boldsymbol {\mathcal {U}}_{5, 6} = \left [ \begin {array}{c} \boldsymbol {t}_2 \\ - \frac {1}{c_{5, 6}} \boldsymbol {t}_2 \otimes \boldsymbol {N} \\ - \frac {1}{c_{5, 6}} \boldsymbol {F} \Cross \left (\boldsymbol {t}_2 \otimes \boldsymbol {N} \right ) \\ 0 \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ].\end {equation}


$\alpha $


\begin {equation}\begin {aligned} c_j^I \kappa _j \bar {\boldsymbol {Y}}_j^I &= D \boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_j} [\bar {\boldsymbol {Y}}_j^I]\bigg \vert _{\boldsymbol {C}^{-1} \boldsymbol {Y}_j \approx \boldsymbol {I}} = - \frac {1}{\tau _{\alpha }} \bar {\boldsymbol {Y}}_j^I, \\ c_j^I \kappa _j \bar {y}_j^I &= D \mathcal {R}_{y_j} [\bar {\boldsymbol {Y}}_j^I, \bar {y}_j^I]\bigg \vert _{\text {tr} (\boldsymbol {C}^{-1} \boldsymbol {Y}_{j}) \approx 3} = \frac {1}{\tau _{\alpha }} y_j \boldsymbol {C}^{-1} : \bar {\boldsymbol {Y}}_j^I. \end {aligned} \label {Xeqn71}\end {equation}


\begin {equation}c^I_{1-6} = - \frac {1}{\kappa _{j} \tau _{\alpha }} \quad \text {and} \quad c_{7}^I = 0. \label {Xeqn72}\end {equation}


$\boldsymbol {Y}_j$


$y_j$


$6 \times n_{\text {M}}$


$S$


$\Omega _R$


\begin {equation}\begin {aligned} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} &= \int _{\Omega _{R}} \frac {\partial \hat {S} (\boldsymbol {p}_R, \boldsymbol {\mathcal {X_Y}})}{\partial t} \, d \Omega _{R}. \end {aligned} \label {Xeqn76}\end {equation}


\begin {equation}\begin {aligned} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} &= \int _{\Omega _{R}} \left ( \frac {\partial \hat {S}}{\partial \boldsymbol {p}_R} \cdot \frac {\partial \boldsymbol {p}_R}{\partial t} + \frac {\partial \hat {S}}{\partial \boldsymbol {\mathcal {X}}} \bullet \frac {\partial \boldsymbol {\mathcal {X}}}{\partial t} + \underbrace {\sum _{\alpha = 1}^{n_{\text {M}}} \left ( \frac {\partial \hat {S}}{\partial \boldsymbol {Y}_{\alpha }} : \frac {\partial \boldsymbol {Y}_{\alpha }}{\partial t} + \frac {\partial \hat {S}}{\partial y_{\alpha }} \frac {\partial y_{\alpha }}{\partial t} \right )}_{- \dot {\mathcal {D}}_{\text {int}}} \right ) \, d \Omega _{R}. \end {aligned} \label {Xeqn77}\end {equation}


$\bullet $


$\boldsymbol {\mathcal {X}}$


$\frac {\partial \hat {S}}{\partial \boldsymbol {\mathcal {X}}} \bullet \frac {\partial \boldsymbol {\mathcal {X}}}{\partial t} = \frac {\partial \hat {S}}{\partial \boldsymbol {F}} : \frac {\partial \boldsymbol {F}}{\partial t} + \frac {\partial \hat {S}}{\partial \boldsymbol {H}} : \frac {\partial \boldsymbol {H}}{\partial t} + \frac {\partial \hat {S}}{\partial J} \frac {\partial J}{\partial t}$


$\dot {\mathcal {D}}_{\text {int}}$


\begin {equation}\label {eqn:Hamiltonian_2} \begin {aligned} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} &= \int _{\Omega _{R}} \left ( \boldsymbol {v} \cdot \frac {\partial \boldsymbol {p}_R}{\partial t} + \underbrace {\left ( \boldsymbol {\Sigma _F} + \boldsymbol {\Sigma _H} \Cross \boldsymbol {F} + \Sigma _J \boldsymbol { H} \right )}_{\boldsymbol {P}} : \boldsymbol {\nabla }_0 \boldsymbol {v} -\dot {\mathcal {D}}_{\text {int}} \right ) \, d \Omega _{R}. \end {aligned}\end {equation}


$S$


\begin {equation}\label {eqn:Hamiltonian_3} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} - \dot {\Pi }_{\text {ext}} = - \int _{\Omega _{R}} \dot {\mathcal {D}}_{\text {int}}\, d \Omega _{R}; \qquad \dot {\Pi }_{\text {ext}} = \int _{\Omega _{R}} \boldsymbol {v} \cdot \boldsymbol {f}_R \, d \Omega _{R} + \int _{\partial \Omega _{R}} \boldsymbol {v}_B \cdot \boldsymbol {t}_B \, d A_{R},\end {equation}


$\dot {\Pi }_{\text {ext}}$


$\dot {\mathcal {D}}_{\text {int}} \geq 0$


\begin {equation}\label {eqn:Hamiltonian_final} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} - \dot {\Pi }_{\text {ext}} \leq 0,\end {equation}


$\dot {\Pi }_{\text {ext}} = 0$


$\dot {\mathcal {D}}_{\text {int}} = 0$


\begin {equation}\label {eqn:Hamiltonian_isolated} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} = 0.\end {equation}


$\boldsymbol {v}$


$a$


\begin {equation}\label {eqn:SPH_gradient} \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t) \approx \frac {1}{\Omega _R^a} \sum _{b \in \Lambda _a} \frac {1}{2} \left ( \boldsymbol {v}_b (t) - \boldsymbol {v}_a (t) \right ) \otimes \boldsymbol {C}_{ab}; \qquad \boldsymbol {C}_{ab} = 2 \Omega _R^a \Omega _R^b \tilde {\boldsymbol {\nabla }}_0 W_b (\boldsymbol {X}_a).\end {equation}


$b \in \Lambda _a$


$b$


$a$


$\Omega _R^b$


$b$


$- \boldsymbol {v}_a$


$\tilde {\boldsymbol {\nabla }}_0$


\begin {equation}\tilde {\boldsymbol {\nabla }}_0 W_b (\boldsymbol {X}_a) = \boldsymbol {L}_a \boldsymbol {\nabla }_0 W_b (\boldsymbol {X}_a); \qquad \boldsymbol {L}_a = \left [\sum _{b \in \Lambda _a} \Omega _R^b \boldsymbol {\nabla }_0 W_b (\boldsymbol {X}_a) \otimes (\boldsymbol {X}_b - \boldsymbol {X}_a)\right ]^{-1}. \label {Xeqn85}\end {equation}


$\boldsymbol {C}_{ab} \neq - \boldsymbol {C}_{ba}$


$\{ \boldsymbol {p}_R, \boldsymbol {\mathcal {X}}, \boldsymbol {C}_{v_{\alpha }}^{-1} \}$


\begin {align}\frac {d \boldsymbol {p}_{R}^a(t)}{d t} &= \boldsymbol {E}_a(t) - \boldsymbol {T}_a(t) + \boldsymbol {\mathcal {D}}_a(t); \label {eqn:SPH_p} \\ \frac {d \boldsymbol {F}_a (t)}{d t} &= \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t); \label {eqn:SPH_F} \\ \frac {d \boldsymbol {H}_a (t)}{d t} &= \boldsymbol {F}_a(t) \Cross \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t); \label {eqn:SPH_H} \\ \frac {d J_a (t)}{d t} &= \boldsymbol {H}_a(t) : \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t); \label {eqn:SPH_J} \\ \frac {d \boldsymbol {C}_{v_{\alpha }, a}^{-1} (t)}{d t }\bigg \vert _{\boldsymbol {X}} &= \frac {1}{\tau _{\alpha }} \left ( \boldsymbol {C}_a^{-1}(t) - \boldsymbol {C}_{v_{\alpha }, a}^{-1} (t) \right ); \qquad \alpha = \{1, \ldots , n_{\text {M}} \}. \label {eqn:SPH_Cvalpha}\end {align}


$a$


\begin {equation}\boldsymbol {E}_a (t) = \frac {A_R^a}{\Omega _R^a} \boldsymbol {t}_B^a (t) + \boldsymbol {f}_R^a (t); \qquad \boldsymbol {T}_a(t) = \sum _{b \in \Lambda ^b_a} \boldsymbol {T}_{ab}(t); \qquad \boldsymbol {T}_{ab}(t) = \frac {1}{2} \left (\boldsymbol {P}_b(t) \boldsymbol {C}_{ba} - \boldsymbol {P}_a(t) \boldsymbol {C}_{ab} \right ), \label {Xeqn86}\end {equation}


$A_{R}^a$


$\boldsymbol {t}_B^a$


$A_{R}^a = 0$


$\boldsymbol {T}_{ba} = - \boldsymbol {T}_{ab}$


$\boldsymbol {\mathcal {D}}_a = \sum _{b \in \Lambda ^b_a} \boldsymbol {\mathcal {D}}_{ab}$


$\boldsymbol {\mathcal {D}}_{ab} = - \boldsymbol {\mathcal {D}}_{ba}$


\begin {equation}\label {eqn:jump_vel} \boldsymbol {\mathcal {D}}_{ab} = \boldsymbol {S}_{ab} \left ( \boldsymbol {v}_b - \boldsymbol {v}_a \right ),\end {equation}


$\boldsymbol {S}_{ab}$


$a$


$b$


\begin {equation}\label {eqn:dissipation} \boldsymbol {S}_{ab} = \frac {1}{2} \rho _{R}^{\text {Ave}} \Vert \boldsymbol {C}_{ab}^{\text {Skew}} \Vert \left [ c_{p}^{\text {Ave}} \boldsymbol {n}_{ab} \otimes \boldsymbol {n}_{ab} + c_s^{ \text {Ave}} \left ( \boldsymbol {I} - \boldsymbol {n}_{ab} \otimes \boldsymbol {n}_{ab} \right ) \right ],\end {equation}


$\left [ \bullet \right ]^{\text {Ave}} = \frac {1}{2} \left ( \left [ \bullet \right ]_a + \left [ \bullet \right ]_b \right )$


$\boldsymbol {C}^{\text {Skew}}_{ab} = \frac {1}{2} \left ( \boldsymbol {C}_{ab} - \boldsymbol {C}_{ba} \right )$


$\Vert \boldsymbol {C}_{ab}^{\text {Skew}} \Vert ^2 = \boldsymbol {C}_{ab}^{\text {Skew}} \cdot \boldsymbol {C}_{ab}^{\text {Skew}}$


\begin {equation}\frac {d \boldsymbol {\phi }_a (t)}{d t} = \boldsymbol {v}_a (t). \label {Xeqn89}\end {equation}


$t^n$


$t^{n+1}$


\begin {equation}\label {eq:RK3} \begin {aligned} &\boldsymbol {\mathcal {U}}_{a}^{\star }=\boldsymbol {\mathcal {U}}_{a}^n+\Delta t\,\Dot {\boldsymbol {\mathcal {U}}}_{a}^n\left (\boldsymbol {\mathcal {U}}_{a}^n \right ),\\ &\boldsymbol {\mathcal {U}}_{a}^{\star \star }= \frac {3}{4}\boldsymbol {\mathcal {U}}_{a}^n+\frac {1}{4} \left ( \boldsymbol {\mathcal {U}}_{a}^{\star }+\Delta t\,\Dot {\boldsymbol {\mathcal {U}}}_{a}^{\star }\left (\boldsymbol {\mathcal {U}}_{a}^{\star } \right ) \right ),\\ &\boldsymbol {\mathcal {U}}_{a}^{n+1}= \frac {1}{3}\boldsymbol {\mathcal {U}}_{a}^n+\frac {2}{3}\left (\boldsymbol {\mathcal {U}}_{a}^{\star \star }+\Delta t\,\Dot {\boldsymbol {\mathcal {U}}}_{a}^{\star \star } \left (\boldsymbol {\mathcal {U}}_{a}^{\star \star } \right ) \right ). \end {aligned}\end {equation}


$\boldsymbol {\mathcal {U}}_a$


$\{ \boldsymbol {p}_R^a, \boldsymbol {F}_a, \boldsymbol {H}_a, J_a \}$


$\boldsymbol {\phi }_a$


$\Delta t$


$\boldsymbol {C}_a^{-1}$


$\tau _{\alpha }$


\begin {equation}\label {eqn:update_internal_variables} \boldsymbol {C}^{-1, n+1}_{v_{\alpha }, a} = \left ( 1 - \epsilon \right ) \boldsymbol {C}_{v_{\alpha }, a}^{-1, n} + \epsilon \boldsymbol {C}_a^{-1, n}; \qquad \epsilon = 1 - e^{-\frac {\Delta t}{\tau _{\alpha }}},\end {equation}


$\epsilon \in [0, 1]$


$\Delta t$


\begin {equation}\label {eq:cfl} \Delta t \leq \text {min} \left ( \alpha _{CFL} \min \left ( \frac {h_{\text {min}}}{c_{p}} \right ), \alpha _{\text {relax}} \tau _{\text {min}} \right ),\end {equation}


$\tau _{\text {min}} = \text {min}_{\alpha } \tau _{\alpha }$


$\alpha _{CFL}$


$\alpha _{\text {relax}}$


$c_{p}$


$h_{\text {min}}$


$\tau _{\text {min}}$


$\Delta t$


$\alpha _{CFL} = 0.9$


$\tau _{\alpha }$


$\beta _{\alpha }$


$\boldsymbol {\varphi } (\boldsymbol {X}, t)$


\begin {equation}\label {eqn:Mapping} \boldsymbol {\varphi } (\boldsymbol {X}, t) = \boldsymbol {X} + U_0 \cos \left ( \frac {c_s \pi t}{\sqrt {2}} \right ) \left [ \begin {array}{c} \sin \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) \\ - \cos \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) \end {array} \right ].\end {equation}


$U_0$


$c_s$


\begin {equation}c_s = \sqrt {\frac {\bar {\mu }}{\rho _R}}; \qquad \bar {\mu } = \mu + \sum _{\alpha = 1}^{n_{\text {M}}} \left (\mu _{\alpha } e^{- \frac {t}{\tau _{\alpha }}}\right ). \label {Xeqn100}\end {equation}


\begin {equation}\label {eqn:exact_v} \boldsymbol {v} (\boldsymbol {X}, t) = - \frac {\pi c_s U_0}{\sqrt {2}} \sin \left ( \frac {c_s \pi t}{\sqrt {2}} \right ) \left [ \begin {array}{c} \sin \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) \\ - \cos \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) \end {array} \right ],\end {equation}


\begin {equation}\label {eqn:exact_F} \boldsymbol {F} (\boldsymbol {X}, t) = \left [ \begin {array}{cc} 1 + \alpha \cos \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) & - \alpha \sin \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) \\ \alpha \sin \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) & 1 - \alpha \cos \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) \end {array} \right ]; \qquad \alpha = \frac {U_0 \pi }{2} \cos \left ( \frac {c_s \pi t}{\sqrt {2}} \right ),\end {equation}


$t = 0$


$L^2$


$t = 0.0094$


$L^2$


$t$


$\boldsymbol {v}$


$\boldsymbol {P}$


$L_X = L_Y = 1$


$v_y$


$v_y$


$v_y$


\begin {equation}\boldsymbol {v}\bigg \vert _{t = 0} = \boldsymbol {v} (\boldsymbol {X}, t = 0) = \left [ \begin {array}{c} 0 \\ v_y \end {array} \right ]; \qquad v_y = \left \{ \begin {array}{cl} \alpha \frac {2 X Y}{L_X L_Y}; & 0 \leq X \leq L_X/2 \\ \alpha \frac {Y}{L_Y}; & X \geq L_X/2 \end {array} \right ., \label {Xeqn103}\end {equation}


$\alpha = -100$


$\{$


$\}$


$\{ 289, 525, 1089 \}$


$t=3.1$


$t = 10.2$


$t = 3.1$


$t = 10.2$


$\mathcal {K}$


$\Pi _{e}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$v_y$


$\boldsymbol {X} = [1, 1]^T$


$\boldsymbol {X}$


$[1, 1]^T$


$t$


$\{3.1, 4.25, 5.4, 6.6, 7.75, 8.9, 10.15, 11.3, 12.45, 13.55, 14.7, 15.85, 17,\\ 18.15, 19.25, 20.4\}$


$v_y$


$500$


$t= \{0.62, 0.93, 1.23, 1.54, 1.86, 2.17 \}$


$\beta _1 = 0$


$\beta _1 = 0$


$t = \{0.62, 0.93, 1.23, 1.54, 1.86, 2.17\}$


$t= \{0.62, 0.93, 1.23, 1.54, 1.86, 2.17 \}$


$\mathcal {K}$


$\Pi _{\text {e}}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$v_y$


$u_y$


$\boldsymbol {X} = [1, 1]^T$


$v_y$


$u_y$


$\boldsymbol {X}$


$[1, 1]^T$


$L = 6$


\begin {equation}\boldsymbol {v}\bigg \vert _{t = 0} = \left [ \begin {array}{c} 0 \\ \Omega _0 \sin \left ( \frac {\pi Y}{2 L} \right ) \\ 0 \end {array} \right ] ~[\text {m}/\text {s}], \label {Xeqn104}\end {equation}


$\Omega _0 = 105 \text { m}$


$^{-1}$


$t=0.085$


$t = 0.26$


$t = \{ 0, 0.085, 0.17, 0.26 \}$


$\theta _{A}$


$\boldsymbol {X}_A = [-0.5, 6, -0.5]^T$


$\theta _B$


$\boldsymbol {X}_B = [0.5, 6, -0.5]^T$


$\theta _C$


$\boldsymbol {X}_C = [0.5, 6, 0.5]^T$


$\theta _D$


$\boldsymbol {X}_D = [-0.5, 6, 0.5]^T$


$\boldsymbol {X}_A = [-0.5, 6, -0.5]^T$


$\boldsymbol {X}_B = [0.5, 6, -0.5]^T$


$\boldsymbol {X}_C = [0.5, 6, 0.5]^T$


$\boldsymbol {X}_D = [-0.5, 6, 0.5]^T$


$\mathcal {K}$


$\Pi _{\text {e}}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$t = 0$


$t$


$\{85, 105, 135, 165, 195, 225, 255, 285, 315, 345, 375, 405\}$


\begin {equation}\boldsymbol {v}\bigg \vert _{t = 0} = \alpha _1(\boldsymbol {X}) \left [ \begin {array}{c} 0 \\ 0 \\ 1 \end {array} \right ] [\text {m}/\text {s}]; \qquad \alpha _1(\boldsymbol {X}) = \sqrt {\frac {2}{\pi }} \left [ \exp {\left ( - \frac {(X - 5)^2}{10} \right )} + \exp {\left ( - \frac {(Y - 5)^2}{10} \right )} \right ]. \label {Xeqn105}\end {equation}


$t = 1.5$


$t = 4.5$


$t = 1.5$


$t = 4.5$


$\mathcal {K}$


$\Pi _{\text {e}}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$t = 4.5$


$t = 5$


$t = 5.5$


$t = 6$


$\beta _1 = 0$


$\beta _1 = 1$


$\beta _1 = 0$


$t$


$\{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6\}$


$t > 6$


$t$


$\{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6\}$


$v_x$


$R = 10$


$L = 20$


$t = 0.1$


$A$


$\boldsymbol {v}_A$


\begin {equation}\boldsymbol {v}_A (t) = \left [ \begin {array}{c} v_x(t) \\ 0 \\ 0 \end {array} \right ] [\text {m}/\text {s}]; \qquad v_x(t) = - \frac {a_1}{a_2 \sqrt {2 \pi }} \exp {\left [- \frac {(t - t_0)^2}{2 a_2^2} \right ]}, \label {Xeqn106}\end {equation}


$a_1 = 0.075$


$a_2 = 5 \times 10^{-4}$


$t_0 = 2 \times 10^{-3}$


$y$


$2583$


$v_y$


$u_y$


$C$


$v_z$


$u_z$


$B$


$B$


$C$


$X$


$Y$


$t$


$\{1.5, 2, 2.5, 3\}$


$Y$


$Z$


$t$


$\{1.5, 2, 2.5, 3\}$


$\boldsymbol {\mathcal {X}} = \{\boldsymbol {F}, \boldsymbol {H}, J \}$


$\boldsymbol {\mathcal {Y}} = \{ \boldsymbol {Y}_{1}, y_1, \boldsymbol {Y}_2, y_2, \ldots , \boldsymbol {Y}_{n_{\text {M}}}, y_{n_{\text {M}}} \}$


$n_{\text {M}}$


\begin {equation}\begin {aligned} \boldsymbol {\Sigma }_{\boldsymbol {F}}^{\infty } (\boldsymbol {\mathcal {X}}) &= 2 \xi \boldsymbol {F}; \qquad \boldsymbol {\Sigma }_{\boldsymbol {H}}^{\infty } (\boldsymbol {\mathcal {X}}) = 2 \zeta \boldsymbol {H}; \qquad \Sigma _{J}^{\infty } (\boldsymbol {\mathcal {X}}) = - \frac {2 \left ( \xi + 2 \zeta \right )}{J} + \hat {\lambda } \left ( J - 1 \right ) = f^{\prime }_{\infty }; \label {eqn:conjugate_elastic_stresses} \\ \boldsymbol {\Sigma }_{\boldsymbol {F}}^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) &= \mu _{\alpha } \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}; \qquad \boldsymbol {\Sigma }_{\boldsymbol {H}}^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) = \boldsymbol {0}; \qquad \Sigma _{J}^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) = - \frac {\mu _{\alpha }}{J}. \end {aligned}\end {equation}


$[\mathbb {H}_W^{\infty }]$


\begin {equation}W_{\boldsymbol {FF}}^{\infty } = 2 \xi \boldsymbol {\mathcal {I}}; \qquad W_{\boldsymbol {HH}}^{\infty } = 2 \zeta \boldsymbol {\mathcal {I}}; \qquad W_{JJ}^{\infty } = \hat {\lambda } + \frac {2 \left ( \xi + 2 \zeta \right )}{J^2} = f^{\prime \prime }_{\infty }, \label {Xeqn112}\end {equation}


$\boldsymbol {\mathcal {I}}$


$[\boldsymbol {\mathcal {I}}]_{iIjJ} = \delta _{ij} \delta _{IJ}$


$[\mathbb {H}_W^{\infty }]$


$[\mathbb {H}_W^{\alpha }]$


\begin {equation}\begin {aligned} W_{\boldsymbol {FF}}^{\alpha } = \mu _{\alpha } \boldsymbol {\mathcal {I}}_{\boldsymbol {Y}_{\alpha }^{-1}}; \qquad W_{JJ}^{\alpha } = \frac {\mu _{\alpha }}{J^2}; \qquad W_{\boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }}^{\alpha } = \mu _{\alpha } \mathbb {C}; \qquad W_{y_{\alpha } y_{\alpha }}^{\alpha } = \frac {\mu _{\alpha }}{2} y_{\alpha }^{-2}, \end {aligned} \label {Xeqn113}\end {equation}


\begin {equation}W_{\boldsymbol {F} \boldsymbol {Y}_{\alpha }}^{\alpha } = - \mu _{\alpha } \mathbb {A}; \qquad W_{\boldsymbol {Y}_{\alpha } \boldsymbol {F} }^{\alpha } = - \mu _{\alpha } \mathbb {B}, \label {Xeqn114}\end {equation}


\begin {equation}\begin {aligned} {[\mathbb {A}]}_{IMKL} &= \left [\boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}\right ]_{IK} \left [\boldsymbol {Y}_{\alpha }^{-1}\right ]_{ML}; \\ {[\mathbb {B}]}_{IMKL} &= \left [\boldsymbol {Y}_{\alpha }^{-1}\right ]_{IK} \left [\boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}\right ]_{ML}; \\ {[\mathbb {C}]}_{IMKL} &= [\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1}]_{IK} \left [ \boldsymbol {Y}_{\alpha }^{-1} \right ]_{ML}; \\ {[\boldsymbol {\mathcal {I}}_{\boldsymbol {Y}_{\alpha }^{-1}}]}_{iIjJ} &= \delta _{ij} [\boldsymbol {Y}_{\alpha }^{-1}]_{IJ}. \end {aligned} \label {Xeqn115}\end {equation}


$[\mathbb {H}_{W}^{\alpha }]$


\begin {equation}\label {eqn:Hamiltonian_three} \begin {aligned} \sum _a \Omega _{R}^a \frac {d S_a}{d t} &= \sum _a \Omega _{R}^a \left ( \boldsymbol {v}_a \cdot \frac {d \boldsymbol {p}^a_{R}}{d t} + \boldsymbol {P}_a : \frac {d \boldsymbol {F}_a}{d t} \right ) - \sum _a \Omega _{R}^a \dot {\mathcal {D}}_{\text {int}}^a. \end {aligned}\end {equation}


\begin {equation}\begin {aligned} \sum _a \Omega _R^a \left ( \boldsymbol {v}_a \cdot \frac {d \boldsymbol {p}_R^a}{d t} + \boldsymbol {P}_a : \frac {d \boldsymbol {F}_a}{d t} \right ) &= \left [ \underbrace {\sum _a \Omega _R^a \left ( \boldsymbol {P} : \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t) - \boldsymbol {v}_a \cdot \boldsymbol {T}_a \right )}_{0}\right ] + \sum _a A_R^a \boldsymbol {v}_B^a \cdot \boldsymbol {t}_B^a \\ &\quad + \sum _a \Omega _R^a \boldsymbol {v}_a \cdot \boldsymbol {f}_R^a + \sum _a \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_a. \end {aligned} \label {Xeqn117}\end {equation}


\begin {equation}\label {eqn:Hamiltonian_JMat} \begin {aligned} \sum _a \Omega _{R}^a \frac {d S_a}{d t} - \dot {\Pi }_{\text {ext}} &= - \left [ \sum _a \Omega _{R}^a \mathcal {D}_{\text {int}}^a + \underbrace { \left (- \sum _{a} \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_{a} \right )}_{\dot {\mathcal {D}}_{\text {num}}}\right ],\end {aligned}\end {equation}


$\dot {\Pi }_{\text {ext}}$


\begin {equation}\dot {\Pi }_{\text {ext}} = \sum _a \Omega _{R}^a \boldsymbol {v}_a \cdot \boldsymbol {f}_{R}^a + \sum _{a} A_{R}^{a} \boldsymbol {t}_{B}^{a} \cdot \boldsymbol {v}_{B}^{a}. \label {Xeqn121}\end {equation}


$\dot {\mathcal {D}}_{\text {int}}^{a} \geq 0$


$\dot {\mathcal {D}}_{\text {num}} \geq 0$


$a$


$b$


\begin {equation}\dot {\mathcal {D}}_{\text {num}} = - \sum _a \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_a = - \sum _a \sum _{b \in \Lambda _a} \left ( \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_{ab} \right ) = - \sum _a \sum _{b \in \Lambda _a} \left ( \boldsymbol {v}_b \cdot \boldsymbol {\mathcal {D}}_{ba} \right ) = \sum _a \sum _{b \in \Lambda _a} \left ( \boldsymbol {v}_b \cdot \boldsymbol {\mathcal {D}}_{ab} \right ). \label {Xeqn122}\end {equation}


$\boldsymbol {\mathcal {D}}_{ba} = - \boldsymbol {\mathcal {D}}_{ab}$


\begin {equation}\dot {\mathcal {D}}_{\text {num}} = \frac {1}{2} \sum _a \sum _{b \in \Lambda ^b_a} \left ( \boldsymbol {v}_b - \boldsymbol {v}_a \right ) \cdot \boldsymbol {\mathcal {D}}_{ab}. \label {Xeqn124}\end {equation}


$\dot {\mathcal {D}}_{\text {num}} \geq 0$


\begin {equation}\label {eqn:jump_vel} \boldsymbol {\mathcal {D}}_{ab} = \boldsymbol {S}_{ab} \left ( \boldsymbol {v}_b - \boldsymbol {v}_a \right ),\end {equation}


$\boldsymbol {S}_{ab}$


$\boldsymbol {\varepsilon }$


$\boldsymbol {F}$


\begin {equation}\boldsymbol {\varepsilon } = \frac {1}{2} \left ( \boldsymbol {\nabla }_0 \boldsymbol {u} + (\boldsymbol {\nabla }_0 \boldsymbol {u})^T \right ) = \frac {1}{2} \left ( \boldsymbol {F} + \boldsymbol {F}^T - 2 \boldsymbol {I} \right ), \label {Xeqn133}\end {equation}


$\boldsymbol {u}$


$\boldsymbol {I}$


$W^{\text {Lin}}_{\infty }$


$W_{\alpha }^{\text {Lin}}$


\begin {equation}W^{\text {Lin}} (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}) = W^{\text {Lin}}_{\infty } (\boldsymbol {\varepsilon }) + \sum _{\alpha = 1}^{n_{\text {M}}} W_{\alpha }^{\text {Lin}} (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}), \label {Xeqn134}\end {equation}


\begin {align}W^{\text {Lin}}_{\infty } (\boldsymbol {\varepsilon }) &= \mu \left (\boldsymbol {\varepsilon } : \boldsymbol {\varepsilon }\right ); \qquad W_{\alpha }^{\text {Lin}} (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}) = \mu _{\alpha } \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ) : \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ),\end {align}


$\mu $


$\mu _{\alpha }$


$n_{\text {M}}$


\begin {equation}\boldsymbol {\sigma } (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}) = \boldsymbol {\sigma }_{\infty } (\boldsymbol {\varepsilon }) + \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\sigma }_{\alpha } (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}). \label {Xeqn135}\end {equation}


\begin {equation}\boldsymbol {\sigma }_{\infty } = 2 \mu \boldsymbol {\varepsilon }; \qquad \boldsymbol {\sigma }_{\alpha } = 2 \mu _{\alpha } \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ). \label {Xeqn136}\end {equation}


\begin {equation}\frac {d \boldsymbol {\varepsilon }_{v_{\alpha }}}{d t}\bigg \vert _{\boldsymbol {\varepsilon }} = \frac {1}{\tau _{\alpha }} \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ), \label {Xeqn137}\end {equation}


$\tau _{\alpha }$


$\alpha $


$\Delta t = t_2 - t_1$


\begin {equation}\boldsymbol {\varepsilon }_{v_{\alpha }}\big \vert _{t_2} = (1 - \epsilon ) \boldsymbol {\varepsilon }_{v_{\alpha }}\big \vert _{t_1} + \epsilon \boldsymbol {\varepsilon }; \qquad \epsilon = 1 - e^{-\frac {\Delta t}{\tau _{\alpha }}}. \label {Xeqn138}\end {equation}
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C.H. Lee et al.

The majority of viscoelastic models [8–13] for large strain solids are based on Maxwell-type formulations. These phenomenologi-
cal models typically decompose the deformation gradient into elastic and viscous components [8,12–15], and their internal variables 
evolve in a manner that guarantees thermodynamically consistent dissipation [16]. An alternative class of models is based on hered-
itary integrals, which generalise linear viscoelasticity to large deformations using relaxation functions [17,18]. In this formulation, 
viscous effects are incorporated directly into the stress-strain relationship through a time history integral that accounts for the fading 
memory of the material [19–21]. In computational solid dynamics, Maxwell-type viscoelastic models have been extensively imple-
mented using finite element methods, in particular the Variational Multi-Scale (VMS) Finite Element Method [22,23]. Scovazzi et 
al. [22] demonstrated the use of Prony series representations within the VMS framework, and subsequent extensions incorporated 
a multiplicative decomposition of viscoelasticity [23]. Importantly, for dynamic simulations, maintaining hyperbolicity is crucial to 
ensure real wave speeds and a well-posed evolution [24]. A natural way to achieve this is through the formulation of a symmetric 
hyperbolic system, which is a main objective of the present work.

To achieve this, we propose a compressible polyconvex viscoelastic model, inspired by Boyaval’s approach to polyconvexity in 
viscoelastic solids [25]. In our work, we introduce an extended set of internal variables  = {𝒀 𝑎, 𝑦1,… , 𝒀 𝑛M , 𝑦𝑛M} to represent the 
time-dependent (viscous) response of the material, where 𝑛M denotes the total number of Maxwell branches. The strain energy 
function is additively decomposed into an equilibrium (long-term) part and a non-equilibrium (time-dependent) part, with the latter 
formulated to ensure thermodynamic consistency. As the viscous strain evolves, the viscous strain energy decays and eventually 
vanishes once the viscous strain matches the total strain, indicating the physical relaxation of the material. Furthermore, the strain 
energy is formulated to be convex with respect to both the triplet of deformation measures  = {𝑭 ,𝑯 , 𝐽} and the internal variables 
 , yielding a framework that is jointly convex in both  and  . This extends our previous work [1,26,27], which focused only on 
hyperelastic models with a strain energy convex in  .

This joint convexity naturally leads to the introduction of a generalised convex entropy function, which incorporates the (convex) 
kinetic energy together with the polyconvex strain energy. This allows the hyperbolic system to be symmetrised in terms of dual 
(entropy) variables. Symmetrisation ensures a consistent thermodynamic structure, making the system both mathematically useful 
(i.e., solutions exist and are both unique and stable) and physically meaningful (i.e., energy and dissipation evolve correctly), con-
sistent with the principle of causality and determinism. Within this symmetric framework, we demonstrate the system is hyperbolic, 
guaranteeing real wave speeds across any deformation states and ensuring stable propagation of elastic waves. The relaxation terms 
correctly capture viscoelastic dissipation, providing energy attenuation during dynamic processes.

For spatial discretisation, we implement an upwinding Smoothed Particle Hydrodynamics (SPH) scheme based on the acoustic 
Riemann solver, with a linear reconstruction procedure to achieve second-order accuracy. The SPH scheme ensures semi-discrete 
satisfaction of the second law of thermodynamics by evaluating numerical stabilisation using the time rate of the generalised convex 
entropy. In the numerical examples presented in the current paper, we monitor both internal dissipation and numerical dissipation 
introduced by the upwinding procedure. Both dissipation rates remain non-negative, respecting the second law of thermodynamics. 
In practice, internal dissipation quantifies the energy dissipated by the viscoelastic material, whereas numerical dissipation measures 
the energy loss introduced by the algorithm and helps verify its consistency.

For temporal integration, we employ an explicit three-stage Runge-Kutta time integrator. The evolution of internal variables is 
integrated analytically in time by solving a first-order non-homogeneous ordinary differential equation. A series of benchmark test 
cases with smooth solutions is presented to assess the robustness and accuracy of the algorithm, including a manufactured solution 
to verify the order of convergence. The proposed SPH framework is benchmarked against an in-house Updated Reference Lagrangian 
SPH algorithm [2,3] and a vertex-centred finite volume method to evaluate consistency and accuracy.

The paper is organised as follows. Section 2 revisits the standard viscoelasticity at large strains. Extension to a polyconvex model 
and the symmetrisation of the hyperbolic system are discussed in Section 3, where a symmetric hyperbolic system expressed in terms 
of conjugate entropy variables is also presented. Section 4 demonstrates the hyperbolicity proof and the relaxation response of the 
system. Sections 5 and 6 describe the associated SPH discretisation and the explicit time integration scheme used. Several numerical 
examples are presented in Section 7, and concluding remarks and future work are discussed in Section 8. Appendix A provides the 
expressions for the conjugate stress components and Hessian of the proposed viscoelastic model. Appendices B and C present the 
procedures for obtaining numerical stabilisation via the second law of thermodynamics, and for deriving the Cauchy stress tensor and 
the evolution of internal variables for linear viscoelasticity, which are needed to construct the exact solution for the manufactured 
problem.

2.  Revisiting classical large strain viscoelasticity

Consider the motion of a continuum whose material (or initial) configuration is defined by the domain Ω𝑅 with boundary 𝜕Ω𝑅 and 
unit outward normal vector 𝑵 . After deformation, the continuum occupies the spatial (or current) configuration Ω(𝑡) with boundary 
𝜕Ω(𝑡) and outward unit normal 𝒏. The motion is described by a time-dependent mapping field 𝝓(𝑿, 𝑡), which relates a material point 
𝑿 to its spatial position 𝒙 via 𝒙 = 𝝓(𝑿, 𝑡). The governing equation of motion in the material configuration is

𝜕𝒑𝑅
𝜕𝑡

− DIV𝑷 = 𝒇𝑅; 𝒑𝑅 = 𝜌𝑅𝒗, (1)

 

Computer Methods in Applied Mechanics and Engineering 452 (2026) 118742 

2 



C.H. Lee et al.

where 𝒑𝑅 is the linear momentum (per unit material volume), 𝒗 is the velocity, 𝜌𝑅 is the material density (per unit material volume), 
𝑷  is the first Piola-Kirchhoff stress tensor, 𝑭 = 𝜕𝝓(𝑿,𝑡)

𝜕𝑿  is the deformation gradient tensor, and 𝒇𝑅 is the body force per unit material 
volume.

Classically, in isothermal viscoelasticity [8,28], the strain energy density Ψ (defined per unit undeformed volume) depends on 
𝑭  and a set of internal state variables 𝑪−1

𝑣𝛼
, representing the inverse of a viscous type right Cauchy-Green strain tensor, where 

𝛼 = 1,… , 𝑛M, with 𝑛M denoting the number of Maxwell branches describing the viscoelastic response [9,22]. This dependence is 
written as Ψ = Ψ(𝑭 ,𝑪−1

𝑣1
…𝑪−1

𝑣𝑛M
)1 [10]. The strain energy can be additively decomposed into an equilibrium (long-term) component, 

Ψ∞, and non-equilibrium (time-dependent) viscous contributions, Ψ𝛼 , given as follows [10]

Ψ
(

𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

)

= Ψ∞(𝑭 ) +
𝑛M
∑

𝛼=1
Ψ𝛼

(

𝑭 ,𝑪−1
𝑣𝛼

)

. (2)

For thermodynamic equilibrium [9], the viscous terms Ψ𝛼 and their derivatives with respect to the deformation gradient and internal 
variables must vanish when the material is fully relaxed. This occurs when the viscous deformation tensor 𝑪−1

𝑣𝛼
 aligns with the inverse 

of total right Cauchy-Green strain tensor, defined as 𝑪−1 = 𝑭 −1𝑭 −𝑇 . Mathematically, these conditions are expressed as

Ψ𝛼(𝑭 ,𝑪−1
𝑣𝛼

= 𝑪−1) = 0;
𝜕Ψ𝛼(𝑭 ,𝑪−1

𝑣𝛼
)

𝜕𝑭
|

|

|

|𝑪−1
𝑣𝛼

=𝑪−1
= 𝟎;

𝜕Ψ𝛼(𝑭 ,𝑪−1
𝑣𝛼
)

𝜕𝑪−1
𝑣𝛼

|

|

|

|𝑪−1
𝑣𝛼

=𝑪−1
= 𝟎. (3)

These conditions ensure that the material reaches a long-term equilibrium state with no further internal energy dissipation due to 
viscous effects.

From a thermodynamic perspective, the internal dissipation [30] (or local entropy production [31]) ̇int in isothermal viscoelas-
ticity is given by

0 ≤ ̇int = 𝑷 ∶ 𝑭̇ − Ψ̇(𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

)

=
⎛

⎜

⎜

⎝

𝑷 −
𝜕Ψ(𝑭 ,𝑪−1

𝑣1
…𝑪−1

𝑣𝑛M
)

𝜕𝑭

⎞

⎟

⎟

⎠

∶ 𝜕𝑭
𝜕𝑡

−
𝑛M
∑

𝛼=1

𝜕Ψ(𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

)

𝜕𝑪−1
𝑣𝛼

∶
𝜕𝑪−1

𝑣𝛼
𝜕𝑡

.
(4)

Here, the overdot ̇[∙] denotes the material time derivative. Since 𝜕𝑭𝜕𝑡  is arbitrary, the multiplier of 
𝜕𝑭
𝜕𝑡 , that is 𝑷 −

𝜕Ψ(𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

)

𝜕𝑭 , 
must vanish for the dissipation inequality to hold for under all admissible processes. This leads to the constitutive relation for the 
first Piola-Kirchhoff stress tensor as

𝑷 (𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

) = 𝑷∞(𝑭 ) +
𝑛M
∑

𝛼=1
𝑷 𝛼(𝑭 ,𝑪−1

𝑣𝛼
); 𝑷□ =

𝜕Ψ□

𝜕𝑭
; □ = {∞, 𝛼}. (5)

The stresses depend on the deformation gradient and internal variables describing viscoelastic effects. The remainder inequality (4) 
simplifies to2

0 ≤ ̇int = −
𝑛M
∑

𝛼=1

𝜕Ψ𝛼(𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

)

𝜕𝑪−1
𝑣𝛼

∶
𝜕𝑪−1

𝑣𝛼
𝜕𝑡

. (6)

Suitable evolution equations3 for the internal variables 𝑪−1
𝑣𝛼

 must be defined to ensure both the dissipation inequality (6) and ther-
modynamic equilibrium. Viscoelastic formulations are designed to satisfy the dissipation inequality (also referred to as relaxation be-
haviour due to internal dissipation), but this alone does not necessarily guarantee hyperbolicity of the governing equations. Without 
hyperbolicity, the system may lack real-valued wave speeds. This property is important in solid dynamics to ensure finite propagation 
wave speeds and the well-posedness of initial boundary value problems.

3.  Polyconvexity, convex entropy function, and symmetrisation in first-order systems

One approach to ensure hyperbolicity in systems with relaxation terms is to reformulate the conservation-law system in symmetric 
hyperbolic form through the introduction of a convex entropy function [25,32–35]. The following discussion is general and applies 
to any first-order system, including those with relaxation terms. Such a system can be written as

𝜕
𝜕𝑡

+
3
∑

𝐼=1

𝜕 𝐼
𝜕𝑋𝐼

= ( ); ( ) = ext +( ); ( ) =
𝑛M
∑

𝛼=1
𝛼( ). (7)

1 Frame-indifference [28,29] requires that Ψ be equivalently expressed in terms of the right Cauchy-Green strain tensor 𝑪 and internal state 
variables 𝑪−1

𝑣𝛼
, described by

Ψ(𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

) = Ψ̃(𝑪 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

); 𝑪 = 𝑭 𝑇𝑭 .
2 For hyperelastic materials under isothermal conditions, the internal dissipation vanishes since no viscous effects are present.
3 Physically, these equations describe how the internal variables evolve due to microstructural rearrangement under deformation.

Computer Methods in Applied Mechanics and Engineering 452 (2026) 118742 

3 



C.H. Lee et al.

Here,   denotes the set of conservation variables and  𝐼 ( ) is the flux vector in the material Cartesian direction 𝐼 . The source 
term ( ) can be decomposed into two contributions. Specifically, ext accounts for external sources such as body forces, and 
the relaxation contribution. The relaxation term itself is a sum of branch contributions ∑𝑛M

𝛼=1 𝛼( ), each describing the evolution 
of internal variables associated with Maxwell branch 𝛼. The following conditions (summarised from Chen, Levermore, and Liu [35]) 
ensure symmetric hyperbolicity [36,37] of the system (7) and thermodynamically consistent treatment of relaxation (or dissipation) 
effects:

(i) Existence of a convex entropy function 𝑆, which requires a polyconvex viscoelastic energy density 𝑊  consistent with thermody-
namic equilibrium.

(ii) Positive definiteness of the Hessian operator 𝜕2𝑆
𝜕 𝜕 , ensuring the existence of a suitable symmetriser for the system.

(iii) Symmetry of the flux Jacobian matrices in entropy variables, expressed by 𝐼0, with 𝐼 = 𝜕 𝐼
𝜕  and 0 =

[

𝜕2𝑆
𝜕 𝜕

]−1
.

(iv) Satisfaction of the dissipation inequality −∑𝑛M
𝛼=1 

𝑇𝛼 ≥ 0, where  = 𝜕𝑆
𝜕  denotes the conjugate entropy variables, guaranteeing 

non-negative entropy production during relaxation.

In what follows, condition (i) is first addressed through the formulation of a polyconvex viscoelastic model and the associated evolution 
equations for internal variables. Building on this, we construct the generalised convex entropy function by combining the polyconvex 
strain energy density with the kinetic energy, thereby obtaining its conjugate variables and Hessian components (as required by 
condition (ii)). This structure then enables the symmetrisation of the hyperbolic system to obtain its dual formulation in terms of 
entropy conjugate variables (as required by condition (iii)). Finally, we demonstrate that the source term associated with relaxation 
effects satisfies the dissipation inequality, as required by condition (iv).
Remark 1.  To prove hyperbolicity, we linearise4 the system in (7) about a reference state ̄ , typically chosen at thermodynamic 
equilibrium. Let 𝛿 =  − ̄  denote a small perturbation. Linearising the fluxes and source terms about this state gives

 𝐼 ( ) ≈  𝐼 (̄ ) +𝐷 𝐼 [𝛿 ]
⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜕𝐼
𝜕

|

|

|̄
𝛿

; ( ) ≈ (̄ ) +𝐷[𝛿 ]
⏟⏞⏟⏞⏟
𝜕
𝜕

|

|

|̄
𝛿

. (8)

We then introduce the flux Jacobian matrix 𝐼 (̄ ) = 𝜕 𝐼
𝜕

|

|

|̄
 and the relaxation Jacobian matrix  (̄ ) = 𝜕

𝜕
|

|

|̄
=
∑𝑛M

𝛼=1
𝜕𝛼
𝜕

|

|

|̄
, both 

evaluated at the reference state ̄ . The resulting linearised system is

𝜕𝛿
𝜕𝑡

+
3
∑

𝐼=1
𝐼 (̄ ) 𝜕𝛿

𝜕𝑋𝐼
=  (̄ )𝛿 . (9)

3.1.  Polyconvex viscoelasticity and the associated evolution of internal variables

As required by condition (i), and following Theorem 2 from Reference [38], we reformulate the standard strain energy function 
Ψ
(

𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

)

 (previously introduced in (2)) as a convex multivariable function 𝑊

Ψ
(

𝑭 ,𝑪−1
𝑣1

…𝑪−1
𝑣𝑛M

)

= 𝑊 ( ), (10)

where

𝑊 ( ) = 𝑊∞( ) +
𝑛M
∑

𝛼=1
𝑊𝛼( ,𝛼);  = { ,};  = {1,2,…𝑛M}. (11)

Here,  = {𝑭 ,𝑯 , 𝐽} represents the triplet of deformation measures, where 𝑭  is the deformation gradient tensor (or fibre map), 𝑯
is its cofactor (area map) defined as 𝑯 = 1

2𝑭 𝑭 , and 𝐽 = 1
3𝑯 ∶ 𝑭  is the Jacobian (or volume map). In above definition of 𝑯 , the 

symbol  denotes the cross product between second order tensors [39]. The internal state variables associated with each Maxwell 
viscoelastic branch 𝛼 are grouped as

𝛼 = {𝒀 𝛼 , 𝑦𝛼}; 𝒀 𝛼 = 𝑪𝑣𝛼 ; 𝑦𝛼 = det
(

𝑪−1
𝑣𝛼

)

. (12)

The function 𝑊  is jointly convex in both the deformation triplet measures  and the internal variables  . Thermodynamic equilibrium 
requires that both 𝑊𝛼 and its derivatives (e.g., the thermodynamic conjugate stresses with respect to the deformation measures and 
internal variables) vanish. This condition is satisfied when 𝒀 𝛼 = 𝑪 and 𝑦𝛼 = 𝐽−2.

4 In computational mechanics, hyperbolicity is commonly assessed by linearising (or perturbing) a nonlinear system of conservation laws about a 
given state to analyse local wave propagation (e.g., wave speeds and their directions). This should not be confused with a linear hyperbolic system. 
Linearisation around a given state does not imply that the system is a linear hyperbolic system with constant wave speeds. It indeed examines the 
local behaviour of a nonlinear system using a tangent (linear) approximation at that state, similar to the Newton-Raphson linearisation of a nonlinear 
equation.
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Given the polyconvex strain energy 𝑊 (11), we first define the conjugate stresses associated with the deformation measures  as 
𝚺□ = 𝜕𝑊

𝜕□ , where □ = {𝑭 ,𝑯 , 𝐽}. The first Piola-Kirchhoff stress tensor 𝑷  is then obtained by taking time derivative of 𝑊 (11) whilst 
holding the internal variables  fixed, which gives [10] 

𝑷 ∶ 𝜕𝑭
𝜕𝑡

|

|

|

|
= 𝑑𝑊

𝑑𝑡

|

|

|

|

|
=
(

𝚺𝑭 + 𝚺𝑯 𝑭 + Σ𝐽𝑯
)

∶ 𝜕𝑭
𝜕𝑡

|

|

|

|
, (13)

where [∙]||
|

|□
 indicates that □ is held fixed during differentiation. Comparing both sides gives the following expression for the first 

Piola-Kirchhoff stress as 
𝑷 = 𝚺𝑭 + 𝚺𝑯 𝑭 + Σ𝐽𝑯 . (14)

The symbol  denotes the tensor cross product between vectors and/or second order tensors as defined in [26,33,39,40]. Utilising 
expression (11), each conjugate stress comprises two components, namely a long-term equilibrium part and a viscous part. These are 
expressed as

𝚺□( ) = 𝚺∞
□( ) +

𝑛M
∑

𝛼=1
𝚺𝛼
□( ,𝛼); 𝚺∞

□ =
𝜕𝑊∞
𝜕□

; 𝚺𝛼
□ =

𝜕𝑊𝛼
𝜕□

; □ = {𝑭 ,𝑯 , 𝐽}. (15)

To fully define the path-dependent viscoelastic model, it is necessary to establish the evolution equations for the internal variables, 
represented by the viscous strain tensors  . These equations are derived by considering the dissipation inequality, which ensures 
that the negative time derivative of the strain energy under constant deformation measures  is non-negative. Mathematically, this 
condition is expressed as

0 ≤ ̇int = −𝑑𝑊
𝑑𝑡

|

|

|

|

|
= −

( 𝑛M
∑

𝛼=1
𝚺𝒀 𝛼

∶
𝑑𝒀 𝛼
𝑑𝑡

|

|

|

|

|
+

𝑛M
∑

𝛼=1
Σ𝑦𝛼

𝑑𝑦𝛼
𝜕𝑡

|

|

|

|

|

)

, (16)

where the thermodynamic stresses conjugate to the internal variables are 𝚺□ = 𝜕𝑊𝛼 ( ,𝛼 )
𝜕□ , where □ = {𝒀 𝛼 , 𝑦𝛼}.

The inequality ̇int ≥ 0 represents the internal dissipation of the viscous material, which is inherently irreversible. To ensure 
this inequality (16) is met, appropriate evolution equations must be provided for the internal variables  , depending on the chosen 
viscoelastic model. These formulations will be discussed in Section 3.1.1.

The Hessian operator [ℍ𝑊 ] of the convex strain energy functional 𝑊  is defined as the matrix of second derivatives of 𝑊  with 
respect to  . It can be expressed in an additive form as

[ℍ𝑊 ] = [ℍ∞
𝑊 ] +

𝑛M
∑

𝛼=1
[ℍ𝛼

𝑊 ]. (17)

Condition (ii) requires that the Hessian operator to be symmetric and positive definite. The symmetry of [ℍ𝑊 ] follows directly from 
the convexity of the polyconvex function 𝑊 , which ensures that the mixed second derivatives are equal. The components of the 
symmetric Hessian operators [ℍ𝑊 ], [ℍ∞

𝑊 ], and [ℍ𝛼
𝑊 ] are defined as

[ℍ□
𝑊 ] =

[

ℍ□
𝝌𝝌 ℍ□

𝝌𝛼
ℍ□
𝛼𝝌

ℍ□
𝛼𝛼

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑊 □
𝑭𝑭 𝑊 □

𝑭𝑯 𝑊 □
𝑭𝐽 𝑊 □

𝑭𝒀 𝛼
𝑊 □

𝑭 𝑦𝛼
𝑊 □

𝑯𝑭 𝑊 □
𝑯𝑯 𝑊 □

𝑯𝐽 𝑊 □
𝑯𝒀 𝛼

𝑊 □
𝑯𝑦𝛼

𝑊 □
𝐽𝑭 𝑊 □

𝐽𝑯 𝑊 □
𝐽𝐽 𝑊 □

𝐽𝒀 𝛼
𝑊 □

𝐽𝑦𝛼
𝑊 □

𝒀 𝛼𝑭
𝑊 □

𝒀 𝛼𝑯
𝑊 □

𝒀 𝛼𝐽
𝑊 □

𝒀 𝛼𝒀 𝛼
𝑊 □

𝒀 𝛼𝑦𝛼
𝑊 □

𝑦𝛼𝑭
𝑊 □

𝑦𝛼𝑯
𝑊 □

𝑦𝛼𝐽
𝑊 □

𝑦𝛼𝒀 𝛼
𝑊 □

𝑦𝛼𝑦𝛼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

Here, □ = {∞, 𝛼}. The notation 𝑊𝑨𝑩 = 𝜕2𝑊
𝜕𝑨𝜕𝑩  indicates second derivatives of 𝑊  with respect to variables 𝑨,𝑩 ∈ {𝑭 ,𝑯 , 𝐽 , 𝒀 𝛼 , 𝑦𝛼}.

3.1.1.  Mooney-Rivlin-type viscoelasticity
We now consider a specific polyconvex viscoelastic model. Following [33,39,41,42], the long-term equilibrium component 𝑊∞

is defined using a polyconvex energy function based on the Mooney-Rivlin material as5

𝑊∞( ) = 𝜉(𝑭 ∶ 𝑭 − 3) + 𝜁 (𝑯 ∶ 𝑯 − 3) + 𝑓 (𝐽 ); 𝑓 (𝐽 ) = −2(𝜉 + 2𝜁 ) ln 𝐽 + 𝜆̂
2
(𝐽 − 1)2. (19)

The positive parameters 𝜉, 𝜁 and 𝜆̂ satisfy the relations 𝜉 + 𝜁 = 𝜇
2  and 𝜆 = 𝜆̂ + 4𝜁 , where 𝜇 and 𝜆 represent the shear modulus and 

Lamé parameter of the material6, respectively. Note that setting 𝜁 = 0 recovers the polyconvex neoHookean model. The long-term 

5 For Maxwell viscoelastic fluids [25], the long-term equilibrium strain energy is typically associated only with volumetric changes. Shear response 
is purely viscous and relaxes over time, contributing to the non-equilibrium (time-dependent) part of the strain energy.
6 The Lame’s constants can be expressed in terms of the Young’s modulus 𝐸 and the Poisson’s ratio 𝜈 as

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

; 𝜇 = 𝐸
2(1 + 𝜈)

.
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potential 𝑊∞( ) is polyconvex in  , since it can be expressed as a convex function of 𝑭 , 𝑯 , and 𝐽 . In particular, the volumetric 
contribution 𝑓 (𝐽 ) is convex in 𝐽 when {𝜆̂, 𝜉, 𝜁} ≥ 0.

For isotropic viscoelastic solids, we introduce the non-equilibrium (viscous) energy component 𝑊𝛼( ,𝛼) as

𝑊𝛼( ,𝛼) =
𝜇𝛼
2
[

𝑪 ∶ 𝒀 −1
𝛼 − 3 − ln

(

𝐽 2𝑦𝛼
)]

, (20)

where 𝜇𝛼 = 𝜇𝛽𝛼 . The dimensionless proportionality factor 𝛽𝛼 is conveniently introduced to control the magnitude of the viscous 
effects and must be calibrated from experiments. This form ensures that 𝑊𝛼 (20) and its derivatives with respect to both  and 
𝛼 vanish at equilibrium (i.e., 𝑊𝛼 = 0 when 𝒀 𝛼 = 𝑪 and 𝑦𝛼 = 𝐽−2), thus guaranteeing thermodynamic consistency. Furthermore, 
this non-equilibrium (viscous) potential is designed to be jointly convex in its arguments { ,𝛼}. A detailed proof of polyconvexity 
is demonstrated in Remark 2. Explicit expressions for the associated thermodynamic conjugate stresses 𝚺□ (with respect to □ =
{ ,𝛼}), as well as the Hessian operators [ℍ𝑊 ], are derived and presented in A.
Remark 2. The first directional derivative of the strain energy 𝑊𝛼 with respect to perturbations {𝛿 , 𝛿𝛼} is given by

𝐷𝑊𝛼[𝛿 , 𝛿𝛼] =
𝜇𝛼
2
[

tr
(

𝛿𝑭𝒀 −1
𝛼 𝑭 𝑇 + 𝑭𝒀 −1

𝛼 𝛿𝑭 𝑇 + 𝑭 𝛿𝒀 −1
𝛼 𝑭 𝑇 ) − 2𝐽−1𝛿𝐽 − 𝑦−1𝛼 𝛿𝑦𝛼

]

. (21)

Here, 𝛿𝒀 −1
𝛼 = 𝐷𝒀 −1

𝛼 [𝛿𝒀 𝛼] = −𝒀 −1
𝛼 𝛿𝒀 𝛼𝒀 −1

𝛼  denotes the directional derivative of 𝒀 −1
𝛼  in the direction of 𝛿𝒀 𝛼 . Utilising the property 

tr(𝑨𝑩𝑇 ) = tr(𝑩𝑨𝑇 ), expression (21) simplifies to

𝐷𝑊𝛼[𝛿 , 𝛿𝛼] =
𝜇𝛼
2
[

tr
(

2𝛿𝑭𝑲𝑇 −𝑲𝛿𝒀 𝛼𝑲𝑇 ) − 2𝐽−1𝛿𝐽 − 𝑦−1𝛼 𝛿𝑦𝛼
]

; 𝑲 = 𝑭𝒀 −1
𝛼 . (22)

Taking the second directional derivative yields

𝐷2𝑊𝛼[𝛿 , 𝛿𝛼] = 𝜇𝛼
[

tr
(

𝛿𝑭 𝛿𝑲𝑇 − 𝛿𝑲𝛿𝒀 𝛼𝑲𝑇 ) + 𝐽−2(𝛿𝐽 )2 + 1
2
𝑦−2𝛼 (𝛿𝑦𝛼)2

]

. (23)

Since the terms involving (𝛿𝐽 )2 and (𝛿𝑦𝛼)2 are non-negative, the positivity of 𝐷2𝑊𝛼 (23) depends on the sign of the trace terms. To 
achieve this, note that 𝛿𝑲 = 𝐷𝑲[𝛿𝑭 , 𝛿𝒀 𝛼] = 𝐷𝑭𝒀 −1

𝛼 [𝛿𝑭 , 𝛿𝒀 𝛼] = 𝛿𝑭𝒀 −1
𝛼 − 𝑭𝒀 −1

𝛼 𝛿𝒀 𝛼𝒀 −1
𝛼 . Substituting this back into the trace expres-

sion, we obtain
tr
(

𝛿𝑭 𝛿𝑲𝑇 − 𝛿𝑲𝛿𝒀 𝛼𝑲𝑇 ) = tr
[

𝛿𝑭𝒀 −1
𝛼 𝛿𝑭 𝑇 − 2𝛿𝑭𝒀 −1

𝛼 𝛿𝒀 𝛼𝑲𝑇 +𝑲𝛿𝒀 𝛼𝒀 −1
𝛼 𝛿𝒀 𝛼𝑲𝑇 ]

=
(

𝛿𝑭𝒀 −1∕2
𝛼 −𝑲𝛿𝒀 𝛼𝒀

−1∕2
𝛼

)

∶
(

𝛿𝑭𝒀 −1∕2
𝛼 −𝑲𝛿𝒀 𝛼𝒀

−1∕2
𝛼

)

≥ 0.
(24)

Consequently, the second directional derivative 𝐷2𝑊𝛼 is non-negative for all admissible perturbations, confirming the polyconvexity 
of 𝑊𝛼 . 

To close the system and ensure thermodynamic consistency, it is necessary to introduce appropriate evolution laws for the internal 
variables 𝒀 𝛼 and 𝑦𝛼 that satisfy the second law of thermodynamics. In accordance with the dissipation inequality (16), we propose 
the following extended set of evolution equations, which generalises the formulation presented in [25] by additionally incorporating 
the evolution of 𝑦𝛼 , to give

𝑑𝒀 𝛼
𝑑𝑡

|

|

|

|
= 1

𝜏𝛼

(

𝒀 𝛼 − 𝒀 𝛼𝑪−1𝒀 𝛼
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒀 𝛼

;
𝑑𝑦𝛼
𝑑𝑡

|

|

|

|

|
= 1

𝜏𝛼
𝑦𝛼
(

𝑪−1 ∶ 𝒀 𝛼 − 3
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑦𝛼

. (25)

These evolution laws guarantee non-negative internal dissipation, as demonstrated in Remark 3. When 𝒀 𝛼 equals 𝑪, the system 
reaches an elastic equilibrium, with both 𝒀 𝛼 and 𝑦𝛼 remaining constant in time. Using the identity 

𝜕𝒀 −1
𝛼

𝑑𝑡

|

|

|

|
= −𝒀 −1

𝛼
𝑑𝒀 𝛼
𝑑𝑡

|

|

|

|
𝒀 −1

𝛼 , the 
evolution law for 𝒀 𝛼 can equivalently be expressed in terms of its inverse as

𝑑𝒀 −1
𝛼

𝑑𝑡
|

|

|

|
= 1

𝜏𝛼

(

𝑪−1 − 𝒀 −1
𝛼
)

. (26)

This is a linear, first-order, non-homogeneous ordinary differential equation for 𝒀 −1
𝛼 , which admits an exact closed-form solution in 

time. Details can be found in Section 6.
Remark 3. To demonstrate that the dissipation inequality ̇int ≥ 0 is satisfied, we first recall expression (16), which has been 
generalised from Linder 𝑒𝑡 𝑎𝑙.[43] to account for the extended set of internal variables and is reproduced here for convenience

̇int = −

( 𝑛M
∑

𝛼=1
𝚺𝒀 𝛼

∶
𝑑𝒀 𝛼
𝑑𝑡

|

|

|

|

|
+

𝑛M
∑

𝛼=1
Σ𝑦𝛼

𝑑𝑦𝛼
𝜕𝑡

|

|

|

|

|

)

. (27)

Using the thermodynamic conjugate stresses 𝚺𝒀 𝜶 and Σ𝑦𝛼  from (A.2) together with the evolution Eqs. (25) for 𝒀 𝛼 and 𝑦𝛼 , we can 
combine terms to show that

̇int =
𝑛M
∑

𝛼=1

𝜇𝛼
2𝜏𝛼

[

𝒀 −1
𝛼 𝑪𝒀 −1

𝛼 ∶ (𝒀 𝛼 − 𝒀 𝛼𝑪−1𝒀 𝛼) + 𝑪−1 ∶ 𝒀 𝛼 − 3
]

=
𝑛M
∑

𝛼=1

𝜇𝛼
2𝜏𝛼

tr
[

𝑪𝒀 −1
𝛼 + 𝑪−1𝒀 𝛼 − 2𝑰

]

. (28)
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Noting that tr(𝑪𝒀 −1
𝛼
)

= tr
(

𝒀 −1∕2
𝛼 𝑪𝒀 −1∕2

𝛼

)

 and similarly tr(𝑪−1𝒀 𝛼) = tr(𝒀
1∕2
𝛼 𝑪−1𝒀 1∕2

𝛼 ), we introduce 𝑴 = 𝒀 −1∕2
𝛼 𝑪𝒀 −1∕2

𝛼  so that the 
above expression simplifies to

̇int =
𝑛M
∑

𝛼=1

𝜇𝛼
2𝜏𝛼

tr
[

𝑴 +𝑴−1 − 2𝑰
]

. (29)

Since 𝑴 is a symmetric positive definite tensor, consider its spectral decomposition and its inverse in the form

𝑴 =
3
∑

𝐼=1
𝜆𝐼𝑵𝐼 ⊗𝑵𝐼 ; 𝑴−1 =

3
∑

𝐼=1
𝜆−1𝐼 𝑵𝐼 ⊗𝑵𝐼 , (30)

where 𝜆𝐼 > 0 are positive eigenvalues and 𝑵𝐼  are the corresponding normalised eigenvectors. Consequently,

̇int =
𝑛M
∑

𝛼=1

[

𝜇𝛼
2𝜏𝛼

3
∑

𝐼=1

(

𝜆𝐼 + 𝜆−1𝐼 − 2
)

]

≥ 0, (31)

using the inequality 𝜆𝐼 + 𝜆−1𝐼 ≥ 2. 

3.1.2.  Complete first-order hyperbolic system
To express the governing system in first-order hyperbolic form for polyconvex viscoelasticity, we combine the linear momentum 

conservation Eq. (1), the evolution equations for the internal variables (25) associated with each Maxwell branch 𝛼, and the geometric 
conservation laws for the triplet of deformation measures 7. The components of the conservation unknowns  , fluxes  𝐼 , external 
source term ext, and the relaxation term  in the resulting first-order hyperbolic system with relaxation can then be written as

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒑𝑅
𝑭
𝑯
𝐽
𝒀 1
𝑦1
⋮

𝒀 𝑛M
𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;  𝐼 = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑷𝑬𝐼
𝒗⊗ 𝑬𝐼

𝑭
(

𝒗⊗ 𝑬𝐼
)

𝑯 ∶
(

𝒗⊗ 𝑬𝐼
)

𝟎
0
⋮
𝟎
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; ext =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇𝑅
𝟎
𝟎
0
𝟎
0
⋮
𝟎
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;  =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎
𝟎
𝟎
0

𝒀 1
𝑦1
⋮

𝒀 𝑛M
𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (32)

where 𝑬𝐼  are the Cartesian unit vectors. The geometric conservation laws for  are included to ensure that the system of conservation 
laws (7) can be symmetrised. The evolution equations for the internal variables are purely local and do not contain spatial flux 
terms. Finally, the flux vector in the direction of an arbitrary material unit normal 𝑵 is given by 𝑵 =

∑3
𝐼=1  𝐼𝑁𝐼 . Note that 

∑𝑛M
𝛼=1 −

𝑇𝛼 = ̇int ≥ 0, as required by condition (iv) defined in Section 3.
For smooth solutions, the conservation laws for 𝑭  and 𝑯 must satisfy the so-called involutions (or compatibility conditions) 

described by [5,45–51]
CURL𝑭 = 𝟎; DIV𝑯 = 𝟎. (33)

The curl-free condition on 𝑭  ensures it is compatible with a deformation mapping (i.e., that it is a gradient field), whilst the divergence-
free condition on 𝑯 enforces the Piola identity, ensuring consistency between 𝑭  and its Jacobian 𝐽 .

In general, the system can only be written in symmetric hyperbolic form (in terms of conjugate stress variables) if it includes 
the full set of unknowns {𝒑𝑅, ,𝛼}. However, for computational efficiency and to reduce the amount of experimental calibration 
required for the internal variables, it may be useful to consider reduced systems that include only 𝒑𝑅,  , and 𝑪𝑣𝛼  (or 𝑪−1

𝑣𝛼
).

For post-processing purposes, the current geometry 𝝓 can be updated via
𝜕𝝓(𝑿, 𝑡)

𝜕𝑡
= 𝒗(𝑿, 𝑡). (34)

3.2.  Symmetric hyperbolic system

Symmetrisation is crucial to ensure that a first-order hyperbolic system is mathematically well-posed. Specifically, symmetric hy-
perbolic systems have real eigenvalues and a complete set of eigenvectors, which correspond to physical wave speeds and propagation 
directions. To achieve symmetrisation, we introduce a strictly convex scalar function, referred to as a generalised entropy 𝑆(𝑿, 𝑡). 
The strict convexity ensures that its Hessian matrix is positive-definite, which provides a one-to-one mapping between the conserva-
tion variables and the corresponding conjugate variables. Intuitively, the generalised entropy provides a measure of the energy-like 
behaviour within a system, allowing derivation of stability estimates [32,34].

7 The derivation of the associated geometric conservation equations for 𝑭 , 𝑯 , and 𝐽 was presented in Reference [33] and is summarised here for 
completeness [44] : 

𝜕𝑭
𝜕𝑡

= 𝛁0𝒗;
𝜕𝑯
𝜕𝑡

= CURL(𝒗 𝑭 ); 𝜕𝐽
𝜕𝑡

= DIV
(

𝑯𝑇 𝒗
)

.
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In our context, the convex entropy function is defined as

𝑆(𝑿, 𝑡) = 1
2𝜌𝑅

𝒑𝑅 ⋅ 𝒑𝑅 +𝑊 ( ). (35)

The first term represents the kinetic energy per unit undeformed volume and the second term corresponds to the polyconvex strain 
energy density per unit undeformed volume. The associated conjugate variables8  are then given by

 = 𝜕𝑆
𝜕

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑆
𝜕𝒑𝑅
𝜕𝑆
𝜕𝑭
𝜕𝑆
𝜕𝑯
𝜕𝑆
𝜕𝐽
𝜕𝑆
𝜕𝒀 1
𝜕𝑆
𝜕𝑦1
⋮
𝜕𝑆

𝜕𝒀 𝑛M
𝜕𝑆

𝜕𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒗
𝜕𝑊 ( )

𝜕𝑭
𝜕𝑊 ( )

𝜕𝑯
𝜕𝑊 ( )

𝜕𝐽
𝜕𝑊 ( )

𝜕𝒀 1
𝜕𝑊 ( )

𝜕𝑦1

⋮
𝜕𝑊 ( )
𝜕𝒀 𝑛M

𝜕𝑊 ( )
𝜕𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒗
𝚺𝑭

𝚺𝑯

Σ𝐽

𝚺𝒀 1

Σ𝑦1
⋮

𝚺𝒀 𝑛M

Σ𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (36)

Consider the following notation

0 =
𝜕
𝜕

; 𝐼 =
𝜕 𝐼
𝜕

; ̃𝐼 = 𝐼0. (37)

Applying the chain rule to the time derivtive of the conservation variables and the spatial derivatives of the fluxes yields

𝜕
𝜕𝑡

= 0
𝜕
𝜕𝑡

;
𝜕 𝐼
𝜕𝑋𝐼

= ̃𝐼
𝜕
𝜕𝑋𝐼

. (38)

Substituting these expressions into the hyperbolic system (7), the resulting equations in terms of the entropy conjugate variables are

0
𝜕
𝜕𝑡

+
3
∑

𝐼=1
̃𝐼

𝜕
𝜕𝑋𝐼

=  . (39)

Here,

• 0 =
[

𝜕2𝑆
𝜕 𝜕

]−1
=
[

𝜌𝑅𝑰 𝟎
𝟎 [ℍ𝑊 ]−1

]

, a symmetric positive-definite matrix.
• The matrices ̃𝐼  are symmetric flux Jacobian matrices satisfying condition (iii) (refer to Section 3).

Particularising the general framework to the system under consideration and accounting for the involutions (33), the symmetric 
structure of the system becomes clearer in indicial notation, which can be expressed as9

[

0
] 𝜕
𝜕𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣𝑗
[

𝚺𝑭
]

𝑙𝐿
[

𝚺𝑯
]

𝑙𝐿
Σ𝐽

[

𝚺𝒀 1

]

𝑁𝑂
Σ𝑦1
⋮

[

𝚺𝒀 𝑛M

]

𝑁𝑂
Σ𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−
[

̃𝐼
] 𝜕
𝜕𝑋𝐼

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣𝑘
[

𝚺𝑭
]

𝑘𝐾
[

𝚺𝑯
]

𝑘𝐾
Σ𝐽

[

𝚺𝒀 1

]

𝑁𝑂
Σ𝑦1
⋮

[

𝚺𝒀 𝑛M

]

𝑁𝑂
Σ𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

𝒇𝑅
]

𝑖
𝟎
𝟎
0

[

𝒀 1

]

𝐾𝑀
𝑦1
⋮

[

𝒀 𝑛M

]

𝐾𝑀
𝑦𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (40)

8 Entropy conjugate variables  are the thermodynamic forces associated with the conserved variables  , representing the driving forces that 
govern their evolution.
9 Pre-multiplying system (40) by −1

0  yields an extended hydrocode formulation, expressed in terms of velocity and entropy-conjugate variables 
[33]. Note however that this hydrocode formulation is no longer symmetric.
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The symmetric flux Jacobian matrix ̃𝐼  is given explicitly as

[

̃𝐼
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝛿𝑖𝑘𝛿𝐾𝐼 𝑖𝑗𝑘𝐼𝐽𝐾𝐹𝑗𝐽 𝐻𝑖𝐼 𝟎 𝟎 ⋯ 𝟎 𝟎
𝛿𝑖𝑘𝛿𝐽𝐼 𝟎 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎

𝑖𝑗𝑘𝐽𝐾𝐼𝐹𝑗𝐾 𝟎 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎
𝐻𝑘𝐼 𝟎 𝟎 0 𝟎 0 ⋯ 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎
𝟎 𝟎 𝟎 0 𝟎 0 ⋯ 𝟎 𝟎
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎
𝟎 𝟎 𝟎 0 𝟎 0 ⋯ 𝟎 𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (41)

4.  Hyperbolicity and relaxation

To examine the hyperbolicity and dissipative properties of the system, we consider plane wave solutions to the linearised Eqs. (9) 
of the form

𝛿 (𝑿, 𝑡) = Re
[

 𝑗𝑒
i𝑘𝑗 (𝑿⋅𝑵−𝑐𝑗 𝑡)

]

, (42)

where 𝑘𝑗 is a positive real wave number,  𝑗 is a complex vector of unknowns, 𝑐𝑗 is a generally complex wave speed, and 𝑵 is a unit 
vector in the direction of wave propagation. The operator Re[∙] ensures that the perturbation field 𝛿 (𝑿, 𝑡) remains real-valued, as 
required for physical solutions. The wave speed 𝑐𝑗 can be decomposed as 𝑐𝑗 = 𝑐𝑅𝑗 + i𝑐𝐼𝑗  with real and imaginary parts. Substituting 
this decomposition into expression (42) yields

𝛿 (𝑿, 𝑡) = Re
[(

 𝑗𝑒
𝑘𝑗 𝑐𝐼𝑗 𝑡

)

𝑒i𝑘𝑗 (𝑿⋅𝑵−𝑐𝑅𝑗 𝑡)
]

. (43)

This describes a wave propagating at speed 𝑐𝑅𝑗 , with amplitude that grows or decays in time depending on the sign of 𝑐𝐼𝑗 . For stability, 
we require 𝑐𝐼𝑗 ≤ 0 so that perturbations decay exponentially over time.

Taking derivatives of (42) with respect to time and space gives
𝜕𝛿
𝜕𝑡

= Re
[

−𝑐𝑗 i𝑘𝑗𝑒
i𝑘𝑗 (𝑿⋅𝑵−𝑐𝑗 𝑡) 𝑗

]

; 𝜕𝛿
𝜕𝑋𝐼

= Re
[

i𝑘𝑗𝑒
i𝑘𝑗 (𝑿⋅𝑵−𝑐𝑗 𝑡)𝑁𝐼 𝑗

]

. (44)

Substituting these expressions into the linearised system (9) and cancelling the common exponential terms leads to

Re
[

𝑐𝑗 𝑗
]

= Re
[(

𝑵 + i
𝑘𝑗


)

 𝑗

]

; 𝑵 =
3
∑

𝐼=1
𝐼𝑁𝐼 . (45)

Decomposing the wave speed and perturbation into real and imaginary parts, such as 𝑐𝑗 = 𝑐𝑅𝑗 + i𝑐𝐼𝑗  and  𝑗 =  𝑅
𝑗 + i 𝐼

𝑗 , the left-hand 
side becomes

Re
[

𝑐𝑗 𝑗
]

= 𝑐𝑅𝑗 
𝑅
𝑗 − 𝑐𝐼𝑗 

𝐼
𝑗 , (46)

and the right-hand side becomes

Re
[(

𝑵 + i
𝑘𝑗


)

 𝑗

]

= 𝑵 𝑅
𝑗 − 1

𝑘𝑗
 𝐼

𝑗 . (47)

Equating both sides leads to the following eigenvalue problem

𝑐𝑅𝑗 
𝑅
𝑗 − 𝑐𝐼𝑗 

𝐼
𝑗 = 𝑵 𝑅

𝑗 − 1
𝑘𝑗

 𝐼
𝑗 . (48)

This system couples the real and imaginary parts of both the wave speed and the perturbation vector. Several approaches can be used 
to analyse this problem. One convenient approach is to decouple the problem by considering two asymptotic regimes, namely

• Purely hyperbolic regime (no relaxation). Setting  = 𝟎 and  𝐼
𝑗 = 𝟎 reduces the problem to

𝑐𝑅𝑗 
𝑅
𝑗 = 𝑵 𝑅

𝑗 , (49)

which governs the wave propagation properties and reflects the hyperbolicity of the system. Physically, this corresponds to de-
termining wave speeds whilst treating the internal variables as fixed (i.e., without allowing their relaxation dynamics to evolve).

• Purely relaxation regime (vanishing convective flux). Setting 𝑵 = 𝟎 and  𝑅
𝑗 = 𝟎 yields the attetuation rate in time 𝜔𝐼

𝑗 , given by

𝜔𝐼
𝑗

𝐼
𝑗 =  𝐼

𝑗 ; 𝜔𝐼
𝑗 = 𝑘𝑗𝑐

𝐼
𝑗 , (50)

which describes the relaxation dynamics and quantifies the dissipative response of the system. In this regime, the analysis focuses 
on temporal decay of internal variables whilst deformation remains fixed.

These two limiting cases highlight the dual nature of the governing equations, namely a wave-like (hyperbolic) component driven by 
convective fluxes, and a dissipative (relaxational) component controlled by internal dissipation.
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4.1.  Hyperbolicity and its associated wave speed

Utilising the concept of directional derivative [29], it is instructive to observe that expression (49) can be recast into the eigenvalue 
form 𝐷𝑵 [ 𝑅

𝑗 ] = 𝑐𝑅𝑗 
𝑅
𝑗 . Applying this framework to the conservation equations considered in this study yields the system

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐷(𝑷𝑵)[𝑭 𝑗 ,𝑯 𝑗 , 𝐽𝑗 , 𝒀
𝑗
1, 𝑦

𝑗
1,… , 𝒀 𝑗

𝑛M
, 𝑦𝑗𝑛M ]

𝐷
(

1
𝜌𝑅

𝒑𝑅 ⊗𝑵
)

[𝒑𝑗𝑅]

𝐷
(

𝑭
(

1
𝜌𝑅

𝒑𝑅 ⊗𝑵
))

[𝒑𝑗𝑅,𝑭 𝑗 ]

𝐷
(

𝑯 ∶
(

1
𝜌𝑅

𝒑𝑅 ⊗𝑵
))

[𝒑𝑗𝑅,𝑯 𝑗 ]
𝟎
0
⋮
𝟎
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑐𝑅𝑗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒑𝑗𝑅
𝑭 𝑗
𝑯 𝑗
𝐽𝑗
𝒀 𝑗

1
𝑦𝑗1
⋮

𝒀 𝑗
𝑛M

𝑦𝑗𝑛M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (51)

Since the evolution equations for { 𝑗
1,… , 𝑗

𝑛M
} are governed by local differential equations without spatial flux terms, they do not 

contribute to the characteristic structure of the system. Therefore, they can be excluded from the wave speed analysis.
Let us first consider the geometric conservation equation for 𝑭 𝑗 , 𝑯 𝑗 , and 𝐽𝑗 . For a non-trivial solution with 𝑐𝑅𝑗 ≠ 0, and after 

enforcing the involutions constraints, the resulting expressions are [33]

𝑭 𝑗 = − 1
𝑐𝑅𝑗

𝒗𝑗 ⊗𝑵 ; 𝑯 𝑗 = −𝑭

(

1
𝑐𝑅𝑗

𝒗𝑗 ⊗𝑵

)

; 𝐽𝑗 = −𝑯 ∶

(

1
𝑐𝑅𝑗

𝒗𝑗 ⊗𝑵

)

. (52)

Using these relations, we turn to the linear momentum equation 𝒑𝑗𝑅
−𝑐𝑅𝑗 𝒑

𝑗
𝑅 = −𝜌𝑅𝑐𝑅𝑗 𝒗𝑗 = 𝐷(𝑷𝑵)

[

𝑭 𝑗 ,𝑯 𝑗 , 𝐽𝑗 , 𝟎, 0,… , 𝟎, 0
]

. (53)

Multiplying by an arbitrary virtual velocity field 𝛿𝒗 and using the definitions for the first Piola 𝑷 (14) and the area map 𝑯 𝑗 = 𝑭  7 
𝑭 𝑗 yields the following reduced expression

𝜌𝑅
(

𝑐𝑅𝑗
)2

𝛿𝒗 ⋅ 𝒗𝑗 =
⎡

⎢

⎢

⎣

(𝛿𝒗⊗𝑵) ∶
𝑭 (𝛿𝒗⊗𝑵) ∶
𝑯 ∶ (𝛿𝒗⊗𝑵)

⎤

⎥

⎥

⎦

𝑇
[

ℍ𝝌𝝌
]

⎡

⎢

⎢

⎣

∶
(

𝒗𝑗 ⊗𝑵
)

∶ 𝑭
(

𝒗𝑗 ⊗𝑵
)

𝑯 ∶
(

𝒗𝑗 ⊗𝑵
)

⎤

⎥

⎥

⎦

. (54)

It is worth noting that the (polyconvex) Hessian operator [ℍ𝝌𝝌 ] depends only on the triplet of deformation measures. By setting 𝛿𝒗 =
𝒗𝑗 , the Legendre-Hadamard condition ensures that the system remains hyperbolic, meaning all wave speeds are real and physically 
meaningful.

Instead of deriving a closed-form solution for any possible orientation 𝑵 , it is sufficient to obtain bounds for the wave speeds by 
assuming 𝑵 aligns with a principal direction. The first two eigenvalues correspond to pressure wave speeds 𝑐𝑝, obtained by choosing 
𝒗𝑗 = 𝒏, where 𝒏 is a unit vector orthogonal to the vectors 𝒕1,2 = 𝑭𝑻 1,2∕‖𝑭𝑻 1,2‖ spanning the propagation surface. By enforcing 
𝛿𝒗 = 𝒗𝑗 = 𝒏 and substituting the Hessian components {𝑊 ∞

𝑭𝑭 ,𝑊
∞
𝑯𝑯 ,𝑊 ∞

𝐽𝐽 ,𝑊
𝛼
𝑭𝑭 ,𝑊

𝛼
𝐽𝐽 } (derived in A) for [ℍ𝝌𝝌 ] into (54), the resulting 

expression after some algebraic manipulation yields
𝑐1,2 = ±𝑐𝑝, (55)

where the pressure wave speed 𝑐𝑝 is given by

𝑐𝑝 =

√

√

√

√

(

2𝜉 + 2𝜁Λ2
𝑇 + 𝑓 ′′

∞Λ2
𝑯

𝜌𝑅

)

+
𝑛M
∑

𝛼=1

(

𝜇𝛼𝑵 ⋅
(

𝒀 −1
𝛼 𝑵

)

+ 𝜇𝛼Λ2
𝑯𝐽−2

𝜌𝑅

)

. (56)

The associated eigenvectors  𝛼 are

 𝑅
1,2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒏
− 1

𝑐1,2
𝒏⊗𝑵

− 1
𝑐1,2

𝑭 (𝒏⊗𝑵)

− 1
𝑐1,2

𝑯 ∶ (𝒏⊗𝑵)

𝟎
0
⋮
𝟎
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (57)

Similarly, setting 𝒗𝑗 = 𝒕1,2 yields the other four eigenvalues corresponding to the shear wave speeds, namely
𝑐𝑅3,4 = ±𝑐𝑠1 ; 𝑐𝑅5,6 = ±𝑐𝑠2 , (58)
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where

𝑐𝑠1 =

√

√

√

√

(

2𝜉 + 2𝜁𝜆22
𝜌𝑅

)

+
𝑛M
∑

𝛼=1

(

𝜇𝛼𝑵 ⋅
(

𝒀 −1
𝛼 𝑵

)

𝜌𝑅

)

; 𝑐𝑠2 =

√

√

√

√

(

2𝜉 + 2𝜁𝜆21
𝜌𝑅

)

+
𝑛M
∑

𝛼=1

(

𝜇𝛼𝑵 ⋅
(

𝒀 −1
𝛼 𝑵

)

𝜌𝑅

)

. (59)

Here, 𝜆21,2 are the eigenvalues of 𝚲𝑇  given by

𝚲𝑇 = 𝜆21𝒕1 ⊗ 𝒕1 + 𝜆22𝒕2 ⊗ 𝒕2. (60)

The corresponding eigenvectors are

 𝑅
3,4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒕1
− 1

𝑐3,4
𝒕1 ⊗𝑵

− 1
𝑐3,4

𝑭
(

𝒕1 ⊗𝑵
)

0
𝟎
0
⋮
𝟎
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;  5,6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒕2
− 1

𝑐5,6
𝒕2 ⊗𝑵

− 1
𝑐5,6

𝑭
(

𝒕2 ⊗𝑵
)

0
𝟎
0
⋮
𝟎
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (61)

Remark 4.  Linearising the evolution equations of the internal variables for each Maxwell branch 𝛼 about thermodynamic equilibrium 
yields

𝑐𝐼𝑗 𝜅𝑗 𝒀̄
𝐼
𝑗 = 𝐷𝒀 𝑗

[𝒀̄ 𝐼
𝑗 ]
|

|

|

|𝑪−1𝒀 𝑗≈𝑰
= − 1

𝜏𝛼
𝒀̄ 𝐼

𝑗 ,

𝑐𝐼𝑗 𝜅𝑗 𝑦̄
𝐼
𝑗 = 𝐷𝑦𝑗 [𝒀̄

𝐼
𝑗 , 𝑦̄

𝐼
𝑗 ]
|

|

|

|tr(𝑪−1𝒀 𝑗 )≈3
= 1

𝜏𝛼
𝑦𝑗𝑪−1 ∶ 𝒀̄ 𝐼

𝑗 .
(62)

This leads to the following eigenvalues for the internal variable subsystem

𝑐𝐼1−6 = − 1
𝜅𝑗𝜏𝛼

and 𝑐𝐼7 = 0. (63)

Thus, each Maxwell branch contributes six exponentially decaying eigenmodes associated with 𝒀 𝑗 , and one non-decaying eigenmode 
associated with 𝑦𝑗 . This results in a total of 6 × 𝑛M dissipative modes that do not influence wave propagation directly. 

4.2.  Second law of thermodynamics

We revisit the global form of the second law of thermodynamics expressed in terms of the convex entropy function 𝑆. The time 
derivative of the entropy function over the material configuration Ω𝑅 is written as

𝑑
𝑑𝑡 ∫Ω𝑅

𝑆 𝑑Ω𝑅 = ∫Ω𝑅

𝜕𝑆̂(𝒑𝑅, )
𝜕𝑡

𝑑Ω𝑅. (64)

Applying the chain rule to expand the total time derivative in terms of its variables yields

𝑑
𝑑𝑡 ∫Ω𝑅

𝑆 𝑑Ω𝑅 = ∫Ω𝑅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑆̂
𝜕𝒑𝑅

⋅
𝜕𝒑𝑅
𝜕𝑡

+ 𝜕𝑆̂
𝜕

∙ 𝜕
𝜕𝑡

+
𝑛M
∑

𝛼=1

(

𝜕𝑆̂
𝜕𝒀 𝛼

∶
𝜕𝒀 𝛼
𝜕𝑡

+ 𝜕𝑆̂
𝜕𝑦𝛼

𝜕𝑦𝛼
𝜕𝑡

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−̇int

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑑Ω𝑅. (65)

Here, we introduce the operator ∙ as a compact notation to represent the combined contractions over the geometric variables  as 
𝜕𝑆̂
𝜕 ∙ 𝜕

𝜕𝑡 = 𝜕𝑆̂
𝜕𝑭 ∶ 𝜕𝑭

𝜕𝑡 + 𝜕𝑆̂
𝜕𝑯 ∶ 𝜕𝑯

𝜕𝑡 + 𝜕𝑆̂
𝜕𝐽

𝜕𝐽
𝜕𝑡 . Substituting the conjugate relations from (36) and the local entropy production ̇int from (16) 

leads to

𝑑
𝑑𝑡 ∫Ω𝑅

𝑆 𝑑Ω𝑅 = ∫Ω𝑅

⎛

⎜

⎜

⎜

⎝

𝒗 ⋅
𝜕𝒑𝑅
𝜕𝑡

+
(

𝚺𝑭 + 𝚺𝑯 𝑭 + Σ𝐽𝑯
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑷

∶ 𝛁0𝒗 − ̇int

⎞

⎟

⎟

⎟

⎠

𝑑Ω𝑅. (66)

To derive a physically meaningful expression for the global evolution of 𝑆, we substitute the weak form of the linear momentum 
conservation equation (obtained via integration by parts) into the expression above. This naturally leads to a reformulation that 
separates internal dissipation and the mechanical power of external forces, as described by

𝑑
𝑑𝑡 ∫Ω𝑅

𝑆 𝑑Ω𝑅 − Π̇ext = −∫Ω𝑅

̇int 𝑑Ω𝑅; Π̇ext = ∫Ω𝑅

𝒗 ⋅ 𝒇𝑅 𝑑Ω𝑅 + ∫𝜕Ω𝑅

𝒗𝐵 ⋅ 𝒕𝐵 𝑑𝐴𝑅, (67)
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where Π̇ext denotes the mechanical power of external forces. Thermodynamic consistency requires non-negative internal dissipation 
̇int ≥ 0, ensuring the right-hand side of (67) is non-positive. This leads to the inequality

𝑑
𝑑𝑡 ∫Ω𝑅

𝑆 𝑑Ω𝑅 − Π̇ext ≤ 0, (68)

which is a global expression of the second law of thermodynamics [52]. Satisfaction of inequality (68) is a necessary ab initio require-
ment for stability and thermodynamic admissibility, aligning with the classical Coleman-Noll procedure [28,30,53,54].
Remark 5.  For an isolated elastic body, where the external work from body and boundary forces vanish (i.e., Π̇ext = 0) and viscous 
dissipation is absent (i.e., ̇int = 0), expression (67) simplifies to the conservation of total energy, given by

𝑑
𝑑𝑡 ∫Ω𝑅

𝑆 𝑑Ω𝑅 = 0. (69)

5.  Smoothed particle hydrodynamics spatial discretisation

5.1.  SPH approximation for conservation equations

We consider a solid discretised in space by a set of particles. In this collocation-based framework, each particle also serves as a 
quadrature (integration) point. The material gradient of a velocity field 𝒗 at particle 𝑎 is then approximated as

𝛁0𝒗(𝑿𝑎, 𝑡) ≈
1
Ω𝑎
𝑅

∑

𝑏∈Λ𝑎

1
2
(

𝒗𝑏(𝑡) − 𝒗𝑎(𝑡)
)

⊗ 𝑪𝑎𝑏; 𝑪𝑎𝑏 = 2Ω𝑎
𝑅Ω

𝑏
𝑅𝛁̃0𝑊𝑏(𝑿𝑎). (70)

Here, 𝑏 ∈ Λ𝑎 denotes the set of neighbouring particles 𝑏 located within the support radius of particle 𝑎, and Ω𝑏
𝑅 is the material volume 

associated with neighbour 𝑏. The term −𝒗𝑎 ensures zero contribution for a constant field. The corrected kernel gradient 𝛁̃0 enforces 
exactness for linear fields given by [55–57]

𝛁̃0𝑊𝑏(𝑿𝑎) = 𝑳𝑎𝛁0𝑊𝑏(𝑿𝑎); 𝑳𝑎 =

[

∑

𝑏∈Λ𝑎

Ω𝑏
𝑅𝛁0𝑊𝑏(𝑿𝑎)⊗ (𝑿𝑏 −𝑿𝑎)

]−1

. (71)

Note that due to SPH gradient correction, 𝑪𝑎𝑏 ≠ −𝑪𝑏𝑎. For further details, readers are referred to References [56,57].
In the current work, we adopt a reduced formulation for {𝒑𝑅, ,𝑪−1

𝑣𝛼
} that retains the necessary kinematic and internal variables 

whilst simplifying viscous calibration. Using the SPH velocity gradient approximation (70) and ensuring variational consistency 
following References [2,58], we approximate the evolution of these variables as 

𝑑𝒑𝑎𝑅(𝑡)
𝑑𝑡

= 𝑬𝑎(𝑡) − 𝑻 𝑎(𝑡) +𝑎(𝑡); (72a)

𝑑𝑭 𝑎(𝑡)
𝑑𝑡

= 𝛁0𝒗(𝑿𝑎, 𝑡); (72b)

𝑑𝑯𝑎(𝑡)
𝑑𝑡

= 𝑭 𝑎(𝑡) 𝛁0𝒗(𝑿𝑎, 𝑡); (72c)

𝑑𝐽𝑎(𝑡)
𝑑𝑡

= 𝑯𝑎(𝑡) ∶ 𝛁0𝒗(𝑿𝑎, 𝑡); (72d)

𝑑𝑪−1
𝑣𝛼 ,𝑎

(𝑡)

𝑑𝑡
|

|

|

|𝑿
= 1

𝜏𝛼

(

𝑪−1
𝑎 (𝑡) − 𝑪−1

𝑣𝛼 ,𝑎
(𝑡)
)

; 𝛼 = {1,… , 𝑛M}. (72e)

The external and internal forces acting on particle 𝑎 are given by

𝑬𝑎(𝑡) =
𝐴𝑎
𝑅

Ω𝑎
𝑅
𝒕𝑎𝐵(𝑡) + 𝒇 𝑎

𝑅(𝑡); 𝑻 𝑎(𝑡) =
∑

𝑏∈Λ𝑏
𝑎

𝑻 𝑎𝑏(𝑡); 𝑻 𝑎𝑏(𝑡) =
1
2
(

𝑷 𝑏(𝑡)𝑪𝑏𝑎 − 𝑷 𝑎(𝑡)𝑪𝑎𝑏
)

, (73)

where 𝐴𝑎
𝑅 is the material tributary area and 𝒕𝑎𝐵 is the prescribed boundary traction. For particles not on the boundary, 𝐴𝑎

𝑅 = 010. In 
this SPH formulation, the pairwise internal force is antisymmetric 𝑻 𝑏𝑎 = −𝑻 𝑎𝑏, which guarantees local and global conservation of 
linear momentum. Moreover, the discrete SPH formulations of the divergence and gradient operators are skew-adjoint, ensuring that 
conservative forces do not lead to spurious dissipation [59]. The full SPH derivation of expressions (72a) and (72d) from their weak 
form is provided in References [41,42].

Following previous work by the authors [1,2,58], the dissipation term satisfies pairwise antisymmetry, that is, 𝑎 =
∑

𝑏∈Λ𝑏
𝑎
𝑎𝑏

with 𝑎𝑏 = −𝑏𝑎. Specifically,11

𝑎𝑏 = 𝑺𝑎𝑏
(

𝒗𝑏 − 𝒗𝑎
)

, (74)

10 The numerical examples presented in this paper are driven by a prescribed initial velocity field, so no external prescribed boundary tractions 
are applied and the tributary areas do not play a role.
11 See Appendix B for the derivation of the pair-wise dissipation using the time rate of the convex entropy extension.
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where 𝑺𝑎𝑏 is the self-adjoint dissipation operator, acting on the velocity jump [58,60,61]. Such a formulation is a characteristic 
of Godunov-type upwinding terms [62], commonly referred to as Riemann solvers [4]. To achieve second-order accuracy, a linear 
reconstruction procedure12 must be applied to reconstruct the associated velocities at the mid-edge between particle pairs 𝑎 and 𝑏. 
Further details can be found in References [1,63].

The symmetric positive semi-definite stabilisation matrix is then chosen to combine both pressure and shear waves components, 
expressed as

𝑺𝑎𝑏 =
1
2
𝜌Ave𝑅 ‖𝑪Skew

𝑎𝑏 ‖

[

𝑐Ave𝑝 𝒏𝑎𝑏 ⊗ 𝒏𝑎𝑏 + 𝑐Ave𝑠
(

𝑰 − 𝒏𝑎𝑏 ⊗ 𝒏𝑎𝑏
)

]

, (75)

where [∙]Ave = 1
2

(

[∙]𝑎 + [∙]𝑏
)

, 𝑪Skew
𝑎𝑏 = 1

2

(

𝑪𝑎𝑏 − 𝑪𝑏𝑎
) and ‖𝑪Skew

𝑎𝑏 ‖

2 = 𝑪Skew
𝑎𝑏 ⋅ 𝑪Skew

𝑎𝑏 .
Finally, to track the evolution of the deformed geometry, the following discretised kinematic relation is employed

𝑑𝝓𝑎(𝑡)
𝑑𝑡

= 𝒗𝑎(𝑡). (76)

6.  Time integration

Given the size of the semi-discrete equations, we employ a three-stage Runge-Kutta explicit time integrator [3,6,7] to advance the 
solution from time step 𝑡𝑛 to 𝑡𝑛+1 as

 ⋆
𝑎 =  𝑛

𝑎 + Δ𝑡 ̇ 𝑛
𝑎
(

 𝑛
𝑎
)

,

 ⋆⋆
𝑎 = 3

4
 𝑛

𝑎 +
1
4

(

 ⋆
𝑎 + Δ𝑡 ̇ ⋆

𝑎
(

 ⋆
𝑎
)

)

,

 𝑛+1
𝑎 = 1

3
 𝑛

𝑎 +
2
3

(

 ⋆⋆
𝑎 + Δ𝑡 ̇ ⋆⋆

𝑎
(

 ⋆⋆
𝑎

)

)

.

(77)

Here,  𝑎 consists of the primary unknowns {𝒑𝑎𝑅,𝑭 𝑎,𝑯𝑎, 𝐽𝑎}. These variables, along with the particle geometry 𝝓𝑎, are updated 
explicitly in time using the Runge-Kutta scheme described above. The internal variables (72e), however, are updated analytically 
over the same time increment Δ𝑡. In this work, the term 𝑪−1

𝑎  and the relaxation times 𝜏𝛼 are held fixed during each time interval. 
Under these conditions, the exact solution of the linear evolution Eq. (72e) reads

𝑪−1,𝑛+1
𝑣𝛼 ,𝑎

= (1 − 𝜖)𝑪−1,𝑛
𝑣𝛼 ,𝑎

+ 𝜖𝑪−1,𝑛
𝑎 ; 𝜖 = 1 − 𝑒−

Δ𝑡
𝜏𝛼 , (78)

where 𝜖 ∈ [0, 1] is the relaxation fraction over the time step. This provides an exact temporal update of the internal viscoelastic 
state, whilst the conservation equations for linear momentum, deformation measures, and geometry are advanced explicitly using 
the Runge-Kutta scheme in (77). The maximum time step Δ𝑡 is restricted by13

Δ𝑡 ≤ min
(

𝛼𝐶𝐹𝐿 min
(

ℎmin
𝑐𝑝

)

, 𝛼relax𝜏min

)

, (79)

where 𝜏min = min𝛼𝜏𝛼 . Here, 𝛼𝐶𝐹𝐿 is the Courant-Friedrichs-Lewy (CFL) stability number, 𝛼relax is typically chosen to be less than 1 to 
account for the stability limit of the relaxation terms, 𝑐𝑝 is the pressure wave speed (as defined in (56)) which in this work is obtained 
directly from the proposed viscoelastic constitutive model, and ℎmin is the minimum (or characteristic) particle spacing within the 
computational domain. In this work, we consider convective-dominated problems in which relaxation stability can be neglected. A 
large 𝜏min value makes the convective term the primary constraint on Δ𝑡. Unless specified otherwise, a value of 𝛼𝐶𝐹𝐿 = 0.9 is chosen 
in the subsequent examples to ensure a balance between accuracy and stability.

7.  Numerical examples

Several two- and three-dimensional problems are presented to demonstrate the capabilities of the proposed SPH algorithm. First, 
a manufactured problem for linear viscelasticity is used to examine the convergence order of the scheme. Second, the stability of 
the algorithm is assessed by verifying that it does not exhibit spurious zero-energy modes, using punch and tensile test cases. Third, 
the performance of the algorithm under large strain is investigated through a twisting column and a thin plate problem. Fourth, the 
applicability of the method to challenging thin-walled structures is demonstrated. In all examples, the viscoelastic material properties 
(such as relaxation time 𝜏𝛼 and proportionality factor 𝛽𝛼) are purely numerical and not experimentally calibrated. The primary 
objective of the current paper is to assess the effectiveness and efficiency of the SPH algorithm for viscoelastic solids. Solutions 
obtained with the proposed Total Lagrangian SPH scheme are compared with analytical results, an in-house Updated Reference 
Lagrangian SPH (URL-SPH) scheme [2,3], and a vertex-centred Finite Volume Method (FVM) [4–6,64].

7.1.  Assessment of consistency and convergence

The main objective of this example is to demonstrate the order of convergence of the proposed SPH algorithm. Following the 
approach in References [1,30], we extend the analysis of an ad-hoc manufactured solution to linear viscoelasticity (see Appendix C). 

12 No slope limiter is required as the numerical examples in this work are restricted to smooth, large strain solids and are not dominated by shocks.
13 The optimal time increment can be determined when appropriate maximum wave speeds are used, which generally depend on the constitutive 
model.
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Table 1 
Material properties for manufactured problem.
 Equilibrium (long-term) linear elastic model
Young’s modulus [MPa] 𝐸 17
Material density [kg/m3] 𝜌𝑅 1100
Poisson’s ratio 𝜈 0.3
 Non-equilibrium linear viscous model
 Number of Maxwell branch 𝑛M  1
 Proportionality factor 𝛽1 0.1
 Relaxation time [s] 𝜏1  0.02

Fig. 1. Manufactured problem. 𝐿2 global convergence analysis at time 𝑡 = 0.0094 s for (a) the components of velocity, and (b) the components of 
the first Piola-Kirchhoff stress tensor. A linear viscoelastic model is used with parameters listed in Table 1.

We consider a unit square plate under plane strain. The west and south boundaries are constrained to move only tangentially, whilst 
the north and east boundaries are restricted to normal motion, as depicted in Figure 10 of Reference [1]. In the small deformation 
case, the mapping function 𝝋(𝑿, 𝑡) is chosen as

𝝋(𝑿, 𝑡) = 𝑿 + 𝑈0 cos

(

𝑐𝑠𝜋𝑡
√

2

)

⎡

⎢

⎢

⎣

sin
(

𝜋𝑋1
2

)

cos
(

𝜋𝑋2
2

)

−cos
(

𝜋𝑋1
2

)

sin
(

𝜋𝑋2
2

)

⎤

⎥

⎥

⎦

. (80)

For values of 𝑈0 below 0.001m, the solution can be considered to be linear. The parameter 𝑐𝑠 represents the shear wave for the linear 
viscoelasticity and is defined as

𝑐𝑠 =

√

𝜇̄
𝜌𝑅

; 𝜇̄ = 𝜇 +
𝑛M
∑

𝛼=1

(

𝜇𝛼𝑒
− 𝑡

𝜏𝛼

)

. (81)

Consequently, the exact velocity and deformation gradient tensor can be computed as

𝒗(𝑿, 𝑡) = −
𝜋𝑐𝑠𝑈0
√

2
sin

(

𝑐𝑠𝜋𝑡
√

2

)

⎡

⎢

⎢

⎣

sin
(

𝜋𝑋1
2

)

cos
(

𝜋𝑋2
2

)

−cos
(

𝜋𝑋1
2

)

sin
(

𝜋𝑋2
2

)

⎤

⎥

⎥

⎦

, (82)

and

𝑭 (𝑿, 𝑡) =
⎡

⎢

⎢

⎣

1 + 𝛼 cos
(

𝜋𝑋1
2

)

cos
(

𝜋𝑋2
2

)

−𝛼 sin
(

𝜋𝑋1
2

)

sin
(

𝜋𝑋2
2

)

𝛼 sin
(

𝜋𝑋1
2

)

sin
(

𝜋𝑋2
2

)

1 − 𝛼 cos
(

𝜋𝑋1
2

)

cos
(

𝜋𝑋2
2

)

⎤

⎥

⎥

⎦

; 𝛼 =
𝑈0𝜋
2

cos

(

𝑐𝑠𝜋𝑡
√

2

)

, (83)

respectively.
This plate is initially loaded with deformation gradient (by substituting 𝑡 = 0 into (83)) without any initial velocity. A list of 

parameters used for this simulation is summarised in Table 1. As compared to the closed form solutions described in (82) and (83), 
Fig. 1 shows the 𝐿2 global convergence analysis at time 𝑡 = 0.0094 s for (1) the components of the velocity 𝒗, and (2) the components 
of the first Piola-Kirchhoff stress tensor 𝑷 . As expected, the proposed SPH algorithm achieves equal second-order convergence for all 
the variables solved, namely velocity and the stresses. This equal order convergence for all derived variables is one of the advantages 
of the mixed-based framework.
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Table 2 
Material properties for punch problem.
 Equilibrium (long-term) Mooney-Rivin model
Young’s modulus [MPa] 𝐸 17
Material density [kg/m3] 𝜌𝑅 1100
Poisson’s ratio 𝜈 0.45
 Parameters [Pa] {𝜉, 𝜁} {𝜇∕2, 0}
 Non-equilibrium viscous model
 Number of Maxwell branch 𝑛M  1
 Proportionality factor 𝛽1 3
 Relaxation time [s] 𝜏1  0.02

7.2.  Assessment of robustness and numerical stability

In this section, we consider two dimensional problems under plane strain, previously studied in Reference [65]. The first problem 
involves the compression of a square plate subjected to an initial compressive velocity field. The second problem is a tensile test, in 
which the same plate with slightly modified boundary conditions, is stretched vertically. These examples are designed to assess the 
robustness of the proposed SPH algorithm for viscoelastic solid dynamics.

7.2.1.  Punch test
A punch test case is presented. A square plate with unit side length of 𝐿𝑋 = 𝐿𝑌 = 1 m is constrained by roller supports (i.e., 

symmetry boundary conditions) along the south, west, and east edges (see the left structure in Fig. 2). The domain is subjected to an 
initial smooth vertical velocity profile 𝑣𝑦 given by14

𝒗
|

|

|

|𝑡=0
= 𝒗(𝑿, 𝑡 = 0) =

[

0
𝑣𝑦

]

; 𝑣𝑦 =

{

𝛼 2𝑋𝑌
𝐿𝑋𝐿𝑌

; 0 ≤ 𝑋 ≤ 𝐿𝑋∕2

𝛼 𝑌
𝐿𝑌

; 𝑋 ≥ 𝐿𝑋∕2
, (84)

where 𝛼 = −100 m/s. Three levels of particle refinement are considered, namely {M1, M2, M3} corresponding to {289, 525, 1089}
particles, respectively. Material properties are summarised in Table 2.

First, a particle refinement study is carried out using the proposed SPH algorithm with compressible viscoelasticity. Fig. 3 shows 
the deformation and pressure distribution at 𝑡 = 3.1 ms (top row) and 𝑡 = 10.2 ms (bottom row). The first three columns (from left 
to right) show results for the proposed SPH algorithm at increasing refinement levels. The fourth column (second from the right) 
shows results from URL-SPH [2,3], and the last column (on the right) shows results from the vertex-centred FVM [4] for comparison. 
Both deformation patterns and pressure distributions converge as the particle resolution increases. Second, Fig. 4(a) presents the time 
history of different energy measures during the deformation process. It is interesting to notice how kinetic energy converts into strain 

14 The velocity profile is chosen to ensure smooth solutions, producing a deformation pattern with a wave-like spatial structure.

Fig. 2. (Left) Structure initialised with a compressive vertical velocity 𝑣𝑦. (Right) Structure initialised with a tensile vertical velocity 𝑣𝑦.
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Fig. 3. Punch test. Comparison of deformed shapes using compressible viscoelasticity at time (a) 𝑡 = 3.1 ms (b) 𝑡 = 10.2 ms. The first three columns 
(left to right) show the particle refinement of a structure simulated using the proposed Total Lagrangian SPH algorithm. The fourth column (second 
from the right) shows results from an alternative in-house URL-SPH algorithm [3], and the last column (on the right) shows results from the 
vertex-centred FVM [4]. Colour indicates the pressure profile. Material properties are summarised in Table 2.

Table 3 
Material properties for tensile problem.
 Equilibrium (long-term) Mooney-Rivin model
Young’s modulus [GPa] 𝐸 21
Material density [kg/m3] 𝜌𝑅 7000
Poisson’s ratio 𝜈 0.3
 Parameters [Pa] {𝜉, 𝜁} {𝜇∕2, 0}
 Non-equilibrium viscous model
 Number of Maxwell branch 𝑛M  1
 Proportionality factor 𝛽1 3
 Relaxation time [s] 𝜏1  0.02

energy and viscoelastic dissipation, with a small portion converting to numerical dissipation. The rate of internal (viscous) dissipation 
and the rate of numerical dissipation increase over time, ensuring discrete satisfaction of the second law of thermodynamics. This can 
be seen in Fig. 4(b) and (c). Third, for qualitative assessment, Fig. 4(d) tracks the time evolution of the vertical velocity component at 
𝑿 = [1, 1]𝑇  m (top right corner of the plate), demonstrating convergence with refinement. Finally, Fig. 5 shows a series of deformed 
states using the M3 model, with the pressure profile indicated by the colour contour plot. Stable solutions are observed even over 
long-term simulations.

7.2.2.  Tensile test
Similar to the punch test, a tensile test is considered to further study the material response under different loading conditions. 

A square plate is initially pulled vertically upward with 𝑣𝑦 = 500 m/s (right structure in Fig. 2). The south boundary is fixed, 
whilst the remaining edges are traction-free. Material properties are summarised in Table 3. Fig. 6 compares the hyperelastic model 
(with parameter 𝛽1 = 0) and the compressible viscoelastic model. Snapshots at time 𝑡 = {0.62, 0.93, 1.23, 1.54, 1.86, 2.17} ms show the 
pressure field. As expected, the viscoelastic model exhibits reduced deformation due to the dissipative effect of material viscosity, 
and the results agree well with those obtained using a vertex-centred FVM [4] (see Fig. 7). This behaviour is further analysed through 
the time history of energy measures, illustrated in Fig. 8. Comparing Fig. 8(a) (hyperelastic model) and (b) (viscoelastic model), 
the total energy (the sum of kinetic energy and strain energy) consistently decreases, primarily due to internal viscous dissipation. 
Specifically, the time derivatives of material and numerical dissipation remain non-negative throughout the entire simulation, as 
shown in Fig. 8(c) and (d). Moreover, the numerical dissipation introduced by the proposed SPH algorithm decreases with increasing 
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Fig. 4. Punch test. (a) Time evolution of various energy measures computed with discretisation M3, including kinetic energy , strain energy Π𝑒, 
the total energy (summation of kinetic and strain energies), internal viscous dissipation int and numerical dissipation num. Time histories of 
(b) numerical dissipation and (c) internal viscous dissipation for varying particle refinements. (d) Time history of vertical velocity 𝑣𝑦 at position 
𝑿 = [1, 1]𝑇  m. Material properties are provided in Table 2.

Table 4 
Material properties for twisting problem.
 Equilibrium (long-term) Mooney-Rivin model
Young’s modulus [MPa] 𝐸 17
Material density [kg/m3] 𝜌𝑅 1100
Poisson’s ratio 𝜈 0.45
 Parameters [Pa] {𝜉, 𝜁} {𝜇∕2, 0}
 Non-equilibrium viscous model
 Number of Maxwell branch 𝑛M  1
 Proportionality factor 𝛽1 1
 Relaxation time [s] 𝜏1  0.02

particle refinement, indicating the consistency of the method. In this case, M1, M2, and M3 correspond to 225, 441, and 841 SPH 
particles, respectively. For qualitative assessment, Fig. 9 monitors the time evolution of vertical velocity 𝑣𝑦 and displacement 𝑢𝑦 at 
𝑿 = [1, 1]𝑇  m (top right corner of the plate). The SPH predictions agree closely with the vertex-centred FVM results, and accurate 
responses are obtained even with relatively few particles.
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Fig. 5. Punch test. A sequence of deformed structures with pressure distribution at 𝑡 = {3.1, 4.25, 5.4, 6.6, 7.75, 8.9, 10.15, 11.3, 12.45, 13.55, 14.7, 15.85, 17,
18.15, 19.25, 20.4} ms (from left to right and top to bottom), respectively. Results obtained using the compressible viscoelastic model with M3 model. 
Material properties are summarised in Table 2.
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Fig. 6. Tensile test. Sequence of deformed states at time 𝑡 = {0.62, 0.93, 1.23, 1.54, 1.86, 2.17} ms (from left to right and top to bottom) for (a) hyper-
elastic model (with 𝛽1 = 0) and (b) compressible viscoelasticity. Colour represents the pressure field. Material properties are provided in Table 3.
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Fig. 7. Tensile test. Sequence of deformed states at time 𝑡 = {0.62, 0.93, 1.23, 1.54, 1.86, 2.17} ms (from left to right and top to bottom) for compressible 
viscoelasticity using a vertex-centred FVM. Colour represents the pressure field. Material properties are provided in Table 3.

7.3.  Analysis of large deformation behaviour

This well-documented three-dimensional example examines the capability of the SPH algorithm in the large strain regime. Initially 
proposed by [64], it was later extensively explored in References [1,60,66], primarily for hyperelastic models. In this study, we 
extend the benchmark to include viscoelasticity models, aiming to demonstrate that the proposed SPH algorithm remains free from 
hourglassing modes, which commonly observed in this test case. A short column of length 𝐿 = 6 m with a unit square cross section 
is subjected to an initial sinusoidal velocity field about the origin, given by

𝒗
|

|

|

|𝑡=0
=

⎡

⎢

⎢

⎢

⎣

0
Ω0 sin

(

𝜋𝑌
2𝐿

)

0

⎤

⎥

⎥

⎥

⎦

[m∕s], (85)

where Ω0 = 105 ms−1 represents the velocity amplitude (see Figure 2c of Reference [67]). The relevant material properties are pro-
vided in Table 4.

The accuracy of the SPH algorithm for viscoelasticity is assessed through a particle refinement study using [M1] 625, [M2] 1715, 
and [M3] 3969 particles. Fig. 10 shows that the deformations predicted by the proposed SPH algorithm (first three columns) converge 
with increasing particle refinement and are in good agreement with results from the URL-SPH algorithm [3] and the in-house vertex-
centred FVM [4,5,48]. Similar deformation patterns (top view) are observed for both Total Lagrangian SPH and URL-SPH schemes 
(see Fig. 11). For completeness, Fig. 12 shows the evolution of the accumulated twist angle at four positions: 𝑿𝐴 = [−0.5, 6,−0.5]𝑇  m, 
𝑿𝐵 = [0.5, 6,−0.5]𝑇  m, 𝑿𝐶 = [0.5, 6, 0.5]𝑇  m, and 𝑿𝐷 = [−0.5, 6, 0.5]𝑇  m. The results show near-identical behaviour when comparing 
the proposed SPH algorithm with the URL-SPH scheme. It is important to assess how energy is transferred throughout the simulation 
process. This is seen in Fig. 13(a) and (b). At time 𝑡 = 0, the total energy of the structure is primarily kinetic, which is governed by 
the initial twisting velocity. As the column twists, kinetic energy is progressively converted into strain energy, with some energy 
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Fig. 8. Tensile test. Time evolution of various energy measures with discretisation M3, including kinetic energy , strain energy Πe, the total energy 
(summation of kinetic and strain energies), internal viscous dissipation int, and numerical dissipation num. These are presented for (a) hyperelastic 
model and (b) compressible viscoelastic model. Time histories of (c) internal viscous dissipation and (d) numerical dissipation for varying particle 
refinements. Material properties are provided in Table 3.

irrecoverably dissipated due to material viscosity (absent in the hyperelastic model) and a small portion dissipated as numerical 
dissipation. Once the column reaches its maximum tensile twist, kinetic energy is zero, and strain energy dominates. During the 
reverse twist, energy again transitions among strain energy, kinetic energy, material viscous dissipation, and numerical dissipation. 
For the viscoelastic model, material viscous dissipation increases over time, as shown in Fig. 13(c). Furthermore, Fig. 13(d) illustrates 
that the proposed algorithm introduces numerical dissipation over the duration of the simulation, ensuring the discrete satisfaction 
of the second law of thermodynamics. The numerical dissipation consistently decreases as the number of particle increases. Finally, 
Fig. 14 presents a series of deformed states via compressible viscoelasticity, with the pressure profile indicated by the colour contour 
plot. No instabilities are observed.

7.4.  Performance in thin-walled structures

7.4.1.  Bending of a thin plate
The bending behaviour of a thin structure is examined to verify that the proposed SPH algorithm circumvents the usual locking 

difficulties in simulating thin structure. The thin plate (see Figure 18 of Reference [27]) is subjected to an initial velocity profile given 
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Fig. 9. Tensile test. Time history for (a) vertical velocity 𝑣𝑦 and (b) vertical displacement 𝑢𝑦 at position 𝑿 = [1, 1]𝑇  m. Material properties are 
provided in Table 3.

Table 5 
Material properties for a thin plate.
 Equilibrium (long-term) Mooney-Rivin model
Young’s modulus [kPa] 𝐸 50.5
Material density [kg/m3] 𝜌𝑅 1100
Poisson’s ratio 𝜈 0.3
 Parameters [Pa] {𝜉, 𝜁} {𝜇∕2, 0}
 Non-equilibrium viscous model
 Number of Maxwell branch 𝑛M  1
 Proportionality factor 𝛽1 1
 Relaxation time [s] 𝜏1  0.02

by the following expression
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10
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. (86)

A compressible viscoelasticity model is adopted, with material parameters detailed in Table 5.
To demonstrate particle convergence, three progressively refined models are used: [M1] 867, [M2] 1875 and [M3] 4107 particles. 

The first three columns of Fig. 15 compare the deformation process of the structure at times 𝑡 = 1.5 s and 𝑡 = 4.5 s using these 
models. For comparison, the problem is also tested using the mixed-based URL-SPH algorithm [3] with the M3 discretisation. The 
deformed shape and pressure field remain consistent across all three models using the proposed SPH algorithm and closely match 
the results from the URL-SPH algorithm. Fig. 16(a) presents the time history of the linear momentum components within the system, 
showing that linear momentum components are conserved during spatial translation. Since this problem is primarily governed by 
translation motion, some of the kinetic energy is converted into strain energy, whilst the rest is irreversibly lost due to material and 
numerical dissipation. This loss is reflected in the decrease in global total energy, as shown in Fig. 16(b). To satisfy the second law of 
thermodynamics, both material viscous dissipation and numerical dissipation (introduced by the SPH algorithm) increase consistently 
over time. These are illustrated in Fig. 16(c) and (d). The results obtained using the proposed algorithm are nearly indistinguishable 
from those of the URL-SPH algorithm, demonstrating strong agreement between the two approaches.

Furthermore, the importance of numerical dissipation, even when using viscoelasticity, is demonstrated in Fig. 17. To highlight 
this, we first run the same problem using both the hyperelastic model (𝛽1 = 0) and the viscoelastic model, with no numerical dissipation 
in either case. Pressure checkerboarding and incorrect deformation paths are observed in the third and fourth columns. These issues 
are mitigated by the proposed algorithm with entropy-stable stabilisation, which shows excellent agreement with the URL-SPH results. 
Finally, Fig. 18 illustrates the time evolution of the plate deformation15, highlighting smooth pressure variations. Top and bottom 
views of the deformed structures are also presented in Fig. 19. It is remarkable to see how well the deformation behaviour of the 
structure is captured.

15 Self-contact is expected to occur at later times (when 𝑡 > 6 s), but this is beyond the scope of the present study.
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Fig. 10. Twisting column. Comparison of deformed shapes using compressible viscoelasticity at (a) 𝑡 = 0.085 s and (b) 𝑡 = 0.26 s. The first three 
columns (left to right) show the particle refinement of a structure simulated using the proposed SPH algorithm. The fourth column (second from the 
right) shows results from an alternative in-house URL-SPH algorithm [3], and the last column (on the right) shows results from the vertex-centred 
FVM [4]. Colour indicates the pressure profile. Material properties are summarised in Table 4.
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Fig. 11. Twisting column. A sequence of deformation states from the top view using (a) the proposed SPH scheme, and (b) URL-SPH scheme at 
times 𝑡 = {0, 0.085, 0.17, 0.26} s. The colour represents the particle positions. The material parameters are provided in Table 4.

Table 6 
Material properties for a cylindrical structure.
 Equilibrium (long-term) Mooney-Rivin model
Young’s modulus [GPa] 𝐸 5.56
Material density [kg/m3] 𝜌𝑅 1000
Poisson’s ratio 𝜈 0.3
 Parameters [Pa] {𝜉, 𝜁} {𝜇∕2, 0}
 Non-equilibrium viscous model
 Number of Maxwell branch 𝑛M  1
 Proportionality factor 𝛽1 1
 Relaxation time [s] 𝜏1  0.02

7.4.2.  Pinched cylindrical structure
The final example considered in this paper is a pinched cylindrical structure, a benchmark problem [68–70] often studied under 

quasi-static conditions. The deformation process may involve the formation of wrinkles, which typically requires high-order schemes 
for accurate capture. The cylinder (see Fig. 20) has a radius 𝑅 = 10 m, length 𝐿 = 20 m, and thickness 𝑡 = 0.1 m. It is subjected at 
point 𝐴 to a pair of symmetrical radial pinching velocities 𝒗𝐴16, defined by a Gaussian profile as

𝒗𝐴(𝑡) =
⎡

⎢

⎢

⎣
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0
0

⎤

⎥

⎥

⎦

[m∕s]; 𝑣𝑥(𝑡) = −
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2𝜋
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−
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2𝑎22

]

, (87)

where the parameters 𝑎1 = 0.075 m, 𝑎2 = 5 × 10−4 s, and 𝑡0 = 2 × 10−3 s. The cylinder ends are closed with rigid diaphragms, restricting 
displacement to the 𝑦-direction. Due to symmetry, only one-eighth of the geometry is modelled using 2583 particles. Fig. 21 illustrates 
that the temporal evolution of velocities and displacements at points 𝐵 and 𝐶 is in good agreement with the URL-SPH solution. The 
deformed shapes obtained from both methods also match closely, and the pressure profiles remain stable without spurious modes, as 
shown in Figs. 22 and 23. These results demonstrate that the proposed SPH scheme is robust and provides a compelling alternative 
for analysing the deformation of thin-walled structures.

16 Since the focus here is on dynamic inertial effects, we slightly modify the problem by driving it with prescribed velocities rather than boundary 
forces.
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Fig. 12. Twisting column. Time history of the accumulated twist angle via different discretisation at four locations, namely (a) 𝜃𝐴 at 𝑿𝐴 =
[−0.5, 6,−0.5]𝑇  m, (b) 𝜃𝐵 at 𝑿𝐵 = [0.5, 6,−0.5]𝑇  m, (c) 𝜃𝐶 at 𝑿𝐶 = [0.5, 6, 0.5]𝑇  m, and (d) 𝜃𝐷 at 𝑿𝐷 = [−0.5, 6, 0.5]𝑇  m. Compressible viscoelasticity 
model is used. The relevant material parameters are tabulated in Table 4.
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Fig. 13. Twisting column. Time evolution of various energy measures with discretisation M3, including kinetic energy , strain energy Πe, the 
total energy (summation of kinetic and strain energies), internal viscous dissipation int, and numerical dissipation num. These are presented for 
(a) hyperelastic model and (b) the compressible viscoelasticity. Time histories of (c) internal viscous dissipation and (d) numerical dissipation for 
varying particle refinements. Material properties are provided in Table 4.
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Fig. 14. Twisting column. A sequence of deformed structures with pressure distribution at times 𝑡 = 
{85, 105, 135, 165, 195, 225, 255, 285, 315, 345, 375, 405} ms (from left to right and top to bottom), respectively. Results obtained using a com-
pressible viscoelastic model with M3 model. Material properties are summarised in Table 4.
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Fig. 15. Bending of a thin plate. Comparison of deformed shapes at (a) 𝑡 = 1.5 s and (b) 𝑡 = 4.5 s. In (a), the top row represents the top view, and 
the bottom row represents the bottom view. The same applies to (b). The first three columns (from left to right) show the particle refinement of a 
structure simulated using the proposed SPH algorithm, whereas the last column (rightmost) presents results from an alternative in-house Updated 
Reference Lagrangian SPH algorithm [3]. Colour indicates the pressure profile. Material properties are summarised in Table 5.
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Fig. 16. Bending of a thin plate. (a) Time evolution of the linear momentum components within the system with discretisation M3. (b) Time 
evolution of various energy measures with discretisation M3, including kinetic energy , strain energy Πe, the total energy (summation of kinetic 
and strain energies), internal viscous dissipation int, and numerical dissipation num. Time histories of (c) internal viscous dissipation and (d) 
numerical dissipation for varying particle refinements. Material properties are provided in Table 5.
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Fig. 17. Bending of a thin plate. Comparison of deformed shapes at (a) 𝑡 = 4.5 s (side view), (b) 𝑡 = 5 s (top view), (c) 𝑡 = 5.5 s (bottom view), and 
(d) 𝑡 = 6 s (slanted view). The first column shows results using the proposed SPH algorithm, the second column presents the URL-SPH algorithm, the 
third column shows the hyperelastic model (𝛽1 = 0) with no numerical dissipation, and the fourth column presents the viscoelastic model (𝛽1 = 1) 
without numerical dissipation. Colour indicates the pressure profile. Material properties are provided in Table 5.
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Fig. 18. Bending of a thin plate. A sequence of deformed plate shapes in a 3D slanted view with pressure distribution at times 𝑡 = 
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6} s (from left to right, top to bottom). Results are obtained using a compressible viscoelastic model with the 
M3 model. Material properties are summarised in Table 5.
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Fig. 19. Bending of a thin plate. A sequence of deformed plate shapes in (a) top view and (b) bottom view, with pressure distribution at times 𝑡 = 
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6} s (from left to right, top to bottom). Results are obtained using a compressible viscoelastic model with the M3 
model. Material properties are summarised in Table 5.
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Fig. 20. (Left) Cylindrical structure pinched with radial velocity 𝑣𝑥. (Right) Only one-eighth of the structure is modelled due to symmetry.

Fig. 21. Pinched cylindrical structure. Time histories of vertical and radial responses of the cylindrical structure: (a) vertical velocity 𝑣𝑦 and (b) 
vertical displacement 𝑢𝑦 at position 𝐶, and (c) radial velocity 𝑣𝑧 and (d) radial displacement 𝑢𝑧 at position 𝐵. Material properties are summarised in 
Table 6.
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Fig. 22. Cylindrical structure. A sequence of deformed shapes in the 𝑋-𝑌  view with pressure distribution at times 𝑡 = {1.5, 2, 2.5, 3} ms (from top 
to bottom). The left column shows results from the proposed SPH algorithm, and the right column displays the corresponding URL-SPH solutions. 
Material properties are summarised in Table 6.
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Fig. 23. Cylindrical structure. A sequence of deformed shapes in the 𝑌 -𝑍 view with pressure distribution at times 𝑡 = {1.5, 2, 2.5, 3} ms (from top 
to bottom). The left column shows results from the proposed SPH algorithm, and the right column displays the corresponding URL-SPH solutions. 
Material properties are summarised in Table 6.
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8.  Conclusions

This paper has presented a first-order hyperbolic framework for large strain viscoelastic solids, incorporating relaxation terms 
to model internal dissipation. A key objective was to guarantee hyperbolicity, ensuring real wave speeds across all deforma-
tion states. To achieve this, we introduced a convex generalised entropy function, which required a multi-variable strain en-
ergy function jointly convex with respect to the deformation measures  = {𝑭 ,𝑯 , 𝐽} and the extended set of internal variables 
 = {𝒀 1, 𝑦1, 𝒀 2, 𝑦2,… , 𝒀 𝑛M , 𝑦𝑛M}, where 𝑛M is the total number of Maxwell branches. This enabled symmetrisation of the first-order 
hyperbolic conservation laws with relaxation terms, leading to a thermodynamically consistent and well-posed formulation. The hy-
perbolicity and relaxation properties were analysed via the eigenproblem, yielding nonlinear expressions for the pressure and shear 
wave speeds.

The hyperbolic framework was implemented within an upwinding Smoothed Particle Hydrodynamics (SPH) scheme. The SPH 
algorithm ensured semi-discrete satisfaction of the second law of thermodynamics, with internal and numerical dissipation monitored 
separately through the time rate of the generalised convex entropy. Several benchmark problems, including a manufactured solution, 
demonstrated that the SPH method produced accurate, consistent, and stable results, capturing deformation, energy transfer, and 
dissipation processes whilst maintaining stable pressure fields and avoiding spurious modes. Comparisons with an in-house Updated 
Reference Lagrangian SPH algorithm showed excellent agreement, confirming the robustness and reliability of the approach. These 
findings highlight the effectiveness of the proposed method, particularly for thin-walled structures where wrinkling and large strain 
effects are significant. Future work will extend the current framework to consider fully incompressible viscoelasticity and incorporate 
thermal effects.
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Appendix A.  Conjugate stresses and Hessian operators

Based on the polyconvex energy functions defined in (19) and (20), the thermodynamic conjugate stresses corresponding to the 
equilibrium and non-equilibrium components are given by

𝚺∞
𝑭 ( ) = 2𝜉𝑭 ; 𝚺∞

𝑯 ( ) = 2𝜁𝑯 ; Σ∞
𝐽 ( ) = −

2(𝜉 + 2𝜁 )
𝐽

+ 𝜆̂(𝐽 − 1) = 𝑓 ′
∞;

𝚺𝛼
𝑭 ( ,𝛼) = 𝜇𝛼𝑭𝒀 −1

𝛼 ; 𝚺𝛼
𝑯 ( ,𝛼) = 𝟎; Σ𝛼

𝐽 ( ,𝛼) = −
𝜇𝛼
𝐽

.
(A.1)

The corresponding thermodynamic conjugate stresses with respect to the internal variables are

𝚺𝒀 𝛼
= −

𝜇𝛼
2
𝒀 −1

𝛼 𝑪𝒀 −1
𝛼 ; Σ𝑦𝛼 = −

𝜇𝛼
2
𝑦−1𝛼 . (A.2)

For consistent linearisation and stability analysis, the diagonal components of the long-term (equilibrium) Hessian [ℍ∞
𝑊 ] are 

computed as

𝑊 ∞
𝑭𝑭 = 2𝜉; 𝑊 ∞

𝑯𝑯 = 2𝜁; 𝑊 ∞
𝐽𝐽 = 𝜆̂ +

2(𝜉 + 2𝜁 )
𝐽 2

= 𝑓 ′′
∞, (A.3)

where  is the fourth-order identity tensor with components []𝑖𝐼𝑗𝐽 = 𝛿𝑖𝑗𝛿𝐼𝐽 . All remaining components of [ℍ∞
𝑊 ] (18) are zero.
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Additionally, the diagonal components of the viscous Hessian [ℍ𝛼
𝑊 ] are

𝑊 𝛼
𝑭𝑭 = 𝜇𝛼𝒀 −1

𝛼
; 𝑊 𝛼

𝐽𝐽 =
𝜇𝛼
𝐽 2

; 𝑊 𝛼
𝒀 𝛼𝒀 𝛼

= 𝜇𝛼ℂ; 𝑊 𝛼
𝑦𝛼𝑦𝛼

=
𝜇𝛼
2
𝑦−2𝛼 , (A.4)

and the non-zero off-diagonal components are
𝑊 𝛼

𝑭𝒀 𝛼
= −𝜇𝛼𝔸; 𝑊 𝛼

𝒀 𝛼𝑭
= −𝜇𝛼𝔹, (A.5)

where the fourth-order tensors are defined by
[𝔸]𝐼𝑀𝐾𝐿 =

[

𝑭𝒀 −1
𝛼
]

𝐼𝐾
[

𝒀 −1
𝛼
]

𝑀𝐿;

[𝔹]𝐼𝑀𝐾𝐿 =
[

𝒀 −1
𝛼
]

𝐼𝐾
[

𝑭𝒀 −1
𝛼
]

𝑀𝐿;

[ℂ]𝐼𝑀𝐾𝐿 = [𝒀 −1
𝛼 𝑪𝒀 −1

𝛼 ]𝐼𝐾
[

𝒀 −1
𝛼
]

𝑀𝐿;

[𝒀 −1
𝛼
]
𝑖𝐼𝑗𝐽

= 𝛿𝑖𝑗 [𝒀 −1
𝛼 ]𝐼𝐽 .

(A.6)

All other components of [ℍ𝛼
𝑊 ] (18) vanish.

Appendix B.  Entropy-stable stabilisation

Using expression (66), the semi-discrete entropy function of the system can be approximated via particle integration as
∑

𝑎
Ω𝑎
𝑅
𝑑𝑆𝑎
𝑑𝑡

=
∑

𝑎
Ω𝑎
𝑅

(

𝒗𝑎 ⋅
𝑑𝒑𝑎𝑅
𝑑𝑡

+ 𝑷 𝑎 ∶
𝑑𝑭 𝑎
𝑑𝑡

)

−
∑

𝑎
Ω𝑎
𝑅̇

𝑎
int. (B.1)

Incorporating the discrete linear momentum and deformation gradient updates from (72a) and (72b), the sum of the first two terms 
in (B.1) becomes

∑

𝑎
Ω𝑎
𝑅

(

𝒗𝑎 ⋅
𝑑𝒑𝑎𝑅
𝑑𝑡

+ 𝑷 𝑎 ∶
𝑑𝑭 𝑎
𝑑𝑡

)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑎
Ω𝑎
𝑅
(

𝑷 ∶ 𝛁0𝒗(𝑿𝑎, 𝑡) − 𝒗𝑎 ⋅ 𝑻 𝑎
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
∑

𝑎
𝐴𝑎
𝑅𝒗

𝑎
𝐵 ⋅ 𝒕𝑎𝐵

+
∑

𝑎
Ω𝑎
𝑅𝒗𝑎 ⋅ 𝒇

𝑎
𝑅 +

∑

𝑎
𝒗𝑎 ⋅𝑎.

(B.2)

Substituting this relation into (B.1) and rearranging terms yields

∑

𝑎
Ω𝑎
𝑅
𝑑𝑆𝑎
𝑑𝑡

− Π̇ext = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑎
Ω𝑎
𝑅

𝑎
int +

(

−
∑

𝑎
𝒗𝑎 ⋅𝑎

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
̇num

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.3)

where the semi-discrete power contribution Π̇ext is
Π̇ext =

∑

𝑎
Ω𝑎
𝑅𝒗𝑎 ⋅ 𝒇

𝑎
𝑅 +

∑

𝑎
𝐴𝑎
𝑅𝒕

𝑎
𝐵 ⋅ 𝒗𝑎𝐵 . (B.4)

To satisfy the second law of thermodynamics (68) at the semi-discrete level, it is necessary to demonstrate that the two terms 
within the square brackets on the right-hand side of expression (B.3) are non-negative. The first term is straightforward, as the internal 
dissipation ̇𝑎

int ≥ 0 must be non-negative by definition. For the second term, we must demonstrate the total numerical dissipation 
̇num ≥ 0 is also non-negative. This can be achieved by equivalently swapping indices 𝑎 and 𝑏, yielding

̇num = −
∑

𝑎
𝒗𝑎 ⋅𝑎 = −

∑

𝑎

∑

𝑏∈Λ𝑎

(

𝒗𝑎 ⋅𝑎𝑏
)

= −
∑

𝑎

∑

𝑏∈Λ𝑎

(

𝒗𝑏 ⋅𝑏𝑎
)

=
∑

𝑎

∑

𝑏∈Λ𝑎

(

𝒗𝑏 ⋅𝑎𝑏
)

. (B.5)

By averaging the second and fourth terms in the above expression and noting the anti-symmetric nature of the stabilisation term as 
𝑏𝑎 = −𝑎𝑏, expression above can be alternatively shown as

̇num = 1
2
∑

𝑎

∑

𝑏∈Λ𝑏
𝑎

(

𝒗𝑏 − 𝒗𝑎
)

⋅𝑎𝑏. (B.6)

Sufficient conditions for ̇num ≥ 0 are given by
𝑎𝑏 = 𝑺𝑎𝑏

(

𝒗𝑏 − 𝒗𝑎
)

, (B.7)

where 𝑺𝑎𝑏 is a symmetric positive semi-definite stabilisation matrix.
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Appendix C.  Linear viscoelastic model

This Appendix is included to derive the expressions for the Cauchy stress tensor and the evolution of internal variables for linear 
viscoelasticity. We begin by relating the small strain tensor 𝜺 to the deformation gradient tensor 𝑭

𝜺 = 1
2
(

𝛁0𝒖 + (𝛁0𝒖)𝑇
)

= 1
2
(

𝑭 + 𝑭 𝑇 − 2𝑰
)

, (C.1)

where 𝒖 is the displacement field and 𝑰 is the identity tensor.
The strain energy density for the linear viscoelastic model is expressed as the sum of a long-term (equilibrium) component 𝑊 Lin

∞
and a viscous (non-equilibrium) component 𝑊 Lin

𝛼

𝑊 Lin(𝜺, 𝜺𝑣𝛼 ) = 𝑊 Lin
∞ (𝜺) +

𝑛M
∑

𝛼=1
𝑊 Lin

𝛼 (𝜺, 𝜺𝑣𝛼 ), (C.2)

with 
𝑊 Lin

∞ (𝜺) = 𝜇(𝜺 ∶ 𝜺); 𝑊 Lin
𝛼 (𝜺, 𝜺𝑣𝛼 ) = 𝜇𝛼

(

𝜺 − 𝜺𝑣𝛼
)

∶
(

𝜺 − 𝜺𝑣𝛼
)

, (C.3a)

where 𝜇 and 𝜇𝛼 are the shear moduli of the long-term and viscous branches, respectively, and 𝑛M denotes the number of Maxwell 
branches. The Cauchy stress tensor is then obtained from this energy as

𝝈(𝜺, 𝜺𝑣𝛼 ) = 𝝈∞(𝜺) +
𝑛M
∑

𝛼=1
𝝈𝛼(𝜺, 𝜺𝑣𝛼 ). (C.4)

with components

𝝈∞ = 2𝜇𝜺; 𝝈𝛼 = 2𝜇𝛼
(

𝜺 − 𝜺𝑣𝛼
)

. (C.5)

The viscous internal variables evolve according to a standard linear relaxation law
𝑑𝜺𝑣𝛼
𝑑𝑡

|

|

|

|𝜺
= 1

𝜏𝛼

(

𝜺 − 𝜺𝑣𝛼
)

, (C.6)

where 𝜏𝛼 is the relaxation time of branch 𝛼. The exact time integration of this evolution equation over a time increment Δ𝑡 = 𝑡2 − 𝑡1
yields

𝜺𝑣𝛼
|

|

|𝑡2
= (1 − 𝜖)𝜺𝑣𝛼

|

|

|𝑡1
+ 𝜖𝜺; 𝜖 = 1 − 𝑒−

Δ𝑡
𝜏𝛼 . (C.7)

This formulation provides a consistent, linear viscoelastic framework in which stresses and internal variables are determined by the 
strain, the viscous history, and the material parameters.
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