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ARTICLE INFO ABSTRACT
Keywords: This paper presents a new first-order hyperbolic framework with relaxation (or dissipation) terms
Solid dynamics for large strain viscoelastic solids. The framework is based on a compressible Maxwell-type vis-

Conservation laws coelastic model and integrates linear momentum conservation, geometric conservation laws, and

evolution equations for internal variables. First, we propose a polyconvex strain energy function
that is jointly convex with respect to the deformation measures and internal variables. Second, we
introduce a generalised convex entropy function to symmetrise the hyperbolic system in terms of
dual conjugate (entropy) variables. Third, we demonstrate that the system is hyperbolic (i.e., real
wave speeds) under all deformation states, and that the relaxation terms correctly capture vis-
coelastic dissipation. Fourth, we present an upwinding Smoothed Particle Hydrodynamics (SPH)
[1-3] scheme that enforces the second law of thermodynamics semi-discretely and uses the time
rate of the generalised convex entropy to monitor internal dissipation and stabilise the simula-
tion. Finally, the proposed framework is validated through numerical examples and benchmarked
against the in-house Updated Reference Lagragian SPH [2,3] and vertex-centred finite volume
[4-7] algorithms, demonstrating stability, accuracy, and consistent energy dissipation.

Smoothed particle hydrodynamic
Viscoelasticity

Riemann solver

Large strain

1. Introduction

Viscoelastic materials exhibit both elastic and viscous behaviour and can store energy whilst dissipating it over time. This dual
response makes them indispensable in impact and shock problems, where controlled energy and damping are required. Applications
include protective structures, vibration and noise reduction systems, flexible wave energy converters, and a wide range of engineered
and biological materials. To model these behaviours, we require frameworks that can capture large deformations together with
time-dependent dissipation.
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$\boldsymbol {\mathcal {Y}} = \{ \boldsymbol {Y}_a, y_1, \ldots , \boldsymbol {Y}_{n_{\text {M}}}, y_{n_{\text {M}}} \}$
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$\boldsymbol {x} = \boldsymbol {\phi } (\boldsymbol {X}, t)$


\begin {equation}\frac {\partial \boldsymbol {p}_R}{\partial t} - \text {DIV} \boldsymbol {P} = \boldsymbol {f}_{R}; \qquad \boldsymbol {p}_R = \rho _R \boldsymbol {v}, \label {eqn:linear_momentum}\end {equation}
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$\boldsymbol {F} = \frac {\partial \boldsymbol {\phi } (\boldsymbol {X}, t)}{\partial \boldsymbol {X}}$
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$\alpha = 1, \ldots , n_{\text {M}}$
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$\Psi = \Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1} )$


$\Psi $
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$\boldsymbol {C}_{v_{\alpha }}^{-1}$


\begin {equation*}\Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}) = \tilde {\Psi } (\boldsymbol {C}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}); \qquad \boldsymbol {C} = \boldsymbol {F}^T \boldsymbol {F}.\end {equation*}


$\Psi _{\infty }$


$\Psi _{\alpha }$


\begin {equation}\label {eqn:classical_strain_energy} \Psi \left ( \boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1} \right ) = \Psi _{\infty } (\boldsymbol {F}) + \sum _{\alpha =1}^{n_{\text {M}}} \Psi _{\alpha } \left ( \boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1} \right ).\end {equation}


$\Psi _{\alpha }$


$\boldsymbol {C}_{v_{\alpha }}^{-1}$


$\boldsymbol {C}^{-1} = \boldsymbol {F}^{-1} \boldsymbol {F}^{-T}$


\begin {equation}\Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1} = \boldsymbol {C}^{-1}) = 0; \qquad \frac {\partial \Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1})}{\partial \boldsymbol {F}}\bigg \vert _{\boldsymbol {C}_{v_{\alpha }}^{-1} = \boldsymbol {C}^{-1}} = \boldsymbol {0}; \qquad \frac {\partial \Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1}) }{\partial \boldsymbol {C}_{v_{\alpha }}^{-1}}\bigg \vert _{\boldsymbol {C}_{v_{\alpha }}^{-1} = \boldsymbol {C}^{-1}} = \boldsymbol {0}. \label {Xeqn4}\end {equation}


$\dot {\mathcal {D}}_{\text {int}}$


\begin {equation}\label {eqn:Dissipation} \begin {aligned} 0 \leq \dot {\mathcal {D}}_{\text {int}} &= \boldsymbol {P} : \dot {\boldsymbol {F}} - \dot {\Psi } (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}) \\ &= \left ( \boldsymbol {P} - \frac {\partial \Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {F}} \right ) : \frac {\partial \boldsymbol {F}}{\partial t} - \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\partial \Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {C}_{v_{\alpha }}^{-1}} : \frac {\partial \boldsymbol {C}_{v_{\alpha }}^{-1}}{\partial t}. \end {aligned}\end {equation}


$\dot {[ \bullet ]}$


$\frac {\partial \boldsymbol {F}}{\partial t}$


$\frac {\partial \boldsymbol {F}}{\partial t}$


$\boldsymbol {P} - \frac {\partial \Psi (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {F}}$


\begin {equation}\label {eqn:first Piola} \boldsymbol {P} (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1}) = \boldsymbol {P}_{\infty } (\boldsymbol {F}) + \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {P}_{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{\alpha }}^{-1}); \qquad \boldsymbol {P}_{\square } = \frac {\partial \Psi _{\square }}{\partial \boldsymbol {F}}; \qquad \square = \{\infty , \alpha \}.\end {equation}


\begin {equation}\label {eqn:dissipation_inequality} 0 \leq \dot {\mathcal {D}}_{\text {int}} = - \sum _{\alpha =1}^{n_{\text {M}}} \frac {\partial \Psi _{\alpha } (\boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1})}{\partial \boldsymbol {C}_{v_{\alpha }}^{-1}} : \frac {\partial \boldsymbol {C}_{v_{\alpha }}^{-1}}{\partial t}.\end {equation}


$\boldsymbol {C}_{v_{\alpha }}^{-1}$


\begin {equation}\label {eqn:Concise form} \frac {\partial \boldsymbol {\mathcal {U}}}{\partial t} + \sum _{I = 1}^3 \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial X_I} = \boldsymbol {\mathcal {S}} (\boldsymbol {\mathcal {U}}); \qquad \boldsymbol {\mathcal {S}} (\boldsymbol {\mathcal {U}}) = \boldsymbol {\mathcal {S}}_{\text {ext}} + \boldsymbol {\mathcal {R}} (\boldsymbol {\mathcal {U}}); \qquad \boldsymbol {\mathcal {R}} (\boldsymbol {\mathcal {U}}) = \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\mathcal {R}}_{\alpha } (\boldsymbol {\mathcal {U}}).\end {equation}
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$\sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\mathcal {R}}_{\alpha } (\boldsymbol {\mathcal {U}})$
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$\frac {\partial ^2 S}{\partial \boldsymbol {\mathcal {U}} \partial \boldsymbol {\mathcal {U}}}$


$\boldsymbol {\mathcal {A}}_I \boldsymbol {\mathcal {A}}_0$


$\boldsymbol {\mathcal {A}}_I = \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}$


$\boldsymbol {\mathcal {A}}_0 = \left [ \frac {\partial ^2 S}{\partial \boldsymbol {\mathcal {U}} \partial \boldsymbol {\mathcal {U}}} \right ]^{-1}$


$- \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\mathcal {V}}^T \boldsymbol {\mathcal {R}}_{\alpha } \geq 0$


$\boldsymbol {\mathcal {V}} = \frac {\partial S}{\partial \boldsymbol {\mathcal {U}}}$


$\bar {\boldsymbol {\mathcal {U}}}$


$\delta \boldsymbol {\mathcal {U}} = \boldsymbol {\mathcal {U}} - \bar {\boldsymbol {\mathcal {U}}}$


\begin {equation}\boldsymbol {\mathcal {F}}_I (\boldsymbol {\mathcal {U}}) \approx \boldsymbol {\mathcal {F}}_I (\bar {\boldsymbol {\mathcal {U}}}) + \underbrace {D \boldsymbol {\mathcal {F}}_I [\delta \boldsymbol {\mathcal {U}}]}_{\frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}} \delta \boldsymbol {\mathcal {U}}}; \qquad \boldsymbol {\mathcal {S}}(\boldsymbol {\mathcal {U}}) \approx \boldsymbol {\mathcal {S}} (\bar {\boldsymbol {\mathcal {U}}}) + \underbrace {D \boldsymbol {\mathcal {S}} [\delta \boldsymbol {\mathcal {U}}]}_{\frac {\partial \boldsymbol {\mathcal {S}}}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}} \delta \boldsymbol {\mathcal {U}}}. \label {Xeqn9}\end {equation}


$\boldsymbol {\mathcal {A}}_I (\bar {\boldsymbol {\mathcal {U}}}) = \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}}$


$\boldsymbol {\mathcal {J}} (\bar {\boldsymbol {\mathcal {U}}}) = \frac {\partial \boldsymbol {\mathcal {S}}}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}} = \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\partial \boldsymbol {\mathcal {R}}_{\alpha }}{\partial \boldsymbol {\mathcal {U}}}\big \vert _{\bar {\boldsymbol {\mathcal {U}}}}$


$\bar {\boldsymbol {\mathcal {U}}}$


\begin {equation}\label {eqn:linearised_system} \frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial t} + \sum _{I = 1}^3 \boldsymbol {\mathcal {A}}_I (\bar {\boldsymbol {\mathcal {U}}}) \frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial X_I} = \boldsymbol {\mathcal {J}} (\bar {\boldsymbol {\mathcal {U}}}) \delta \boldsymbol {\mathcal {U}}.\end {equation}


$\Psi \left ( \boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1} \right )$


$W$


\begin {equation}\Psi \left ( \boldsymbol {F}, \boldsymbol {C}_{v_{1}}^{-1} \ldots \boldsymbol {C}_{v_{n_{\textrm {M}}}}^{-1} \right ) = W ({\boldsymbol {\mathcal {X_Y}}}), \label {eqn:convex_multivariable_a}\end {equation}


\begin {equation}W ({\boldsymbol {\mathcal {X_Y}}}) = W_{\infty } (\boldsymbol {\mathcal {X}}) + \sum _{\alpha = 1}^{n_{\text {M}}} W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }); \quad \boldsymbol {\mathcal {X_Y}} = \{ \boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}} \}; \quad \boldsymbol {\mathcal {Y}} = \{ \boldsymbol {\mathcal {Y}}_{1}, \boldsymbol {\mathcal {Y}}_{2}, \ldots \boldsymbol {\mathcal {Y}}_{n_{\text {M}}} \}. \label {eqn:convex_multivariable_b}\end {equation}


$\boldsymbol {\mathcal {X}} = \{ \boldsymbol {F}, \boldsymbol {H}, J \}$
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$\boldsymbol {H} = \frac {1}{2} \boldsymbol {F}$
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$J = \frac {1}{3} \boldsymbol {H} : \boldsymbol {F}$
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$\alpha $


\begin {equation}\boldsymbol {\mathcal {Y}}_{\alpha } = \{ \boldsymbol {Y}_{\alpha }, y_{\alpha } \}; \qquad \boldsymbol {Y}_{\alpha } = \boldsymbol {C}_{v_{\alpha }}; \qquad y_{\alpha } = \det \left (\boldsymbol {C}_{v_{\alpha }}^{-1}\right ). \label {Xeqn13}\end {equation}
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$\boldsymbol {Y}_{\alpha } = \boldsymbol {C}$


$y_{\alpha } = J^{-2}$


$W$


$\boldsymbol {\mathcal {X}}$


$\boldsymbol {\Sigma }_{\square } = \frac {\partial W}{\partial \square }$


$\square = \{ \boldsymbol {F}, \boldsymbol {H}, J\}$


$\boldsymbol {P}$


$W$


$\boldsymbol {\mathcal {Y}}$


\begin {equation}\begin {aligned} \boldsymbol {P} : \frac {\partial \boldsymbol {F}}{\partial t}\bigg \vert _{\boldsymbol {\mathcal {Y}}} = \frac {d W}{d t}\Bigg \vert _{\boldsymbol {\mathcal {Y}}} = \left ( \boldsymbol {\Sigma }_{\boldsymbol {F}} + \boldsymbol {\Sigma }_{\boldsymbol {H}} \Cross \boldsymbol {F} + \Sigma _{J} \boldsymbol {H} \right ) : \frac {\partial \boldsymbol {F}}{\partial t}\bigg \vert _{\boldsymbol {\mathcal {Y}}}, \end {aligned} \label {Xeqn14}\end {equation}


$\left [ \bullet \right ] \bigg \vert _{\square }$


$\square $


\begin {equation}\label {eqn:first_Piola} \boldsymbol {P} = \boldsymbol {\Sigma }_{\boldsymbol {F}} + \boldsymbol {\Sigma }_{\boldsymbol {H}} \Cross \boldsymbol {F} + \Sigma _{J} \boldsymbol {H}.\end {equation}


$\Cross $


\begin {equation}\boldsymbol {\Sigma }_{\square } (\boldsymbol {\mathcal {X_Y}}) = \boldsymbol {\Sigma }_{\square }^{\infty } (\boldsymbol {\mathcal {X}}) + \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\Sigma }_{\square }^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }); \qquad \boldsymbol {\Sigma }_{\square }^{\infty } = \frac {\partial W_{\infty }}{\partial \square }; \qquad \boldsymbol {\Sigma }_{\square }^{\alpha } = \frac {\partial W_{\alpha }}{\partial \square }; \qquad \square = \{ \boldsymbol {F}, \boldsymbol {H}, J \}. \label {Xeqn16}\end {equation}


$\boldsymbol {\mathcal {Y}}$


$\boldsymbol {\mathcal {X}}$


\begin {equation}\label {eqn:inequality} 0 \leq \dot {\mathcal {D}}_{\text {int}} = - \frac {d W}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} = - \left ( \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\Sigma }_{\boldsymbol {Y}_{\alpha }} : \frac {d \boldsymbol {Y}_{\alpha }}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} + \sum _{\alpha = 1}^{n_{\text {M}}} \Sigma _{y_{\alpha }} \frac {d y_{\alpha }}{\partial t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} \right ),\end {equation}


$\boldsymbol {\Sigma }_{\square } = \frac {\partial W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha })}{\partial \square }$


$\square = \{\boldsymbol {Y}_{\alpha }, y_{\alpha } \}$


$\dot {\mathcal {D}}_{\text {int}} \geq 0$


$\boldsymbol {\mathcal {Y}}$


$[ \mathbb {H}_W ]$


$W$


$W$


$\boldsymbol {\mathcal {X_Y}}$


\begin {equation}\label {eqn:Hessian_viscoelasticity_general} [\mathbb {H}_W] = [\mathbb {H}_W^{\infty }] + \sum _{\alpha =1}^{n_{\text {M}}} [\mathbb {H}_W^{\alpha }].\end {equation}


$[\mathbb {H}_W]$


$W$


$[ \mathbb {H}_W ]$


$[\mathbb {H}_W^{\infty }]$


$[\mathbb {H}_W^{\alpha }]$


\begin {equation}\label {eqn:Hessian_definition} \begin {aligned} [\mathbb {H}_W^{\square }] = \left [ \begin {array}{c|c} \mathbb {H}_{\boldsymbol {\chi \chi }}^{\square } & \mathbb {H}_{\boldsymbol {\chi } \boldsymbol {\mathcal {Y}}_{\alpha }}^{\square } \\ \mathbb {H}_{\boldsymbol {\mathcal {Y}}_{\alpha } \boldsymbol {\chi } }^{\square } & \mathbb {H}_{\boldsymbol {\mathcal {Y}}_{\alpha } \boldsymbol {\mathcal {Y}}_{\alpha }}^{\square } \end {array} \right ] &= \left [ \begin {array}{ccc|cc} W_{\boldsymbol {FF}}^{\square } & W_{\boldsymbol {FH}}^{\square } & W_{\boldsymbol {F}J}^{\square } & W_{\boldsymbol {F} \boldsymbol {Y}_{\alpha }}^{\square } & W_{\boldsymbol {F} y_{\alpha }}^{\square } \\ W_{\boldsymbol {HF}}^{\square } & W_{\boldsymbol {HH}}^{\square } & W_{\boldsymbol {H}J}^{\square } & W_{\boldsymbol {H} \boldsymbol {Y}_{\alpha }}^{\square } & W_{\boldsymbol {H} y_{\alpha }}^{\square } \\ W_{J\boldsymbol {F}}^{\square } & W_{J\boldsymbol {H}}^{\square } & W_{JJ}^{\square } & W_{J \boldsymbol {Y}_{\alpha }}^{\square } & W_{J y_{\alpha }}^{\square } \\ W_{\boldsymbol {Y}_{\alpha } \boldsymbol {F}}^{\square } & W_{\boldsymbol {Y}_{\alpha } \boldsymbol {H}}^{\square } & W_{\boldsymbol {Y}_{\alpha }J}^{\square } & W_{\boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }}^{\square } & W_{\boldsymbol {Y}_{\alpha } y_{\alpha }}^{\square } \\ W_{y_{\alpha } \boldsymbol {F}}^{\square } & W_{y_{\alpha } \boldsymbol {H}}^{\square } & W_{y_{\alpha }J}^{\square } & W_{y_{\alpha } \boldsymbol {Y}_{\alpha } }^{\square } & W_{y_{\alpha } y_{\alpha }}^{\square } \\ \end {array} \right ]. \end {aligned}\end {equation}


$\square = \{ \infty , \alpha \}$


$W_{\boldsymbol {AB}} = \frac {\partial ^2 W}{\partial \boldsymbol {A} \partial \boldsymbol {B}}$


$W$


$\boldsymbol {A}, \boldsymbol {B} \in \{ \boldsymbol {F}, \boldsymbol {H}, J, \boldsymbol {Y}_{\alpha }, y_{\alpha } \}$


$W_{\infty }$


\begin {equation}\label {eqn:long_term_MR} W_{\infty } \left ( \boldsymbol {\mathcal {X}} \right ) = \xi \left ( \boldsymbol {F} : \boldsymbol {F} - 3 \right ) + \zeta \left ( \boldsymbol {H} : \boldsymbol {H} - 3 \right ) + f (J); \quad f (J) = - 2 \left ( \xi + 2 \zeta \right ) \ln J + \frac {\hat {\lambda }}{2} (J - 1)^2.\end {equation}
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$\xi + \zeta = \frac {\mu }{2}$


$\lambda = \hat {\lambda } + 4 \zeta $


$\mu $
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$\nu $


\begin {equation*}\lambda = \frac {E \nu }{(1 + \nu ) (1 - 2 \nu )}; \qquad \mu = \frac {E}{2 (1 + \nu )}.\end {equation*}
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$J$
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$\{\hat {\lambda }, \xi , \zeta \} \geq 0$


$W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha })$


\begin {equation}\label {eqn:viscous_potential_convex2} W_{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) = \frac {\mu _{\alpha }}{2} \left [ \boldsymbol {C} : \boldsymbol {Y}_{\alpha }^{-1} - 3 - \ln \left ( J^2 y_{\alpha } \right )\right ],\end {equation}


$\mu _{\alpha } = \mu \beta _{\alpha }$
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$W_{\alpha } = 0$


$\boldsymbol {Y}_{\alpha } = \boldsymbol {C}$


$y_{\alpha } = J^{-2}$


$\{ \boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha } \}$


$\boldsymbol {\Sigma }_{\square }$


$\square = \{ \boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha } \}$


$[\mathbb {H}_W]$


$W_{\alpha }$


$\{ \delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } \}$


\begin {equation}\label {eqn:first_directional_derivative} \begin {aligned} D W_{\alpha } [\delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } ] &= \frac {\mu _{\alpha }}{2} \left [ \text {tr} \left ( \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {F}^T + \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {F}^T + \boldsymbol {F} \delta \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {F}^T \right ) - 2 J^{-1} \delta J - y_{\alpha }^{-1} \delta y_{\alpha }\right ]. \end {aligned}\end {equation}


$\delta \boldsymbol {Y}_{\alpha }^{-1} = D \boldsymbol {Y}_{\alpha }^{-1} [\delta \boldsymbol {Y}_{\alpha }] = - \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1}$


$\boldsymbol {Y}_{\alpha }^{-1}$


$\delta \boldsymbol {Y}_{\alpha }$


$\text {tr} (\boldsymbol {A} \boldsymbol {B}^T) = \text {tr} (\boldsymbol {B} \boldsymbol {A}^T)$


\begin {equation}D W_{\alpha } [\delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } ] = \frac {\mu _{\alpha }}{2} \left [ \text {tr} \left ( 2 \delta \boldsymbol {F} \boldsymbol {K}^T - \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ) - 2 J^{-1} \delta J - y_{\alpha }^{-1} \delta y_{\alpha } \right ]; \quad \boldsymbol {K} = \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}. \label {Xeqn25}\end {equation}


\begin {equation}\label {eqn:second_derivative_1} \begin {aligned} D^2 W_{\alpha } [\delta \boldsymbol {\mathcal {X}}, \delta \boldsymbol {\mathcal {Y}}_{\alpha } ] &= \mu _{\alpha } \left [ \text {tr} \left ( \delta \boldsymbol {F} \delta \boldsymbol {K}^T - \delta \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ) + J^{-2} (\delta J)^2 + \frac {1}{2} y_{\alpha }^{-2} (\delta y_{\alpha })^2 \right ]. \end {aligned}\end {equation}


$(\delta J)^2$


$(\delta y_{\alpha })^2$


$D^2 W_{\alpha }$


$\delta \boldsymbol {K} = D \boldsymbol {K} [\delta \boldsymbol {F}, \delta \boldsymbol {Y}_{\alpha }] = D \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} [\delta \boldsymbol {F}, \delta \boldsymbol {Y}_{\alpha }] = \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} - \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1}$


\begin {equation}\begin {aligned} \text {tr} \left ( \delta \boldsymbol {F} \delta \boldsymbol {K}^T - \delta \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ) &= \text {tr} \left [ \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {F}^T - 2 \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T + \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {K}^T \right ] \\ &= \left ( \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1/2} - \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1/2} \right ) : \left ( \delta \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1/2} - \boldsymbol {K} \delta \boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }^{-1/2} \right ) \geq 0. \end {aligned} \label {Xeqn27}\end {equation}


$D^2 W_{\alpha }$


$W_{\alpha }$


$\boldsymbol {Y}_{\alpha }$


$y_{\alpha }$


$y_{\alpha }$


\begin {equation}\label {eqn:internal_evolution_equations} \frac {d \boldsymbol {Y}_{\alpha }}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} = \underbrace { \frac {1}{\tau _{\alpha } } \left ( \boldsymbol {Y}_{\alpha } - \boldsymbol {Y}_{\alpha } \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha } \right )}_{\boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{\alpha }}}; \qquad \frac {d y_{\alpha }}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} = \underbrace { \frac {1}{\tau _{\alpha }} y_{\alpha } \left ( \boldsymbol {C}^{-1} : \boldsymbol {Y}_{\alpha } - 3 \right )}_{\mathcal {R}_{y_{\alpha }}}.\end {equation}


$\boldsymbol {Y}_{\alpha }$


$\boldsymbol {C}$


$\boldsymbol {Y}_{\alpha }$


$y_{\alpha }$


$\frac {\partial \boldsymbol {Y}_{\alpha }^{-1}}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} = - \boldsymbol {Y}_{\alpha }^{-1} \frac {d \boldsymbol {Y}_{\alpha }}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} \boldsymbol {Y}_{\alpha }^{-1}$


$\boldsymbol {Y}_{\alpha }$


\begin {equation}\label {eqn:evolution_Cv_1} \frac {d \boldsymbol {Y}_{\alpha }^{-1}}{d t}\bigg \vert _{\boldsymbol {\mathcal {X}}} = \frac {1}{\tau _{\alpha }} \left ( \boldsymbol {C}^{-1} - \boldsymbol {Y}_{\alpha }^{-1} \right ).\end {equation}


$\boldsymbol {Y}_{\alpha }^{-1}$


$\dot {\mathcal {D}}_{\text {int}} \geq 0$


$et$
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\begin {equation}\dot {\mathcal {D}}_{\text {int}} = - \left ( \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\Sigma }_{\boldsymbol {Y}_{\alpha }} : \frac {d \boldsymbol {Y}_{\alpha }}{d t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} + \sum _{\alpha = 1}^{n_{\text {M}}} \Sigma _{y_{\alpha }} \frac {d y_{\alpha }}{\partial t}\Bigg \vert _{\boldsymbol {\mathcal {X}}} \right ). \label {Xeqn30}\end {equation}


$\boldsymbol {{\Sigma _{\boldsymbol {Y}}}_{\alpha }}$


$\Sigma _{y_{\alpha }}$


\begin {equation}\label {eqn:thermodynamic_conjugate_stresses} \boldsymbol {\Sigma }_{\boldsymbol {Y}_{\alpha }} = - \frac {\mu _{\alpha }}{2} \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1}; \qquad \Sigma _{y_{\alpha }} = - \frac {\mu _{\alpha }}{2} y_{\alpha }^{-1}.\end {equation}


$\boldsymbol {Y}_{\alpha }$


$y_{\alpha }$


\begin {equation}\begin {aligned} \dot {\mathcal {D}}_{\text {int}} &= \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\mu _{\alpha }}{2 \tau _{\alpha }} \left [ \boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1} : (\boldsymbol {Y}_{\alpha } - \boldsymbol {Y}_{\alpha } \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha }) + \boldsymbol {C}^{-1} : \boldsymbol {Y}_{\alpha } - 3\right ] = \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\mu _{\alpha }}{2 \tau _{\alpha }} \text {tr} \left [ \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1} + \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha } - 2 \boldsymbol {I} \right ]. \end {aligned} \label {Xeqn31}\end {equation}


$\text {tr} \left (\boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1}\right ) = \text {tr} \left (\boldsymbol {Y}_{\alpha }^{-1/2} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1/2} \right )$


$\text {tr} (\boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha }) = \text {tr} (\boldsymbol {Y}_{\alpha }^{1/2} \boldsymbol {C}^{-1} \boldsymbol {Y}_{\alpha }^{1/2})$


$\boldsymbol {M} = \boldsymbol {Y}_{\alpha }^{-1/2} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1/2}$


\begin {equation}\dot {\mathcal {D}}_{\text {int}} = \sum _{\alpha = 1}^{n_{\text {M}}} \frac {\mu _{\alpha }}{2 \tau _{\alpha }} \text {tr} \left [ \boldsymbol {M} + \boldsymbol {M}^{-1} - 2 \boldsymbol {I} \right ]. \label {Xeqn32}\end {equation}


$\boldsymbol {M}$


\begin {equation}\boldsymbol {M} = \sum _{I = 1}^3 \lambda _I \boldsymbol {N}_I \otimes \boldsymbol {N}_I; \qquad \boldsymbol {M}^{-1} = \sum _{I = 1}^3 \lambda _I^{-1} \boldsymbol {N}_I \otimes \boldsymbol {N}_I, \label {Xeqn33}\end {equation}


$\lambda _I > 0$


$\boldsymbol {N}_I$


\begin {equation}\dot {\mathcal {D}}_{\text {int}} = \sum _{\alpha = 1}^{n_{\text {M}}} \left [\frac {\mu _{\alpha }}{2 \tau _{\alpha }} \sum _{I = 1}^3 \left ( \lambda _I + \lambda _I^{-1} - 2 \right ) \right ] \geq 0, \label {Xeqn34}\end {equation}


$\lambda _I + \lambda _I^{-1} \geq 2$


$\alpha $


$\boldsymbol {\mathcal {X}}$


$\boldsymbol {F}$


$\boldsymbol {H}$


$J$


\begin {equation*}\frac {\partial \boldsymbol {F}}{\partial t} = \boldsymbol {\nabla }_0 \boldsymbol {v}; \qquad \frac {\partial \boldsymbol {H}}{\partial t} = \text {CURL} \left ( \boldsymbol {v} \Cross \boldsymbol {F} \right ); \qquad \frac {\partial J}{\partial t} = \text {DIV} \left ( \boldsymbol {H}^T \boldsymbol {v} \right ).\end {equation*}


$\boldsymbol {\mathcal {U}}$


$\boldsymbol {\mathcal {F}}_I$


$\boldsymbol {\mathcal {S}}_{\text {ext}}$


$\boldsymbol {\mathcal {R}}$


\begin {equation}\label {eqn:conservation_variables_2} \boldsymbol {\mathcal {U}} = \left [ \begin {array}{c} \boldsymbol {p}_R \\ \boldsymbol {F} \\ \boldsymbol {H} \\ J \\ \boldsymbol {Y}_{1} \\ y_{1} \\ \vdots \\ \boldsymbol {Y}_{n_{\text {M}}} \\ y_{n_{\text {M}}} \\ \end {array} \right ]; \quad \boldsymbol {\mathcal {F}}_I = - \left [ \begin {array}{c} \boldsymbol {P} \boldsymbol {E}_I \\ \boldsymbol {v} \otimes \boldsymbol {E}_I \\ \boldsymbol {F} \Cross \left ( \boldsymbol {v} \otimes \boldsymbol {E}_I \right ) \\ \boldsymbol {H} : \left ( \boldsymbol {v} \otimes \boldsymbol {E}_I \right ) \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ]; \quad \boldsymbol {\mathcal {S}}_{\text {ext}} = \left [ \begin {array}{c} \boldsymbol {f}_R \\ \boldsymbol {0} \\ \boldsymbol {0} \\ 0 \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ]; \quad \boldsymbol {\mathcal {R}} = \left [ \begin {array}{c} \boldsymbol {0} \\ \boldsymbol {0} \\ \boldsymbol {0} \\ 0 \\ \boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_1} \\ \mathcal {R}_{y_1} \\ \vdots \\ \boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{n_{\text {M}}}} \\ \mathcal {R}_{y_{n_{\text {M}}}} \end {array} \right ],\end {equation}


$\boldsymbol {E}_I$


$\boldsymbol {\mathcal {X}}$


$\boldsymbol {N}$


$\boldsymbol {\mathcal {F}}_{\boldsymbol {N}} = \sum _{I = 1}^3 \boldsymbol {\mathcal {F}}_I N_I$


$\sum _{\alpha = 1}^{n_{\text {M}}} - \boldsymbol {\mathcal {V}}^T \boldsymbol {\mathcal {R}}_{\alpha } = \dot {\mathcal {D}}_{\text {int}} \geq 0$


$\boldsymbol {F}$


$\boldsymbol {H}$


\begin {equation}\label {eq:2GE-system-strong-constraints} \text {CURL} \boldsymbol {F} = \boldsymbol {0}; \quad \text {DIV} \boldsymbol {H} = \boldsymbol {0}.\end {equation}


$\boldsymbol {F}$


$\boldsymbol {H}$


$\boldsymbol {F}$


$J$


$\{ \boldsymbol {p}_R, \boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha } \}$


$\boldsymbol {p}_R$


$\boldsymbol {\mathcal {X}}$


$\boldsymbol {C}_{v_{\alpha }}$


$\boldsymbol {C}_{v_{\alpha }}^{-1}$


$\boldsymbol {\phi }$


\begin {equation}\frac {\partial \boldsymbol {\phi } (\boldsymbol {X}, t)}{\partial t} = \boldsymbol {v} (\boldsymbol {X}, t). \label {Xeqn37}\end {equation}


$S (\boldsymbol {X}, t)$


\begin {equation}S (\boldsymbol {X}, t) = \frac {1}{2 \rho _R} \boldsymbol {p}_R \cdot \boldsymbol {p}_R + W (\boldsymbol {\mathcal {X_Y}}). \label {Xeqn38}\end {equation}


$\boldsymbol {\mathcal {V}}$


$\boldsymbol {\mathcal {U}}$


$\boldsymbol {\mathcal {V}}$


\begin {equation}\label {eqn:conjugate_variables} \boldsymbol {\mathcal {V}} = \frac {\partial S}{\partial \boldsymbol {\mathcal {U}}} = \left [ \begin {array}{c} \frac {\partial S}{\partial \boldsymbol {p}_R} \\ \frac {\partial S}{\partial \boldsymbol {F}} \\ \frac {\partial S}{\partial \boldsymbol {H}} \\ \frac {\partial S}{\partial J} \\ \frac {\partial S}{\partial \boldsymbol {Y}_{1}} \\ \frac {\partial S}{\partial y_{1}} \\ \vdots \\ \frac {\partial S}{\partial \boldsymbol {Y}_{n_{\text {M}}}} \vspace {1mm} \\ \frac {\partial S}{\partial y_{n_{\text {M}}}} \end {array} \right ] = \left [ \begin {array}{c} \boldsymbol {v} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {F}} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {H}} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial J} \vspace {1mm} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {Y}_{1}} \vspace {1mm} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial y_{1}} \vspace {1mm} \\ \vdots \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial \boldsymbol {Y}_{n_{\text {M}}}} \vspace {1mm} \\ \frac {\partial W (\boldsymbol {\mathcal {X_Y}})}{\partial y_{n_{\text {M}}}} \end {array} \right ] = \left [ \begin {array}{c} \boldsymbol {v} \vspace {1mm} \\ \boldsymbol {\Sigma _F} \vspace {1mm} \\ \boldsymbol {\Sigma _H} \vspace {1mm} \\ \Sigma _J \vspace {1mm} \\ \boldsymbol {\Sigma }_{\boldsymbol {Y}_{1}} \vspace {1mm} \\ \Sigma _{y_{1}} \\ \vdots \\ \boldsymbol {\Sigma }_{\boldsymbol {Y}_{n_{\text {M}}}} \vspace {1mm} \\ \Sigma _{y_{n_{\text {M}}}} \end {array} \right ].\end {equation}


\begin {equation}\boldsymbol {\mathcal {A}}_0 = \frac {\partial \boldsymbol {\mathcal {U}}}{\partial \boldsymbol {\mathcal {V}}}; \qquad \boldsymbol {\mathcal {A}}_I = \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial \boldsymbol {\mathcal {U}}}; \qquad \tilde {\boldsymbol {\mathcal {A}}}_I = \boldsymbol {\mathcal {A}}_I \boldsymbol {\mathcal {A}}_0. \label {Xeqn40}\end {equation}


\begin {equation}\frac {\partial \boldsymbol {\mathcal {U}}}{\partial t} = \boldsymbol {\mathcal {A}}_0 \frac {\partial \boldsymbol {\mathcal {V}}}{\partial t}; \qquad \frac {\partial \boldsymbol {\mathcal {F}}_I}{\partial X_I} = \tilde {\boldsymbol {\mathcal {A}}}_I \frac {\partial \boldsymbol {\mathcal {V}}}{\partial X_I}. \label {Xeqn41}\end {equation}


\begin {equation}\boldsymbol {\mathcal {A}}_0 \frac {\partial \boldsymbol {\mathcal {V}}}{\partial t} + \sum _{I = 1}^3 \tilde {\boldsymbol {\mathcal {A}}}_{I} \frac {\partial \boldsymbol {\mathcal {V}}}{\partial X_I} = \boldsymbol {\mathcal {S}}. \label {Xeqn42}\end {equation}


$\boldsymbol {\mathcal {A}}_0 = \left [ \frac {\partial ^2 S}{\partial \boldsymbol {\mathcal {U}} \partial \boldsymbol {\mathcal {U}}} \right ]^{-1} = \left [ \begin {array}{cc} \rho _R \boldsymbol {I} & \boldsymbol {0} \\ \boldsymbol {0} & [\mathbb {H}_W]^{-1} \end {array} \right ]$


$\tilde {\boldsymbol {\mathcal {A}}}_I$


\begin {equation}\label {eqn:symmetric_indicial} \left [\boldsymbol {\mathcal {A}}_0 \right ]\frac {\partial }{\partial t} \left [ \begin {array}{c} v_j \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {F}} \right ]_{lL} \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {H}} \right ]_{lL} \\ \Sigma _{J} \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{1}} \right ]_{NO} \\ \Sigma _{y_{1}} \\ \vdots \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{n_{\text {M}}}} \right ]_{NO} \\ \Sigma _{y_{n_{\text {M}}}} \end {array} \right ] - \left [\tilde {\boldsymbol {\mathcal {A}}}_I\right ] \frac {\partial }{\partial X_I} \left [ \begin {array}{c} v_k \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {F}} \right ]_{kK} \\ \left [ \boldsymbol {\Sigma }_{\boldsymbol {H}} \right ]_{kK} \\ \Sigma _{J} \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{1}} \right ]_{NO} \\ \Sigma _{y_{1}} \\ \vdots \\ \left [\boldsymbol {\Sigma }_{\boldsymbol {Y}_{n_{\text {M}}}} \right ]_{NO} \\ \Sigma _{y_{n_{\text {M}}}} \end {array} \right ] = \left [ \begin {array}{c} \left [\boldsymbol {f}_R\right ]_i \\ \boldsymbol {0} \\ \boldsymbol {0} \\ 0 \\ \left [\boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{1}}\right ]_{KM} \\ \mathcal {R}_{y_{1}} \\ \vdots \\ \left [\boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_{n_{\text {M}}}}\right ]_{KM} \\ \mathcal {R}_{y_{n_{\text {M}}}} \\ \end {array} \right ].\end {equation}


$\boldsymbol {\mathcal {A}}_0^{-1}$


$\tilde {\mathcal {A}}_I$


\begin {equation}\left [\tilde {\boldsymbol {\mathcal {A}}}_I\right ] = \left [ \begin {array}{ccccccccc} \boldsymbol {0} & \delta _{ik} \delta _{KI} & \mathcal {E}_{ijk} \mathcal {E}_{IJK} F_{jJ} & H_{iI} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \delta _{ik} \delta _{JI} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \mathcal {E}_{ijk} \mathcal {E}_{JKI} F_{jK} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ H_{kI} & \boldsymbol {0} & \boldsymbol {0} & 0 & \boldsymbol {0} & 0 & \cdots & \boldsymbol {0} & \boldsymbol {0}\\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0}\\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & 0 & \boldsymbol {0} & 0 & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & \cdots & \boldsymbol {0} & \boldsymbol {0}\\ \boldsymbol {0} & \boldsymbol {0} & \boldsymbol {0} & 0 & \boldsymbol {0} & 0 & \cdots & \boldsymbol {0} & \boldsymbol {0} \\ \end {array} \right ]. \label {Xeqn47}\end {equation}


\begin {equation}\label {eqn:wave_solution} \delta \boldsymbol {\mathcal {U}} (\boldsymbol {X}, t) = \text {Re} \left [\boldsymbol {\mathcal {U}}_{j} e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j} t)} \right ],\end {equation}


$k_j$


$\boldsymbol {\mathcal {U}}_j$


$c_j$


$\boldsymbol {N}$


$\text {Re}[\bullet ]$


$\delta \boldsymbol {\mathcal {U}}(\boldsymbol {X}, t)$


$c_j$


$c_{j} = c_{j}^R + \mathrm {i} c_{j}^I$


\begin {equation}\delta \boldsymbol {\mathcal {U}} (\boldsymbol {X}, t) = \text {Re} \left [\left (\boldsymbol {\mathcal {U}}_{j} e^{k_{j} c_{j}^{I} t } \right ) e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j}^R t)} \right ]. \label {Xeqn49}\end {equation}


$c_j^R$


$c_j^I$


$c_j^I \leq 0$


\begin {equation}\frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial t} = \text {Re} \left [- c_{j} \mathrm {i} k_{j} e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j} t)} \boldsymbol {\mathcal {U}}_{j} \right ]; \qquad \frac {\partial \delta \boldsymbol {\mathcal {U}}}{\partial X_I} = \text {Re} \left [\mathrm {i} k_{j} e^{\mathrm {i} k_{j} (\boldsymbol {X} \cdot \boldsymbol {N} - c_{j} t)} N_I \boldsymbol {\mathcal {U}}_{j} \right ]. \label {Xeqn50}\end {equation}


\begin {equation}\text {Re} \left [c_{j} \boldsymbol {\mathcal {U}}_{j} \right ] = \text {Re} \left [ \left (\boldsymbol {\mathcal {A}}_{\boldsymbol {N}} + \frac {\mathrm {i}}{k_{j}} \boldsymbol {\mathcal {J} }\right )\boldsymbol {\mathcal {U}}_{j} \right ]; \qquad \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} = \sum _{I = 1}^3 \boldsymbol {\mathcal {A}}_{I} N_I. \label {Xeqn51}\end {equation}


$c_{j} = c_{j}^R + \mathrm {i} c_{j}^I$


$\boldsymbol {\mathcal {U}}_{j} = \boldsymbol {\mathcal {U}}_{j}^R + \mathrm {i} \boldsymbol {\mathcal {U}}_{j}^I$


\begin {equation}\text {Re} \left [ c_{j} \boldsymbol {\mathcal {U}}_{j} \right ] = c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R - c_{j}^I \boldsymbol {\mathcal {U}}_{j}^I, \label {Xeqn52}\end {equation}


\begin {equation}\text {Re} \left [ \left (\boldsymbol {\mathcal {A}}_{\boldsymbol {N}} + \frac {\mathrm {i}}{k_{j}} \boldsymbol {\mathcal {J} }\right )\boldsymbol {\mathcal {U}}_{j} \right ] = \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} \boldsymbol {\mathcal {U}}_{j}^R - \frac {1}{k_{j}} \boldsymbol {\mathcal {J}} \boldsymbol {\mathcal {U}}_{j}^I. \label {Xeqn53}\end {equation}


\begin {equation}c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R - c_{j}^I \boldsymbol {\mathcal {U}}_{j}^I = \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} \boldsymbol {\mathcal {U}}_{j}^R - \frac {1}{k_{j}} \boldsymbol {\mathcal {J}} \boldsymbol {\mathcal {U}}_{j}^I. \label {Xeqn54}\end {equation}


$\boldsymbol {\mathcal {J}} = \boldsymbol {0}$


$\boldsymbol {\mathcal {U}}_{j}^I = \boldsymbol {0}$


\begin {equation}\label {eqn:hyperbolic_classical} c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R = \boldsymbol {\mathcal {A}}_{\boldsymbol {N}} \boldsymbol {\mathcal {U}}_{j}^R,\end {equation}


$\boldsymbol {\mathcal {A}}_{\boldsymbol {N}} = \boldsymbol {0}$


$\boldsymbol {\mathcal {U}}_{j}^R = \boldsymbol {0}$


$\omega _{j}^{I}$


\begin {equation}\omega _{j}^I \boldsymbol {\mathcal {U}}_{j}^I = \boldsymbol {\mathcal {J}}\boldsymbol {\mathcal {U}}_{j}^I; \qquad \omega _{j}^I = k_{j} c_{j}^I, \label {Xeqn56}\end {equation}


$D \boldsymbol {\mathcal {F}}_{\boldsymbol {N}} [\boldsymbol {\mathcal {U}}_{j}^R] = c_{j}^R \boldsymbol {\mathcal {U}}_{j}^R$


\begin {equation}\begin {aligned} - \left [ \begin {array}{c} D \left ( \boldsymbol {P} \boldsymbol {N} \right ) [\boldsymbol {F}_{j}, \boldsymbol {H}_{j}, J_{j}, \boldsymbol {Y}_{1}^j, y_{1}^j, \ldots , \boldsymbol {Y}_{n_{\text {M}}}^j, y_{n_{\text {M}}}^j] \\ \label {eqn:p_alpha} D \left ( \frac {1}{\rho _{R}} \boldsymbol {p}_R \otimes \boldsymbol {N} \right ) [\boldsymbol {p}^{j}_{R}] \\ D \left ( \boldsymbol {F} \Cross \left ( \frac {1}{\rho _{R}} \boldsymbol {p}_R \otimes \boldsymbol {N} \right ) \right ) [\boldsymbol {p}^{j}_{R}, \boldsymbol {F}_{j}] \\ D \left ( \boldsymbol {H} : \left ( \frac {1}{\rho _{R}} \boldsymbol {p}_R \otimes \boldsymbol {N} \right ) \right ) [\boldsymbol {p}^{j}_{R}, \boldsymbol {H}_{j}] \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ] = c_{j}^R \left [ \begin {array}{c} \boldsymbol {p}^{j}_R \\ \boldsymbol {F}_{j} \\ \boldsymbol {H}_{j} \\ J_{j} \\ \boldsymbol {Y}_{1}^j \\ y_{1}^j \\ \vdots \\ \boldsymbol {Y}_{n_{\text {M}}}^j \\ y_{n_{\text {M}}}^j \end {array} \right ]. \end {aligned}\end {equation}


$\{ \boldsymbol {\mathcal {Y}}_1^j, \ldots , \boldsymbol {\mathcal {Y}}_{n_{\text {M}}}^j \}$


$\boldsymbol {F}_{j}$


$\boldsymbol {H}_{j}$


$J_{j}$


$c_{j}^R \neq 0$


\begin {equation}\begin {aligned} \label {eqn:Falpha} \boldsymbol {F}_{j} &= - \frac {1}{c_{j}^R} \boldsymbol {v}_{j} \otimes \boldsymbol {N}; \qquad \boldsymbol {H}_{j} &= - \boldsymbol {F} \Cross \left (\frac {1}{c_{j}^R} \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ); \qquad J_{j} &= - \boldsymbol {H} : \left (\frac {1}{c_{j}^R} \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ). \end {aligned}\end {equation}


$\boldsymbol {p}^{j}_{R}$


\begin {equation}- c_{j}^R \boldsymbol {p}_R^{j} = - \rho _{R} c_{j}^R \boldsymbol {v}_{j} = D \left ( \boldsymbol {P} \boldsymbol {N} \right ) \left [ \boldsymbol {F}_{j}, \boldsymbol {H}_{j}, J_{j}, \boldsymbol {0}, 0, \ldots , \boldsymbol {0}, 0 \right ]. \label {Xeqn59}\end {equation}


$\delta \boldsymbol {v}$


$\boldsymbol {P}$


$\boldsymbol {H}_{j} = \boldsymbol {F}$


$\boldsymbol {F}_{j}$


\begin {equation}\label {eqn:hadmard} \rho _{R} \left (c_{j}^R\right )^2 \delta \boldsymbol {v} \cdot \boldsymbol {v}_{j} = \left [ \begin {array}{c} \left ( \delta \boldsymbol {v} \otimes \boldsymbol {N} \right ) : \\ \boldsymbol {F} \Cross \left ( \delta \boldsymbol {v} \otimes \boldsymbol {N} \right ) : \\ \boldsymbol {H} : \left ( \delta \boldsymbol {v} \otimes \boldsymbol {N} \right ) \end {array} \right ]^T \left [ \mathbb {H}_{\boldsymbol {\chi } \boldsymbol {\chi }} \right ] \left [ \begin {array}{c} : \left (\boldsymbol {v}_{j} \otimes \boldsymbol {N} \right )\\ : \boldsymbol {F} \Cross \left ( \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ) \\ \boldsymbol {H} : \left ( \boldsymbol {v}_{j} \otimes \boldsymbol {N} \right ) \end {array} \right ].\end {equation}


$[\mathbb {H}_{\boldsymbol {\chi \chi }}]$


$\delta \boldsymbol {v} = \boldsymbol {v}_{j}$


$\boldsymbol {N}$


$\boldsymbol {N}$


$c_p$


$\boldsymbol {v}_{j} = \boldsymbol {n}$


$\boldsymbol {n}$


$\boldsymbol {t}_{1,2} = \boldsymbol {FT}_{1,2} / \Vert \boldsymbol {FT}_{1,2} \Vert $


$\delta \boldsymbol {v} = \boldsymbol {v}_{j} = \boldsymbol {n}$


$\{W_{\boldsymbol {F} \boldsymbol {F}}^{\infty }, W_{\boldsymbol {H} \boldsymbol {H}}^{\infty }, W_{JJ}^{\infty }, W_{\boldsymbol {F} \boldsymbol {F}}^{\alpha }, W_{JJ}^{\alpha } \}$


$[\mathbb {H}_{\boldsymbol {\chi \chi }}]$


\begin {equation}c_{1,2} = \pm c_p, \label {Xeqn62}\end {equation}


$c_p$


\begin {equation}\label {eqn:pressure_wave} c_p = \sqrt {\left (\frac {2 \xi + 2 \zeta \Lambda _T^2 + f^{\prime \prime }_{\infty } \Lambda _{\boldsymbol {H}}^2}{\rho _R}\right ) + \sum _{\alpha = 1}^{n_{\text {M}}} \left (\frac {\mu _{\alpha } \boldsymbol {N} \cdot \left (\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {N}\right ) + \mu _{\alpha } \Lambda _{\boldsymbol {H}}^2 J^{-2}}{\rho _R}\right )}.\end {equation}


$\boldsymbol {\mathcal {U}}_{\alpha }$


\begin {equation}\label {eqn:eigenvector_1} \boldsymbol {\mathcal {U}}_{1, 2}^R = \left [ \begin {array}{c} \boldsymbol {n} \\ - \frac {1}{c_{1, 2}} \boldsymbol {n} \otimes \boldsymbol {N} \\ - \frac {1}{c_{1, 2}} \boldsymbol {F} \Cross \left (\boldsymbol {n} \otimes \boldsymbol {N} \right ) \\ - \frac {1}{c_{1, 2}} \boldsymbol {H} : \left (\boldsymbol {n} \otimes \boldsymbol {N} \right ) \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ].\end {equation}


$\boldsymbol {v}_{j} = \boldsymbol {t}_{1,2}$


\begin {equation}\label {eqn:shear_wave} c_{3, 4}^R = \pm c_{s_1}; \qquad c_{5, 6}^R = \pm c_{s_2},\end {equation}


\begin {equation}\label {eqn:shear_wave2} c_{s_1} = \sqrt {\left ( \frac {2 \xi + 2 \zeta \lambda _2^2}{\rho _{R}} \right ) + \sum _{\alpha = 1}^{n_{\text {M}}} \left ( \frac { \mu _{\alpha } \boldsymbol {N} \cdot \left (\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {N}\right )}{\rho _{R}} \right ) }; \quad c_{s_2} = \sqrt { \left ( \frac {2 \xi + 2 \zeta \lambda _1^2}{\rho _{R}} \right ) + \sum _{\alpha = 1}^{n_{\text {M}}} \left ( \frac {\mu _{\alpha } \boldsymbol {N} \cdot \left (\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {N}\right )}{\rho _{R}} \right ) }.\end {equation}


$\lambda _{1,2}^2$


$\boldsymbol {\Lambda }_T$


\begin {equation}\boldsymbol {\Lambda }_T = \lambda _1^2 \boldsymbol {t}_1 \otimes \boldsymbol {t}_1 +\lambda _2^2 \boldsymbol {t}_2 \otimes \boldsymbol {t}_2. \label {Xeqn67}\end {equation}


\begin {equation}\label {eqn:eigenvector_2} \boldsymbol {\mathcal {U}}_{3, 4}^R = \left [ \begin {array}{c} \boldsymbol {t}_1 \\ - \frac {1}{c_{3, 4}} \boldsymbol {t}_1 \otimes \boldsymbol {N} \\ - \frac {1}{c_{3, 4}} \boldsymbol {F} \Cross \left (\boldsymbol {t}_1 \otimes \boldsymbol {N} \right ) \\ 0 \\ \boldsymbol {0}\\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ]; \qquad \boldsymbol {\mathcal {U}}_{5, 6} = \left [ \begin {array}{c} \boldsymbol {t}_2 \\ - \frac {1}{c_{5, 6}} \boldsymbol {t}_2 \otimes \boldsymbol {N} \\ - \frac {1}{c_{5, 6}} \boldsymbol {F} \Cross \left (\boldsymbol {t}_2 \otimes \boldsymbol {N} \right ) \\ 0 \\ \boldsymbol {0} \\ 0 \\ \vdots \\ \boldsymbol {0} \\ 0 \end {array} \right ].\end {equation}


$\alpha $


\begin {equation}\begin {aligned} c_j^I \kappa _j \bar {\boldsymbol {Y}}_j^I &= D \boldsymbol {\mathcal {R}}_{\boldsymbol {Y}_j} [\bar {\boldsymbol {Y}}_j^I]\bigg \vert _{\boldsymbol {C}^{-1} \boldsymbol {Y}_j \approx \boldsymbol {I}} = - \frac {1}{\tau _{\alpha }} \bar {\boldsymbol {Y}}_j^I, \\ c_j^I \kappa _j \bar {y}_j^I &= D \mathcal {R}_{y_j} [\bar {\boldsymbol {Y}}_j^I, \bar {y}_j^I]\bigg \vert _{\text {tr} (\boldsymbol {C}^{-1} \boldsymbol {Y}_{j}) \approx 3} = \frac {1}{\tau _{\alpha }} y_j \boldsymbol {C}^{-1} : \bar {\boldsymbol {Y}}_j^I. \end {aligned} \label {Xeqn71}\end {equation}


\begin {equation}c^I_{1-6} = - \frac {1}{\kappa _{j} \tau _{\alpha }} \quad \text {and} \quad c_{7}^I = 0. \label {Xeqn72}\end {equation}


$\boldsymbol {Y}_j$


$y_j$


$6 \times n_{\text {M}}$


$S$


$\Omega _R$


\begin {equation}\begin {aligned} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} &= \int _{\Omega _{R}} \frac {\partial \hat {S} (\boldsymbol {p}_R, \boldsymbol {\mathcal {X_Y}})}{\partial t} \, d \Omega _{R}. \end {aligned} \label {Xeqn76}\end {equation}


\begin {equation}\begin {aligned} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} &= \int _{\Omega _{R}} \left ( \frac {\partial \hat {S}}{\partial \boldsymbol {p}_R} \cdot \frac {\partial \boldsymbol {p}_R}{\partial t} + \frac {\partial \hat {S}}{\partial \boldsymbol {\mathcal {X}}} \bullet \frac {\partial \boldsymbol {\mathcal {X}}}{\partial t} + \underbrace {\sum _{\alpha = 1}^{n_{\text {M}}} \left ( \frac {\partial \hat {S}}{\partial \boldsymbol {Y}_{\alpha }} : \frac {\partial \boldsymbol {Y}_{\alpha }}{\partial t} + \frac {\partial \hat {S}}{\partial y_{\alpha }} \frac {\partial y_{\alpha }}{\partial t} \right )}_{- \dot {\mathcal {D}}_{\text {int}}} \right ) \, d \Omega _{R}. \end {aligned} \label {Xeqn77}\end {equation}


$\bullet $


$\boldsymbol {\mathcal {X}}$


$\frac {\partial \hat {S}}{\partial \boldsymbol {\mathcal {X}}} \bullet \frac {\partial \boldsymbol {\mathcal {X}}}{\partial t} = \frac {\partial \hat {S}}{\partial \boldsymbol {F}} : \frac {\partial \boldsymbol {F}}{\partial t} + \frac {\partial \hat {S}}{\partial \boldsymbol {H}} : \frac {\partial \boldsymbol {H}}{\partial t} + \frac {\partial \hat {S}}{\partial J} \frac {\partial J}{\partial t}$


$\dot {\mathcal {D}}_{\text {int}}$


\begin {equation}\label {eqn:Hamiltonian_2} \begin {aligned} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} &= \int _{\Omega _{R}} \left ( \boldsymbol {v} \cdot \frac {\partial \boldsymbol {p}_R}{\partial t} + \underbrace {\left ( \boldsymbol {\Sigma _F} + \boldsymbol {\Sigma _H} \Cross \boldsymbol {F} + \Sigma _J \boldsymbol { H} \right )}_{\boldsymbol {P}} : \boldsymbol {\nabla }_0 \boldsymbol {v} -\dot {\mathcal {D}}_{\text {int}} \right ) \, d \Omega _{R}. \end {aligned}\end {equation}


$S$


\begin {equation}\label {eqn:Hamiltonian_3} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} - \dot {\Pi }_{\text {ext}} = - \int _{\Omega _{R}} \dot {\mathcal {D}}_{\text {int}}\, d \Omega _{R}; \qquad \dot {\Pi }_{\text {ext}} = \int _{\Omega _{R}} \boldsymbol {v} \cdot \boldsymbol {f}_R \, d \Omega _{R} + \int _{\partial \Omega _{R}} \boldsymbol {v}_B \cdot \boldsymbol {t}_B \, d A_{R},\end {equation}


$\dot {\Pi }_{\text {ext}}$


$\dot {\mathcal {D}}_{\text {int}} \geq 0$


\begin {equation}\label {eqn:Hamiltonian_final} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} - \dot {\Pi }_{\text {ext}} \leq 0,\end {equation}


$\dot {\Pi }_{\text {ext}} = 0$


$\dot {\mathcal {D}}_{\text {int}} = 0$


\begin {equation}\label {eqn:Hamiltonian_isolated} \frac {d}{dt} \int _{\Omega _{R}} S \, d \Omega _{R} = 0.\end {equation}


$\boldsymbol {v}$


$a$


\begin {equation}\label {eqn:SPH_gradient} \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t) \approx \frac {1}{\Omega _R^a} \sum _{b \in \Lambda _a} \frac {1}{2} \left ( \boldsymbol {v}_b (t) - \boldsymbol {v}_a (t) \right ) \otimes \boldsymbol {C}_{ab}; \qquad \boldsymbol {C}_{ab} = 2 \Omega _R^a \Omega _R^b \tilde {\boldsymbol {\nabla }}_0 W_b (\boldsymbol {X}_a).\end {equation}


$b \in \Lambda _a$


$b$


$a$


$\Omega _R^b$


$b$


$- \boldsymbol {v}_a$


$\tilde {\boldsymbol {\nabla }}_0$


\begin {equation}\tilde {\boldsymbol {\nabla }}_0 W_b (\boldsymbol {X}_a) = \boldsymbol {L}_a \boldsymbol {\nabla }_0 W_b (\boldsymbol {X}_a); \qquad \boldsymbol {L}_a = \left [\sum _{b \in \Lambda _a} \Omega _R^b \boldsymbol {\nabla }_0 W_b (\boldsymbol {X}_a) \otimes (\boldsymbol {X}_b - \boldsymbol {X}_a)\right ]^{-1}. \label {Xeqn85}\end {equation}


$\boldsymbol {C}_{ab} \neq - \boldsymbol {C}_{ba}$


$\{ \boldsymbol {p}_R, \boldsymbol {\mathcal {X}}, \boldsymbol {C}_{v_{\alpha }}^{-1} \}$


\begin {align}\frac {d \boldsymbol {p}_{R}^a(t)}{d t} &= \boldsymbol {E}_a(t) - \boldsymbol {T}_a(t) + \boldsymbol {\mathcal {D}}_a(t); \label {eqn:SPH_p} \\ \frac {d \boldsymbol {F}_a (t)}{d t} &= \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t); \label {eqn:SPH_F} \\ \frac {d \boldsymbol {H}_a (t)}{d t} &= \boldsymbol {F}_a(t) \Cross \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t); \label {eqn:SPH_H} \\ \frac {d J_a (t)}{d t} &= \boldsymbol {H}_a(t) : \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t); \label {eqn:SPH_J} \\ \frac {d \boldsymbol {C}_{v_{\alpha }, a}^{-1} (t)}{d t }\bigg \vert _{\boldsymbol {X}} &= \frac {1}{\tau _{\alpha }} \left ( \boldsymbol {C}_a^{-1}(t) - \boldsymbol {C}_{v_{\alpha }, a}^{-1} (t) \right ); \qquad \alpha = \{1, \ldots , n_{\text {M}} \}. \label {eqn:SPH_Cvalpha}\end {align}


$a$


\begin {equation}\boldsymbol {E}_a (t) = \frac {A_R^a}{\Omega _R^a} \boldsymbol {t}_B^a (t) + \boldsymbol {f}_R^a (t); \qquad \boldsymbol {T}_a(t) = \sum _{b \in \Lambda ^b_a} \boldsymbol {T}_{ab}(t); \qquad \boldsymbol {T}_{ab}(t) = \frac {1}{2} \left (\boldsymbol {P}_b(t) \boldsymbol {C}_{ba} - \boldsymbol {P}_a(t) \boldsymbol {C}_{ab} \right ), \label {Xeqn86}\end {equation}


$A_{R}^a$


$\boldsymbol {t}_B^a$


$A_{R}^a = 0$


$\boldsymbol {T}_{ba} = - \boldsymbol {T}_{ab}$


$\boldsymbol {\mathcal {D}}_a = \sum _{b \in \Lambda ^b_a} \boldsymbol {\mathcal {D}}_{ab}$


$\boldsymbol {\mathcal {D}}_{ab} = - \boldsymbol {\mathcal {D}}_{ba}$


\begin {equation}\label {eqn:jump_vel} \boldsymbol {\mathcal {D}}_{ab} = \boldsymbol {S}_{ab} \left ( \boldsymbol {v}_b - \boldsymbol {v}_a \right ),\end {equation}


$\boldsymbol {S}_{ab}$


$a$


$b$


\begin {equation}\label {eqn:dissipation} \boldsymbol {S}_{ab} = \frac {1}{2} \rho _{R}^{\text {Ave}} \Vert \boldsymbol {C}_{ab}^{\text {Skew}} \Vert \left [ c_{p}^{\text {Ave}} \boldsymbol {n}_{ab} \otimes \boldsymbol {n}_{ab} + c_s^{ \text {Ave}} \left ( \boldsymbol {I} - \boldsymbol {n}_{ab} \otimes \boldsymbol {n}_{ab} \right ) \right ],\end {equation}


$\left [ \bullet \right ]^{\text {Ave}} = \frac {1}{2} \left ( \left [ \bullet \right ]_a + \left [ \bullet \right ]_b \right )$


$\boldsymbol {C}^{\text {Skew}}_{ab} = \frac {1}{2} \left ( \boldsymbol {C}_{ab} - \boldsymbol {C}_{ba} \right )$


$\Vert \boldsymbol {C}_{ab}^{\text {Skew}} \Vert ^2 = \boldsymbol {C}_{ab}^{\text {Skew}} \cdot \boldsymbol {C}_{ab}^{\text {Skew}}$


\begin {equation}\frac {d \boldsymbol {\phi }_a (t)}{d t} = \boldsymbol {v}_a (t). \label {Xeqn89}\end {equation}


$t^n$


$t^{n+1}$


\begin {equation}\label {eq:RK3} \begin {aligned} &\boldsymbol {\mathcal {U}}_{a}^{\star }=\boldsymbol {\mathcal {U}}_{a}^n+\Delta t\,\Dot {\boldsymbol {\mathcal {U}}}_{a}^n\left (\boldsymbol {\mathcal {U}}_{a}^n \right ),\\ &\boldsymbol {\mathcal {U}}_{a}^{\star \star }= \frac {3}{4}\boldsymbol {\mathcal {U}}_{a}^n+\frac {1}{4} \left ( \boldsymbol {\mathcal {U}}_{a}^{\star }+\Delta t\,\Dot {\boldsymbol {\mathcal {U}}}_{a}^{\star }\left (\boldsymbol {\mathcal {U}}_{a}^{\star } \right ) \right ),\\ &\boldsymbol {\mathcal {U}}_{a}^{n+1}= \frac {1}{3}\boldsymbol {\mathcal {U}}_{a}^n+\frac {2}{3}\left (\boldsymbol {\mathcal {U}}_{a}^{\star \star }+\Delta t\,\Dot {\boldsymbol {\mathcal {U}}}_{a}^{\star \star } \left (\boldsymbol {\mathcal {U}}_{a}^{\star \star } \right ) \right ). \end {aligned}\end {equation}


$\boldsymbol {\mathcal {U}}_a$


$\{ \boldsymbol {p}_R^a, \boldsymbol {F}_a, \boldsymbol {H}_a, J_a \}$


$\boldsymbol {\phi }_a$


$\Delta t$


$\boldsymbol {C}_a^{-1}$


$\tau _{\alpha }$


\begin {equation}\label {eqn:update_internal_variables} \boldsymbol {C}^{-1, n+1}_{v_{\alpha }, a} = \left ( 1 - \epsilon \right ) \boldsymbol {C}_{v_{\alpha }, a}^{-1, n} + \epsilon \boldsymbol {C}_a^{-1, n}; \qquad \epsilon = 1 - e^{-\frac {\Delta t}{\tau _{\alpha }}},\end {equation}


$\epsilon \in [0, 1]$


$\Delta t$


\begin {equation}\label {eq:cfl} \Delta t \leq \text {min} \left ( \alpha _{CFL} \min \left ( \frac {h_{\text {min}}}{c_{p}} \right ), \alpha _{\text {relax}} \tau _{\text {min}} \right ),\end {equation}


$\tau _{\text {min}} = \text {min}_{\alpha } \tau _{\alpha }$


$\alpha _{CFL}$


$\alpha _{\text {relax}}$


$c_{p}$


$h_{\text {min}}$


$\tau _{\text {min}}$


$\Delta t$


$\alpha _{CFL} = 0.9$


$\tau _{\alpha }$


$\beta _{\alpha }$


$\boldsymbol {\varphi } (\boldsymbol {X}, t)$


\begin {equation}\label {eqn:Mapping} \boldsymbol {\varphi } (\boldsymbol {X}, t) = \boldsymbol {X} + U_0 \cos \left ( \frac {c_s \pi t}{\sqrt {2}} \right ) \left [ \begin {array}{c} \sin \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) \\ - \cos \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) \end {array} \right ].\end {equation}


$U_0$


$c_s$


\begin {equation}c_s = \sqrt {\frac {\bar {\mu }}{\rho _R}}; \qquad \bar {\mu } = \mu + \sum _{\alpha = 1}^{n_{\text {M}}} \left (\mu _{\alpha } e^{- \frac {t}{\tau _{\alpha }}}\right ). \label {Xeqn100}\end {equation}


\begin {equation}\label {eqn:exact_v} \boldsymbol {v} (\boldsymbol {X}, t) = - \frac {\pi c_s U_0}{\sqrt {2}} \sin \left ( \frac {c_s \pi t}{\sqrt {2}} \right ) \left [ \begin {array}{c} \sin \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) \\ - \cos \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) \end {array} \right ],\end {equation}


\begin {equation}\label {eqn:exact_F} \boldsymbol {F} (\boldsymbol {X}, t) = \left [ \begin {array}{cc} 1 + \alpha \cos \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) & - \alpha \sin \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) \\ \alpha \sin \left ( \frac {\pi X_1}{2} \right ) \sin \left ( \frac {\pi X_2}{2} \right ) & 1 - \alpha \cos \left ( \frac {\pi X_1}{2} \right ) \cos \left ( \frac {\pi X_2}{2} \right ) \end {array} \right ]; \qquad \alpha = \frac {U_0 \pi }{2} \cos \left ( \frac {c_s \pi t}{\sqrt {2}} \right ),\end {equation}


$t = 0$


$L^2$


$t = 0.0094$


$L^2$


$t$


$\boldsymbol {v}$


$\boldsymbol {P}$


$L_X = L_Y = 1$


$v_y$


$v_y$


$v_y$


\begin {equation}\boldsymbol {v}\bigg \vert _{t = 0} = \boldsymbol {v} (\boldsymbol {X}, t = 0) = \left [ \begin {array}{c} 0 \\ v_y \end {array} \right ]; \qquad v_y = \left \{ \begin {array}{cl} \alpha \frac {2 X Y}{L_X L_Y}; & 0 \leq X \leq L_X/2 \\ \alpha \frac {Y}{L_Y}; & X \geq L_X/2 \end {array} \right ., \label {Xeqn103}\end {equation}


$\alpha = -100$


$\{$


$\}$


$\{ 289, 525, 1089 \}$


$t=3.1$


$t = 10.2$


$t = 3.1$


$t = 10.2$


$\mathcal {K}$


$\Pi _{e}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$v_y$


$\boldsymbol {X} = [1, 1]^T$


$\boldsymbol {X}$


$[1, 1]^T$


$t$


$\{3.1, 4.25, 5.4, 6.6, 7.75, 8.9, 10.15, 11.3, 12.45, 13.55, 14.7, 15.85, 17,\\ 18.15, 19.25, 20.4\}$


$v_y$


$500$


$t= \{0.62, 0.93, 1.23, 1.54, 1.86, 2.17 \}$


$\beta _1 = 0$


$\beta _1 = 0$


$t = \{0.62, 0.93, 1.23, 1.54, 1.86, 2.17\}$


$t= \{0.62, 0.93, 1.23, 1.54, 1.86, 2.17 \}$


$\mathcal {K}$


$\Pi _{\text {e}}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$v_y$


$u_y$


$\boldsymbol {X} = [1, 1]^T$


$v_y$


$u_y$


$\boldsymbol {X}$


$[1, 1]^T$


$L = 6$


\begin {equation}\boldsymbol {v}\bigg \vert _{t = 0} = \left [ \begin {array}{c} 0 \\ \Omega _0 \sin \left ( \frac {\pi Y}{2 L} \right ) \\ 0 \end {array} \right ] ~[\text {m}/\text {s}], \label {Xeqn104}\end {equation}


$\Omega _0 = 105 \text { m}$


$^{-1}$


$t=0.085$


$t = 0.26$


$t = \{ 0, 0.085, 0.17, 0.26 \}$


$\theta _{A}$


$\boldsymbol {X}_A = [-0.5, 6, -0.5]^T$


$\theta _B$


$\boldsymbol {X}_B = [0.5, 6, -0.5]^T$


$\theta _C$


$\boldsymbol {X}_C = [0.5, 6, 0.5]^T$


$\theta _D$


$\boldsymbol {X}_D = [-0.5, 6, 0.5]^T$


$\boldsymbol {X}_A = [-0.5, 6, -0.5]^T$


$\boldsymbol {X}_B = [0.5, 6, -0.5]^T$


$\boldsymbol {X}_C = [0.5, 6, 0.5]^T$


$\boldsymbol {X}_D = [-0.5, 6, 0.5]^T$


$\mathcal {K}$


$\Pi _{\text {e}}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$t = 0$


$t$


$\{85, 105, 135, 165, 195, 225, 255, 285, 315, 345, 375, 405\}$


\begin {equation}\boldsymbol {v}\bigg \vert _{t = 0} = \alpha _1(\boldsymbol {X}) \left [ \begin {array}{c} 0 \\ 0 \\ 1 \end {array} \right ] [\text {m}/\text {s}]; \qquad \alpha _1(\boldsymbol {X}) = \sqrt {\frac {2}{\pi }} \left [ \exp {\left ( - \frac {(X - 5)^2}{10} \right )} + \exp {\left ( - \frac {(Y - 5)^2}{10} \right )} \right ]. \label {Xeqn105}\end {equation}


$t = 1.5$


$t = 4.5$


$t = 1.5$


$t = 4.5$


$\mathcal {K}$


$\Pi _{\text {e}}$


$\mathcal {D}_{\text {int}}$


$\mathcal {D}_{\text {num}}$


$t = 4.5$


$t = 5$


$t = 5.5$


$t = 6$


$\beta _1 = 0$


$\beta _1 = 1$


$\beta _1 = 0$


$t$


$\{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6\}$


$t > 6$


$t$


$\{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6\}$


$v_x$


$R = 10$


$L = 20$


$t = 0.1$


$A$


$\boldsymbol {v}_A$


\begin {equation}\boldsymbol {v}_A (t) = \left [ \begin {array}{c} v_x(t) \\ 0 \\ 0 \end {array} \right ] [\text {m}/\text {s}]; \qquad v_x(t) = - \frac {a_1}{a_2 \sqrt {2 \pi }} \exp {\left [- \frac {(t - t_0)^2}{2 a_2^2} \right ]}, \label {Xeqn106}\end {equation}


$a_1 = 0.075$


$a_2 = 5 \times 10^{-4}$


$t_0 = 2 \times 10^{-3}$


$y$


$2583$


$v_y$


$u_y$


$C$


$v_z$


$u_z$


$B$


$B$


$C$


$X$


$Y$


$t$


$\{1.5, 2, 2.5, 3\}$


$Y$


$Z$


$t$


$\{1.5, 2, 2.5, 3\}$


$\boldsymbol {\mathcal {X}} = \{\boldsymbol {F}, \boldsymbol {H}, J \}$


$\boldsymbol {\mathcal {Y}} = \{ \boldsymbol {Y}_{1}, y_1, \boldsymbol {Y}_2, y_2, \ldots , \boldsymbol {Y}_{n_{\text {M}}}, y_{n_{\text {M}}} \}$


$n_{\text {M}}$


\begin {equation}\begin {aligned} \boldsymbol {\Sigma }_{\boldsymbol {F}}^{\infty } (\boldsymbol {\mathcal {X}}) &= 2 \xi \boldsymbol {F}; \qquad \boldsymbol {\Sigma }_{\boldsymbol {H}}^{\infty } (\boldsymbol {\mathcal {X}}) = 2 \zeta \boldsymbol {H}; \qquad \Sigma _{J}^{\infty } (\boldsymbol {\mathcal {X}}) = - \frac {2 \left ( \xi + 2 \zeta \right )}{J} + \hat {\lambda } \left ( J - 1 \right ) = f^{\prime }_{\infty }; \label {eqn:conjugate_elastic_stresses} \\ \boldsymbol {\Sigma }_{\boldsymbol {F}}^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) &= \mu _{\alpha } \boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}; \qquad \boldsymbol {\Sigma }_{\boldsymbol {H}}^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) = \boldsymbol {0}; \qquad \Sigma _{J}^{\alpha } (\boldsymbol {\mathcal {X}}, \boldsymbol {\mathcal {Y}}_{\alpha }) = - \frac {\mu _{\alpha }}{J}. \end {aligned}\end {equation}


$[\mathbb {H}_W^{\infty }]$


\begin {equation}W_{\boldsymbol {FF}}^{\infty } = 2 \xi \boldsymbol {\mathcal {I}}; \qquad W_{\boldsymbol {HH}}^{\infty } = 2 \zeta \boldsymbol {\mathcal {I}}; \qquad W_{JJ}^{\infty } = \hat {\lambda } + \frac {2 \left ( \xi + 2 \zeta \right )}{J^2} = f^{\prime \prime }_{\infty }, \label {Xeqn112}\end {equation}


$\boldsymbol {\mathcal {I}}$


$[\boldsymbol {\mathcal {I}}]_{iIjJ} = \delta _{ij} \delta _{IJ}$


$[\mathbb {H}_W^{\infty }]$


$[\mathbb {H}_W^{\alpha }]$


\begin {equation}\begin {aligned} W_{\boldsymbol {FF}}^{\alpha } = \mu _{\alpha } \boldsymbol {\mathcal {I}}_{\boldsymbol {Y}_{\alpha }^{-1}}; \qquad W_{JJ}^{\alpha } = \frac {\mu _{\alpha }}{J^2}; \qquad W_{\boldsymbol {Y}_{\alpha } \boldsymbol {Y}_{\alpha }}^{\alpha } = \mu _{\alpha } \mathbb {C}; \qquad W_{y_{\alpha } y_{\alpha }}^{\alpha } = \frac {\mu _{\alpha }}{2} y_{\alpha }^{-2}, \end {aligned} \label {Xeqn113}\end {equation}


\begin {equation}W_{\boldsymbol {F} \boldsymbol {Y}_{\alpha }}^{\alpha } = - \mu _{\alpha } \mathbb {A}; \qquad W_{\boldsymbol {Y}_{\alpha } \boldsymbol {F} }^{\alpha } = - \mu _{\alpha } \mathbb {B}, \label {Xeqn114}\end {equation}


\begin {equation}\begin {aligned} {[\mathbb {A}]}_{IMKL} &= \left [\boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}\right ]_{IK} \left [\boldsymbol {Y}_{\alpha }^{-1}\right ]_{ML}; \\ {[\mathbb {B}]}_{IMKL} &= \left [\boldsymbol {Y}_{\alpha }^{-1}\right ]_{IK} \left [\boldsymbol {F} \boldsymbol {Y}_{\alpha }^{-1}\right ]_{ML}; \\ {[\mathbb {C}]}_{IMKL} &= [\boldsymbol {Y}_{\alpha }^{-1} \boldsymbol {C} \boldsymbol {Y}_{\alpha }^{-1}]_{IK} \left [ \boldsymbol {Y}_{\alpha }^{-1} \right ]_{ML}; \\ {[\boldsymbol {\mathcal {I}}_{\boldsymbol {Y}_{\alpha }^{-1}}]}_{iIjJ} &= \delta _{ij} [\boldsymbol {Y}_{\alpha }^{-1}]_{IJ}. \end {aligned} \label {Xeqn115}\end {equation}


$[\mathbb {H}_{W}^{\alpha }]$


\begin {equation}\label {eqn:Hamiltonian_three} \begin {aligned} \sum _a \Omega _{R}^a \frac {d S_a}{d t} &= \sum _a \Omega _{R}^a \left ( \boldsymbol {v}_a \cdot \frac {d \boldsymbol {p}^a_{R}}{d t} + \boldsymbol {P}_a : \frac {d \boldsymbol {F}_a}{d t} \right ) - \sum _a \Omega _{R}^a \dot {\mathcal {D}}_{\text {int}}^a. \end {aligned}\end {equation}


\begin {equation}\begin {aligned} \sum _a \Omega _R^a \left ( \boldsymbol {v}_a \cdot \frac {d \boldsymbol {p}_R^a}{d t} + \boldsymbol {P}_a : \frac {d \boldsymbol {F}_a}{d t} \right ) &= \left [ \underbrace {\sum _a \Omega _R^a \left ( \boldsymbol {P} : \boldsymbol {\nabla }_0 \boldsymbol {v} (\boldsymbol {X}_a, t) - \boldsymbol {v}_a \cdot \boldsymbol {T}_a \right )}_{0}\right ] + \sum _a A_R^a \boldsymbol {v}_B^a \cdot \boldsymbol {t}_B^a \\ &\quad + \sum _a \Omega _R^a \boldsymbol {v}_a \cdot \boldsymbol {f}_R^a + \sum _a \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_a. \end {aligned} \label {Xeqn117}\end {equation}


\begin {equation}\label {eqn:Hamiltonian_JMat} \begin {aligned} \sum _a \Omega _{R}^a \frac {d S_a}{d t} - \dot {\Pi }_{\text {ext}} &= - \left [ \sum _a \Omega _{R}^a \mathcal {D}_{\text {int}}^a + \underbrace { \left (- \sum _{a} \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_{a} \right )}_{\dot {\mathcal {D}}_{\text {num}}}\right ],\end {aligned}\end {equation}


$\dot {\Pi }_{\text {ext}}$


\begin {equation}\dot {\Pi }_{\text {ext}} = \sum _a \Omega _{R}^a \boldsymbol {v}_a \cdot \boldsymbol {f}_{R}^a + \sum _{a} A_{R}^{a} \boldsymbol {t}_{B}^{a} \cdot \boldsymbol {v}_{B}^{a}. \label {Xeqn121}\end {equation}


$\dot {\mathcal {D}}_{\text {int}}^{a} \geq 0$


$\dot {\mathcal {D}}_{\text {num}} \geq 0$


$a$


$b$


\begin {equation}\dot {\mathcal {D}}_{\text {num}} = - \sum _a \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_a = - \sum _a \sum _{b \in \Lambda _a} \left ( \boldsymbol {v}_a \cdot \boldsymbol {\mathcal {D}}_{ab} \right ) = - \sum _a \sum _{b \in \Lambda _a} \left ( \boldsymbol {v}_b \cdot \boldsymbol {\mathcal {D}}_{ba} \right ) = \sum _a \sum _{b \in \Lambda _a} \left ( \boldsymbol {v}_b \cdot \boldsymbol {\mathcal {D}}_{ab} \right ). \label {Xeqn122}\end {equation}


$\boldsymbol {\mathcal {D}}_{ba} = - \boldsymbol {\mathcal {D}}_{ab}$


\begin {equation}\dot {\mathcal {D}}_{\text {num}} = \frac {1}{2} \sum _a \sum _{b \in \Lambda ^b_a} \left ( \boldsymbol {v}_b - \boldsymbol {v}_a \right ) \cdot \boldsymbol {\mathcal {D}}_{ab}. \label {Xeqn124}\end {equation}


$\dot {\mathcal {D}}_{\text {num}} \geq 0$


\begin {equation}\label {eqn:jump_vel} \boldsymbol {\mathcal {D}}_{ab} = \boldsymbol {S}_{ab} \left ( \boldsymbol {v}_b - \boldsymbol {v}_a \right ),\end {equation}


$\boldsymbol {S}_{ab}$


$\boldsymbol {\varepsilon }$


$\boldsymbol {F}$


\begin {equation}\boldsymbol {\varepsilon } = \frac {1}{2} \left ( \boldsymbol {\nabla }_0 \boldsymbol {u} + (\boldsymbol {\nabla }_0 \boldsymbol {u})^T \right ) = \frac {1}{2} \left ( \boldsymbol {F} + \boldsymbol {F}^T - 2 \boldsymbol {I} \right ), \label {Xeqn133}\end {equation}


$\boldsymbol {u}$


$\boldsymbol {I}$


$W^{\text {Lin}}_{\infty }$


$W_{\alpha }^{\text {Lin}}$


\begin {equation}W^{\text {Lin}} (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}) = W^{\text {Lin}}_{\infty } (\boldsymbol {\varepsilon }) + \sum _{\alpha = 1}^{n_{\text {M}}} W_{\alpha }^{\text {Lin}} (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}), \label {Xeqn134}\end {equation}


\begin {align}W^{\text {Lin}}_{\infty } (\boldsymbol {\varepsilon }) &= \mu \left (\boldsymbol {\varepsilon } : \boldsymbol {\varepsilon }\right ); \qquad W_{\alpha }^{\text {Lin}} (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}) = \mu _{\alpha } \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ) : \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ),\end {align}


$\mu $


$\mu _{\alpha }$


$n_{\text {M}}$


\begin {equation}\boldsymbol {\sigma } (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}) = \boldsymbol {\sigma }_{\infty } (\boldsymbol {\varepsilon }) + \sum _{\alpha = 1}^{n_{\text {M}}} \boldsymbol {\sigma }_{\alpha } (\boldsymbol {\varepsilon }, \boldsymbol {\varepsilon }_{v_{\alpha }}). \label {Xeqn135}\end {equation}


\begin {equation}\boldsymbol {\sigma }_{\infty } = 2 \mu \boldsymbol {\varepsilon }; \qquad \boldsymbol {\sigma }_{\alpha } = 2 \mu _{\alpha } \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ). \label {Xeqn136}\end {equation}


\begin {equation}\frac {d \boldsymbol {\varepsilon }_{v_{\alpha }}}{d t}\bigg \vert _{\boldsymbol {\varepsilon }} = \frac {1}{\tau _{\alpha }} \left ( \boldsymbol {\varepsilon } - \boldsymbol {\varepsilon }_{v_{\alpha }} \right ), \label {Xeqn137}\end {equation}


$\tau _{\alpha }$


$\alpha $


$\Delta t = t_2 - t_1$


\begin {equation}\boldsymbol {\varepsilon }_{v_{\alpha }}\big \vert _{t_2} = (1 - \epsilon ) \boldsymbol {\varepsilon }_{v_{\alpha }}\big \vert _{t_1} + \epsilon \boldsymbol {\varepsilon }; \qquad \epsilon = 1 - e^{-\frac {\Delta t}{\tau _{\alpha }}}. \label {Xeqn138}\end {equation}
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The majority of viscoelastic models [8-13] for large strain solids are based on Maxwell-type formulations. These phenomenologi-
cal models typically decompose the deformation gradient into elastic and viscous components [8,12-15], and their internal variables
evolve in a manner that guarantees thermodynamically consistent dissipation [16]. An alternative class of models is based on hered-
itary integrals, which generalise linear viscoelasticity to large deformations using relaxation functions [17,18]. In this formulation,
viscous effects are incorporated directly into the stress-strain relationship through a time history integral that accounts for the fading
memory of the material [19-21]. In computational solid dynamics, Maxwell-type viscoelastic models have been extensively imple-
mented using finite element methods, in particular the Variational Multi-Scale (VMS) Finite Element Method [22,23]. Scovazzi et
al. [22] demonstrated the use of Prony series representations within the VMS framework, and subsequent extensions incorporated
a multiplicative decomposition of viscoelasticity [23]. Importantly, for dynamic simulations, maintaining hyperbolicity is crucial to
ensure real wave speeds and a well-posed evolution [24]. A natural way to achieve this is through the formulation of a symmetric
hyperbolic system, which is a main objective of the present work.

To achieve this, we propose a compressible polyconvex viscoelastic model, inspired by Boyaval’s approach to polyconvexity in
viscoelastic solids [25]. In our work, we introduce an extended set of internal variables Y = (Y, y, ... 2 Y 0 Yy, ) tO TEpresent the
time-dependent (viscous) response of the material, where ny; denotes the total number of Maxwell branches. The strain energy
function is additively decomposed into an equilibrium (long-term) part and a non-equilibrium (time-dependent) part, with the latter
formulated to ensure thermodynamic consistency. As the viscous strain evolves, the viscous strain energy decays and eventually
vanishes once the viscous strain matches the total strain, indicating the physical relaxation of the material. Furthermore, the strain
energy is formulated to be convex with respect to both the triplet of deformation measures & = { F, H, J} and the internal variables
Y, yielding a framework that is jointly convex in both & and Y. This extends our previous work [1,26,27], which focused only on
hyperelastic models with a strain energy convex in &'.

This joint convexity naturally leads to the introduction of a generalised convex entropy function, which incorporates the (convex)
kinetic energy together with the polyconvex strain energy. This allows the hyperbolic system to be symmetrised in terms of dual
(entropy) variables. Symmetrisation ensures a consistent thermodynamic structure, making the system both mathematically useful
(i.e., solutions exist and are both unique and stable) and physically meaningful (i.e., energy and dissipation evolve correctly), con-
sistent with the principle of causality and determinism. Within this symmetric framework, we demonstrate the system is hyperbolic,
guaranteeing real wave speeds across any deformation states and ensuring stable propagation of elastic waves. The relaxation terms
correctly capture viscoelastic dissipation, providing energy attenuation during dynamic processes.

For spatial discretisation, we implement an upwinding Smoothed Particle Hydrodynamics (SPH) scheme based on the acoustic
Riemann solver, with a linear reconstruction procedure to achieve second-order accuracy. The SPH scheme ensures semi-discrete
satisfaction of the second law of thermodynamics by evaluating numerical stabilisation using the time rate of the generalised convex
entropy. In the numerical examples presented in the current paper, we monitor both internal dissipation and numerical dissipation
introduced by the upwinding procedure. Both dissipation rates remain non-negative, respecting the second law of thermodynamics.
In practice, internal dissipation quantifies the energy dissipated by the viscoelastic material, whereas numerical dissipation measures
the energy loss introduced by the algorithm and helps verify its consistency.

For temporal integration, we employ an explicit three-stage Runge-Kutta time integrator. The evolution of internal variables is
integrated analytically in time by solving a first-order non-homogeneous ordinary differential equation. A series of benchmark test
cases with smooth solutions is presented to assess the robustness and accuracy of the algorithm, including a manufactured solution
to verify the order of convergence. The proposed SPH framework is benchmarked against an in-house Updated Reference Lagrangian
SPH algorithm [2,3] and a vertex-centred finite volume method to evaluate consistency and accuracy.

The paper is organised as follows. Section 2 revisits the standard viscoelasticity at large strains. Extension to a polyconvex model
and the symmetrisation of the hyperbolic system are discussed in Section 3, where a symmetric hyperbolic system expressed in terms
of conjugate entropy variables is also presented. Section 4 demonstrates the hyperbolicity proof and the relaxation response of the
system. Sections 5 and 6 describe the associated SPH discretisation and the explicit time integration scheme used. Several numerical
examples are presented in Section 7, and concluding remarks and future work are discussed in Section 8. Appendix A provides the
expressions for the conjugate stress components and Hessian of the proposed viscoelastic model. Appendices B and C present the
procedures for obtaining numerical stabilisation via the second law of thermodynamics, and for deriving the Cauchy stress tensor and
the evolution of internal variables for linear viscoelasticity, which are needed to construct the exact solution for the manufactured
problem.

2. Revisiting classical large strain viscoelasticity

Consider the motion of a continuum whose material (or initial) configuration is defined by the domain Q with boundary 0Q and
unit outward normal vector N. After deformation, the continuum occupies the spatial (or current) configuration Q(¢) with boundary
0Q(1) and outward unit normal n. The motion is described by a time-dependent mapping field ¢(X, 1), which relates a material point
X to its spatial position x via x = ¢(X, t). The governing equation of motion in the material configuration is

0
LR _DIVP=fr  pr=rar: &)
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where pj is the linear momentum (per unit material volume), v is the velocity, py is the material density (per unit material volume),
P is the first Piola-Kirchhoff stress tensor, F = % is the deformation gradient tensor, and f is the body force per unit material
volume.

Classically, in isothermal viscoelasticity [8,28], the strain energy density ¥ (defined per unit undeformed volume) depends on
F and a set of internal state variables C‘ representing the inverse of a viscous type right Cauchy-Green strain tensor, where
a=1,...,my, with ny denotmg the number of Maxwell branches describing the viscoelastic response [9,22]. This dependence is
written as¥ = Y(F, C;l C;ﬂl )! [10]. The strain energy can be additively decomposed into an equilibrium (long-term) component,

¥, and non-equilibrium (time-dependent) viscous contributions, ¥,, given as follows [10]
nM
¥(F.c;! ...c;”lM) =¥ (F)+ Y W (F.C;). )
a=1

For thermodynamic equilibrium [9], the viscous terms ¥, and their derivatives with respect to the deformation gradient and internal
variables must vanish when the material is fully relaxed. This occurs when the viscous deformation tensor C;l aligns with the inverse
a

of total right Cauchy-Green strain tensor, defined as C~! = F~! F~T, Mathematically, these conditions are expressed as
1 1 0¥ (F.C;h 0¥ (F.C;H
Y (F,C;'=C")=0 _ =0; S =0. 3
«(F-C, ) oF lc;al =c-! ac,!  lepl=c! ®

These conditions ensure that the material reaches a long-term equilibrium state with no further internal energy dissipation due to
viscous effects.
From a thermodynamic perspective, the internal dissipation [30] (or local entropy production [31]) Dim in isothermal viscoelas-
ticity is given by
0< Dy =P: F-¥F, c;ll LY
) .
- - -1 -1 -
, I¥(F.C,l ... CU:M i w OV(E.CLL €y ac! 4
- oF C oot ac;! T oor

a=1

. oF oF M¥(F.CL..Cl )
Here, the overdot [¢] denotes the material time derivative. Since =- is arbitrary, the multiplier of S5 that is P — TM,
must vanish for the dissipation inequality to hold for under all admissible processes. This leads to the constitutive relation for the
first Piola-Kirchhoff stress tensor as
nv
-1 -1 -1 ‘)lPD
P(F.C;!...C! )= P (F)+ Y PAF.CH: Pg=—2  O=l{w.al (5)

a=1
The stresses depend on the deformation gradient and internal variables describing viscoelastic effects. The remainder inequality (4)
simplifies to”
m 0P, (F,C;1...C;' ) Hc!
1 n\ 2%
0<D; :

int = P2 ac;l Yo (6)
Suitable evolution equations® for the internal variables C must be defined to ensure both the dissipation inequality (6) and ther-
modynamic equilibrium. Viscoelastic formulations are de51gned to satisfy the dissipation inequality (also referred to as relaxation be-
haviour due to internal dissipation), but this alone does not necessarily guarantee hyperbolicity of the governing equations. Without
hyperbolicity, the system may lack real-valued wave speeds. This property is important in solid dynamics to ensure finite propagation
wave speeds and the well-posedness of initial boundary value problems.

3. Polyconvexity, convex entropy function, and symmetrisation in first-order systems

One approach to ensure hyperbolicity in systems with relaxation terms is to reformulate the conservation-law system in symmetric
hyperbolic form through the introduction of a convex entropy function [25,32-35]. The following discussion is general and applies
to any first-order system, including those with relaxation terms. Such a system can be written as

3 n
U oF; _ . _ . - "
s ’2:‘1 x =SV SW)=Set R RW)= YR, )

a=1

! Frame-indifference [28,29] requires that ¥ be equivalently expressed in terms of the right Cauchy-Green strain tensor C and internal state
variables C;l, described by
¥(F,C, Yy=¥c.c;! ...c;‘ 3 C=F'F
2 For hyperelastlc materlals under isothermal conditions, the internal dissipation vanishes since no viscous effects are present.
3 Physically, these equations describe how the internal variables evolve due to microstructural rearrangement under deformation.

3
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Here, U denotes the set of conservation variables and F (V) is the flux vector in the material Cartesian direction I. The source
term S(V) can be decomposed into two contributions. Specifically, S accounts for external sources such as body forces, and R
the relaxation contribution. The relaxation term itself is a sum of branch contributions 22121 R, (U), each describing the evolution
of internal variables associated with Maxwell branch «. The following conditions (summarised from Chen, Levermore, and Liu [35])
ensure symmetric hyperbolicity [36,37] of the system (7) and thermodynamically consistent treatment of relaxation (or dissipation)
effects:

(i) Existence of a convex entropy function .S, which requires a polyconvex viscoelastic energy density W consistent with thermody-
Py q poly 8y y y
namic equilibrium.
2
(ii) Positive definiteness of the Hessian operator %, ensuring the existence of a suitable symmetriser for the system.
2s 17!
o
(iv) Satisfaction of the dissipation inequality — Z"xl VIR, >0, where V = % denotes the conjugate entropy variables, guaranteeing

non-negative entropy production during relaxation.

(iii) Symmetry of the flux Jacobian matrices in entropy variables, expressed by A; .4, with A; = % and A, = [

In what follows, condition (i) is first addressed through the formulation of a polyconvex viscoelastic model and the associated evolution
equations for internal variables. Building on this, we construct the generalised convex entropy function by combining the polyconvex
strain energy density with the kinetic energy, thereby obtaining its conjugate variables and Hessian components (as required by
condition (ii)). This structure then enables the symmetrisation of the hyperbolic system to obtain its dual formulation in terms of
entropy conjugate variables (as required by condition (iii)). Finally, we demonstrate that the source term associated with relaxation
effects satisfies the dissipation inequality, as required by condition (iv).

Remark 1. To prove hyperbolicity, we linearise? the system in (7) about a reference state U, typically chosen at thermodynamic
equilibrium. Let 67" = U" — U" denote a small perturbation. Linearising the fluxes and source terms about this state gives

F,(U)~ F(U)+ DF,[6V]; S ~ S(U) + DS[sV]. (8)
—— ——
7L s 8 SV

We then introduce the flux Jacobian matrix A;(I/) = % 7 and the relaxation Jacobian matrix J (") = (‘:T‘j 7= ZZI:I Z’:f“ i both

evaluated at the reference state T/. The resulting linearised system is

X%
ot

1%

o, JWU)V. 9

3
+ Z-Ar(v)
I=1

3.1. Polyconvex viscoelasticity and the associated evolution of internal variables

As required by condition (i), and following Theorem 2 from Reference [38], we reformulate the standard strain energy function
‘P(F, C:,ll C;l ) (previously introduced in (2)) as a convex multivariable function W
"M

Y(F.C;lCpl ) = Wy, 10
where
v
W (Xy) = W (X) + Z Wo (X, Y,); Xy ={&Y} YV={V.V5 ...V, } amn

a=1
Here, X = {F, H, J} represents the triplet of deformation measures, where F is the deformation gradient tensor (or fibre map), H
is its cofactor (area map) defined as H = lFxF ,and J = %H : F is the Jacobian (or volume map). In above definition of H, the
symbol X denotes the cross product between second order tensors [39]. The internal state variables associated with each Maxwell
viscoelastic branch « are grouped as

Vo= Yora)i  Y,=Cpi  y,=det (c;:). 12)

The function W is jointly convex in both the deformation triplet measures & and the internal variables J. Thermodynamic equilibrium
requires that both W, and its derivatives (e.g., the thermodynamic conjugate stresses with respect to the deformation measures and
internal variables) vanish. This condition is satisfied when Y, = C and y, = J 2.

4 In computational mechanics, hyperbolicity is commonly assessed by linearising (or perturbing) a nonlinear system of conservation laws about a
given state to analyse local wave propagation (e.g., wave speeds and their directions). This should not be confused with a linear hyperbolic system.
Linearisation around a given state does not imply that the system is a linear hyperbolic system with constant wave speeds. It indeed examines the
local behaviour of a nonlinear system using a tangent (linear) approximation at that state, similar to the Newton-Raphson linearisation of a nonlinear
equation.
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Given the polyconvex strain energy W (11), we first define the conjugate stresses associated with the deformation measures & as
Iq= ’;—Vé, where [] = {F, H, J}. The first Piola-Kirchhoff stress tensor P is then obtained by taking time derivative of W (11) whilst
holding the internal variables Y fixed, which gives [10]

p. OF| _dw

'Ey dt

_ OF

= (Bp+ZgXF+X,H) oo 13)
y

where [¢]| indicates that [] is held fixed during differentiation. Comparing both sides gives the following expression for the first
O
Piola-Kirchhoff stress as
P=S+ZyXF+3%,H. (14)

The symbol X denotes the tensor cross product between vectors and/or second order tensors as defined in [26,33,39,40]. Utilising
expression (11), each conjugate stress comprises two components, namely a long-term equilibrium part and a viscous part. These are
expressed as

Wy . W,

I R T
To fully define the path-dependent viscoelastic model, it is necessary to establish the evolution equations for the internal variables,
represented by the viscous strain tensors ). These equations are derived by considering the dissipation inequality, which ensures
that the negative time derivative of the strain energy under constant deformation measures & is non-negative. Mathematically, this

condition is expressed as

nm
>, (16)
X

nM
dy dy,
=—{ Y zy, =% +) T, ==
P Vo
X (a:l dt X a=l ot
where the thermodynamic stresses conjugate to the internal variables are X = %’é‘y“), where []={Y,.y,}.
The inequality Dy, > O represents the internal dissipation of the viscous material, which is inherently irreversible. To ensure
this inequality (16) is met, appropriate evolution equations must be provided for the internal variables ), depending on the chosen
viscoelastic model. These formulations will be discussed in Section 3.1.1.

The Hessian operator [Hy; ] of the convex strain energy functional W is defined as the matrix of second derivatives of W with
respect to &y. It can be expressed in an additive form as

; O={F,H,J}. (15)

"M
IH@y) =IX@X) + Y E@X, Y, EN =

a=1

dw
dt

M
[Hy ] = [H51+ D [HE, 1. 17)
a=1
Condition (ii) requires that the Hessian operator to be symmetric and positive definite. The symmetry of [Hy, ] follows directly from
the convexity of the polyconvex function W, which ensures that the mixed second derivatives are equal. The components of the
symmetric Hessian operators [Hy, ], (M55 1, and [HF, 1 are defined as

Wer  Wen We | Wiy, Wi,
o | O Wir  Wan Wi | Wi, Wi,
R i S A R I ao
Vux YaJa W)l':‘ F Wllrj H WYD J WF Y, WF Ve
Wi Wil W0 | W W,
Here, [] = {0, a}. The notation W, = ;j—?; indicates second derivatives of W with respect to variables A, B € {F,H,J,Y ,,y,}.

3.1.1. Mooney-Rivlin-type viscoelasticity
We now consider a specific polyconvex viscoelastic model. Following [33,39,41,42], the long-term equilibrium component W_,
is defined using a polyconvex energy function based on the Mooney-Rivlin material as®

W (X)=¢EF : F=3)+¢((H : H-3)+ f(J); [f(J)==-2¢+20)InJ + %(J— 1?2 19

The positive parameters &, ¢ and 1 satisfy the relations & + ¢ = % and A = 1+ 4¢, where y and A represent the shear modulus and
Lamé parameter of the material®, respectively. Note that setting { = 0 recovers the polyconvex neoHookean model. The long-term

5 For Maxwell viscoelastic fluids [25], the long-term equilibrium strain energy is typically associated only with volumetric changes. Shear response
is purely viscous and relaxes over time, contributing to the non-equilibrium (time-dependent) part of the strain energy.
6 The Lame’s constants can be expressed in terms of the Young’s modulus E and the Poisson’s ratio v as

= Ev . _ E
Ta+wi-2»  HTaarwy
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potential W_ (&) is polyconvex in &, since it can be expressed as a convex function of F, H, and J. In particular, the volumetric
contribution f(J) is convex in J when {4, & ¢} > 0.
For isotropic viscoelastic solids, we introduce the non-equilibrium (viscous) energy component W, (X,Y,) as

W@ D) = [ 1 Y, =3 -In (7). (20)

where yu, = up,. The dimensionless proportionality factor g, is conveniently introduced to control the magnitude of the viscous
effects and must be calibrated from experiments. This form ensures that W, (20) and its derivatives with respect to both & and
Y, vanish at equilibrium (i.e., W, = 0 when Y, = C and y, = J~2), thus guaranteeing thermodynamic consistency. Furthermore,
this non-equilibrium (viscous) potential is designed to be jointly convex in its arguments {&’, ), }. A detailed proof of polyconvexity
is demonstrated in Remark 2. Explicit expressions for the associated thermodynamic conjugate stresses X (with respect to [] =
{®,¥,1}), as well as the Hessian operators [Hy; ], are derived and presented in A.

Remark 2. The first directional derivative of the strain energy W, with respect to perturbations {6&,5Y,} is given by
H - - _ - _

DW,[6%,6Y,1 = - [tr(SFY ' F' + FYJI6F" + FSY'F') = 207157 = yloy,]. (21)
Here, §Y,' = DY '[6Y,] = -Y_'5Y,Y ' denotes the directional derivative of Y ' in the direction of §Y,. Utilising the property
tr(ABT) = tr(BA"), expression (21) simplifies to

DW,[6X,6Y,] = % [tr(26 FK" — K§Y ,K") —=2J7'6J — y,'6y,]; K =FY,' (22)
Taking the second directional derivative yields

D*W,[6&,6Y,] = u, [tr(aFaKT — 6KSY KT ) + J72(8J ) + % yf(&y,,)z]‘ (23)

Since the terms involving (6J) and (5y,)> are non-negative, the positivity of D>W, (23) depends on the sign of the trace terms. To
achieve this, note that 6K = DK[6F,5Y,] = DFY'[6F,8Y,] =6FY,' - FY,'6Y,Y'. Substituting this back into the trace expres-
sion, we obtain

tr(8F5K” - 6K5Y K" ) = tw[6FY'6F" — 26 FY'5Y K" + K5Y,Y,'5Y K|
- - - - 24
- (6FYa1/2 - K(SYaYa]/Z) : (6FYa1/2 - K(SYaYa]/Z) >0.

Consequently, the second directional derivative D>W, is non-negative for all admissible perturbations, confirming the polyconvexity
of W,.

To close the system and ensure thermodynamic consistency, it is necessary to introduce appropriate evolution laws for the internal
variables Y, and y, that satisfy the second law of thermodynamics. In accordance with the dissipation inequality (16), we propose
the following extended set of evolution equations, which generalises the formulation presented in [25] by additionally incorporating
the evolution of y,, to give

dY, 1 i) dy, 1 1
=—(Y,-Y,C'Y,); =—y,(C":Y,-3). 25
dt |x Ta( * * «) dt |, ray“( «=3) (25)
—_—
Ry, Ry,

These evolution laws guarantee non-negative internal dissipation, as demonstrated in Remark 3. When Y, equals C, the system

. i . .. s . . . ory! _ _
reaches an elastic equilibrium, with both Y, and y, remaining constant in time. Using the identity -2 =-Y al d:t”’ Yal, the
kY X
evolution law for Y, can equivalently be expressed in terms of its inverse as
dy;!
—| =L(ct-vy). 26)
X Ta

This is a linear, first-order, non-homogeneous ordinary differential equation for Ya‘l, which admits an exact closed-form solution in
time. Details can be found in Section 6.

Remark 3. To demonstrate that the dissipation inequality Dj,, > 0 is satisfied, we first recall expression (16), which has been
generalised from Linder er al.[43] to account for the extended set of internal variables and is reproduced here for convenience
M

M
. dy dy,
Dint = —<Z Zya : d[a + Z Zyu d_ta ) (27)
a=1 a=1 X

Using the thermodynamic conjugate stresses Xy, and X, from (A.2) together with the evolution Egs. (25) for Y, and y,, we can
combine terms to show that

X

nM M

- H _ _ — - H _ -

Dy = 2 2: [y 'cy':(,-Y,Cc'Yyy)+C' Y, -3]= 2 #tr[CYal+C 'y, —2I]. (28)
a=1 77* a=1 7@
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126 1/2 12c

Noting that tr(CY;l) = tr( -1/ 2CY 1/ 2) and similarly tr(C~'Y, o) =tr(Y, ), we introduce M =Y, Y;l/ 2 50 that the
above expression simplifies to
ny i
Dy = Z‘i ﬁtr[M +M~ =21 (29)
Since M is a symmetric positive definite tensor, consider its spectral decomposition and its inverse in the form
3 3
M=) N,®@N; M '=Y1'N®@N,, (30)
=1 =1

where A; > 0 are positive eigenvalues and N, are the corresponding normalised eigenvectors. Consequently,

ny 3
Dy = Z oo 121 A a7t =2)| >0, (31)
P =

using the inequality 4, + 47! > 2.

3.1.2. Complete first-order hyperbolic system

To express the governing system in first-order hyperbolic form for polyconvex viscoelasticity, we combine the linear momentum
conservation Eq. (1), the evolution equations for the internal variables (25) associated with each Maxwell branch «a, and the geometric
conservation laws for the triplet of deformation measures X”. The components of the conservation unknowns V', fluxes F;, external
source term S.,;, and the relaxation term R in the resulting first-order hyperbolic system with relaxation can then be written as

Pr PE, fr 0
F v®E,; 0 0
H FX(v®E) 0 0
J H:(v®E) 0 0
v=| v, || F,=- 0 ; Sex=| 0 || R=| Ry, | (32)
Y1 0 0 RYI
Y,, 0 0 Ry,
L Yy | L 0 | L 0 | L RynM i

where E; are the Cartesian unit vectors. The geometric conservation laws for & are included to ensure that the system of conservation
laws (7) can be symmetrised. The evolution equations for the internal variables are purely local and do not contain spatial flux
terms. Finally, the flux vector in the direction of an arbitrary material unit normal N is given by Fy = Z‘;zl F;N,. Note that
ZZ’E VIR, = Dy, 2 0, as required by condition (iv) defined in Section 3.

For smooth solutions, the conservation laws for F and H must satisfy the so-called involutions (or compatibility conditions)
described by [5,45-51]

CURLF =0; DIVH =0. (33)

The curl-free condition on F ensures it is compatible with a deformation mapping (i.e., that it is a gradient field), whilst the divergence-
free condition on H enforces the Piola identity, ensuring consistency between F and its Jacobian J.

In general, the system can only be written in symmetric hyperbolic form (in terms of conjugate stress variables) if it includes
the full set of unknowns {pg,&,Y,}. However, for computational efficiency and to reduce the amount of experimental calibration
required for the internal variables, it may be useful to consider reduced systems that include only pg, &, and C,, (or C;:).

For post-processing purposes, the current geometry ¢ can be updated via

X1 _

o v(X,1). (34

3.2. Symmetric hyperbolic system

Symmetrisation is crucial to ensure that a first-order hyperbolic system is mathematically well-posed. Specifically, symmetric hy-
perbolic systems have real eigenvalues and a complete set of eigenvectors, which correspond to physical wave speeds and propagation
directions. To achieve symmetrisation, we introduce a strictly convex scalar function, referred to as a generalised entropy S(X,7).
The strict convexity ensures that its Hessian matrix is positive-definite, which provides a one-to-one mapping between the conserva-
tion variables and the corresponding conjugate variables. Intuitively, the generalised entropy provides a measure of the energy-like
behaviour within a system, allowing derivation of stability estimates [32,34].

7 The derivation of the associated geometric conservation equations for F, H, and J was presented in Reference [33] and is summarised here for
completeness [44] :

oF oH aJ T
— =V,u; — = CURL(v X F); — =DIV(H .
ot ov ot WX F) ot (H'v)
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In our context, the convex entropy function is defined as
1
S(X,0 = 5—pr-pPr+W(Xy). (35)
2pr

The first term represents the kinetic energy per unit undeformed volume and the second term corresponds to the polyconvex strain
energy density per unit undeformed volume. The associated conjugate variables® V are then given by

o5 aW'()xw [
%» 9F
‘)—F W (Xy) o
% iy | | =
y
‘ﬁ o7 "
P W (Xy) Z
v=95_| & |=| "o |=| = (36)
o as oW (Xy) Yy
o oy, z,
o5 dW(:X ) E
oY g — Y EYHM
as v
g W &Xy) s
L | T L i
Consider the following notation
o oF; -
AO:W; AI:W; A1=.AI.A0. (37)
Applying the chain rule to the time derivtive of the conservation variables and the spatial derivatives of the fluxes yields
oV oV oF; o 0P
— =Ay—; — =A,—. 38
ot 0 o1 0X, Tox, (38)

Substituting these expressions into the hyperbolic system (7), the resulting equations in terms of the entropy conjugate variables are

3
oy ~ 0V
-~ — =G. 39
Ao, +1§A, 3, (39)
Here,
-1
e Ay = [af/z_osv] - [ 1’151 [U-I]::]_I , a symmetric positive-definite matrix.

o The matrices A ; are symmetric flux Jacobian matrices satisfying condition (iii) (refer to Section 3).

Particularising the general framework to the system under consideration and accounting for the involutions (33), the symmetric

structure of the system becomes clearer in indicial notation, which can be expressed as’

[Ao] %

Ui

[Zr],,
[EH ] IL
Z

=)o

Uk

[Zr] ik
[EH ] kK
Z

=]y

2

Y1

[EY"M ] NO

Ynyg

(40)

8 Entropy conjugate variables V are the thermodynamic forces associated with the conserved variables V', representing the driving forces that
govern their evolution.

° Pre-multiplying system (40) by .Ag] yields an extended hydrocode formulation, expressed in terms of velocity and entropy-conjugate variables
[33]. Note however that this hydrocode formulation is no longer symmetric.

8
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The symmetric flux Jacobian matrix .4, is given explicitly as

0 oudkr  Ef€rx iy H; 0 o 0 o
Sixbs1 0 0 0 0 0 0 0
EpnErxiFix 0 0 0 0 0 0 0
Hy, 0 0 0 0 0 0 0
[4,] = 0 0 0 0 0 o0 0 0 (41)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

4. Hyperbolicity and relaxation

To examine the hyperbolicity and dissipative properties of the system, we consider plane wave solutions to the linearised Egs. (9)
of the form

SUX,1) = Re U e X N0, (42)

where k; is a positive real wave number, U, is a complex vector of unknowns, c; is a generally complex wave speed, and N is a unit
vector in the direction of wave propagation. The operator Re[+] ensures that the perturbation field 6'(X,t) remains real-valued, as
required for physical solutions. The wave speed c; can be decomposed as ¢; = clR + icf with real and imaginary parts. Substituting
this decomposition into expression (42) yields

SUX.1) = Re[(.U.jekjcj’t)eik,»(X<N—cht)]' (43)

This describes a wave propagating at speed c/R, with amplitude that grows or decays in time depending on the sign of ¢ /l . For stability,

we require cj’ < 0 so that perturbations decay exponentially over time.
Taking derivatives of (42) with respect to time and space gives
‘)‘;—f/ = Re[—Cjikjeikf(xw_cf')v‘j]; % = Re[ikjeikﬂx'"—‘f')N,vj]. (44)
Substituting these expressions into the linearised system (9) and cancelling the common exponential terms leads to
. 3
1
Re[c; V)] :Re[(AN+FJ>UJ]; Ay =Y AN, (45)
J =1

Decomposing the wave speed and perturbation into real and imaginary parts, such as ¢; = ch + ic} and V'; = I/f + il/‘} , the left-hand
side becomes

Re[c, V] = cf"l/'jR - clejI., (46)
and the right-hand side becomes
Re[(AN+%J>Uj] =ANUIB—%JU}. 47
J J

Equating both sides leads to the following eigenvalue problem
RyrR _ Ta,l _ rR_ 1 I
GUS—cU; = AU, ijU‘j. (48)

This system couples the real and imaginary parts of both the wave speed and the perturbation vector. Several approaches can be used
to analyse this problem. One convenient approach is to decouple the problem by considering two asymptotic regimes, namely

e Purely hyperbolic regime (no relaxation). Setting J = 0 and UJI, = 0 reduces the problem to
R9,R _ R
G U =ANU7, (49)
which governs the wave propagation properties and reflects the hyperbolicity of the system. Physically, this corresponds to de-
termining wave speeds whilst treating the internal variables as fixed (i.e., without allowing their relaxation dynamics to evolve).
¢ Purely relaxation regime (vanishing convective flux). Setting Ay = 0 and l/'f = ( yields the attetuation rate in time cuj( , given by

Tqpl _ I. I _ g I
a)jUj —J'U'j, w; —kjcl., (50)

which describes the relaxation dynamics and quantifies the dissipative response of the system. In this regime, the analysis focuses
on temporal decay of internal variables whilst deformation remains fixed.

These two limiting cases highlight the dual nature of the governing equations, namely a wave-like (hyperbolic) component driven by
convective fluxes, and a dissipative (relaxational) component controlled by internal dissipation.

9
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4.1. Hyperbolicity and its associated wave speed

Utilising the concept of directional derivative [29], it is instructive to observe that expression (49) can be recast into the eigenvalue
form DF y [Uf] = cf’l/'f. Applying this framework to the conservation equations considered in this study yields the system

[ DPNILF,H T Y Y d |
L J R
D(ﬂRpR®N)[pR]O Fj
o (Lowom) i 7
D(H: (Lp®@N))ipj.H,l ’
_ “\ PR R — C]B Yﬁ (51)
. ﬂl
: Y}
0 M
’ [ v |
Since the evolution equations for {J, ... ,)7{l ) are governed by local differential equations without spatial flux terms, they do not

contribute to the characteristic structure of the system. Therefore, they can be excluded from the wave speed analysis.
Let us first consider the geometric conservation equation for F;, H;, and J;. For a non-trivial solution with ch # 0, and after
enforcing the involutions constraints, the resulting expressions are [33]

1 1 1
Fj=—c—Rvj®N; H, =—FX<C—Rvj®N); Jj=—H.<c—Rvj®N>. (52)
J J J
Using these relations, we turn to the linear momentum equation p’R
R,j R
—cfpy = —prejv; = D(PN)[F;,H},J;,0,0,...,0,0]. (53)

Multiplying by an arbitrary virtual velocity field 6v and using the definitions for the first Piola P (14) and the area map H; = F X
F; yields the following reduced expression

R GveN): | : (v;®N)
pr(cf)ov-v,=| Fx@wenN: | [i,l :Fx(yeN) | (54)
H:Gv®N) H:(vj®N)

It is worth noting that the (polyconvex) Hessian operator [H,, ] depends only on the triplet of deformation measures. By setting v =
v;, the Legendre-Hadamard condition ensures that the system remains hyperbolic, meaning all wave speeds are real and physically
meaningful.

Instead of deriving a closed-form solution for any possible orientation N, it is sufficient to obtain bounds for the wave speeds by
assuming N aligns with a principal direction. The first two eigenvalues correspond to pressure wave speeds c,, obtained by choosing
v; = n, where n is a unit vector orthogonal to the vectors t,, = FT,/||FT,|| spanning the propagation surface. By enforcing
v=v;=n and substituting the Hessian components W Wit WS W‘g’ P WJ"J} (derived in A) for [H xx) into (54), the resulting
expression after some algebraic manipulation yields

Clp = *Cp, (55)

where the pressure wave speed c, is given by

28 +20A2 + fII A W, N-(Y'N A2 g2
. E+200T + fUAY .3 N - (YiIN) 4y I\ (E6)
b PR

a1 PR

The associated eigenvectors V", are

n
_Lla@N
€12
-LFXn®N)
€12
X —iH :(n®N)
T : 57)
0
0
L O .
Similarly, setting v; = ¢, , yields the other four eigenvalues corresponding to the shear wave speeds, namely
C£4 = icSl ’ 651?6 = icsz’ (58)

10



C.H. Lee et al. Computer Methods in Applied Mechanics and Engineering 452 (2026) 118742

where

2642045\ ¥ (u,N-(Y;'N) 264+2047\ X u,N-(Y]'N)
= —_— _— ] s, — _— _— . 59
o J( PR >+a§1< PR ‘0 PR +; PR 59

Here, /Lf , are the eigenvalues of A7 given by

Ap =210t + 2, ®t. (60)
The corresponding eigenvectors are
[ 1 1 [ i 1
-1t ®N -l @N
| €34 | €56
—an(t1®N) —ng(Q@N)
R 0 0
Uy, = 0 : Usg = 0 . (61)
0 0
0 0
0 0

Remark 4. Linearising the evolution equations of the internal variables for each Maxwell branch « about thermodynamic equilibrium
yields

Il _ o1 I
¥y = DRy I L, T2
J ) (62)
I, oI _ v! oI _ 1 -1 .yl
G DRy’ [Yj’yj] tr(C'le)NS B Ta yjc . Yj.
This leads to the following eigenvalues for the internal variable subsystem
¢ =——— and =0 63)
K;Ty

Thus, each Maxwell branch contributes six exponentially decaying eigenmodes associated with Y ;, and one non-decaying eigenmode
associated with y;. This results in a total of 6 x ny dissipative modes that do not influence wave propagation directly.

4.2. Second law of thermodynamics

We revisit the global form of the second law of thermodynamics expressed in terms of the convex entropy function S. The time
derivative of the entropy function over the material configuration Q is written as

0S(pg, Xy)
4 Sng=/ PRI 40, (64)

Applying the chain rule to expand the total time derivative in terms of its variables yields

S 9 3 Y $ oY $ 0
4 SdQR:/ ﬁ.ﬂ.,.ﬁ.ﬁ...x(as . “+£ﬁ> dQg. (65)
dt Jo, oz | 9Pr Ot oX oJr = \oY, ot 0y, Ot

«

—Dint

Here, we introduce the operator » as a compact notation to represent the combined contractions over the geometric variables & as
08 9X _ 9S8 . OF | 98 . 9H | 25 daJ

o =3F o Y3 - o5t 57 5 Substituting the conjugate relations from (36) and the local entropy production Dj, from (16)
leads to
d opr ) .
— SdQp = v-—+ (Zp+EZg XF+3,H) : Vov — Dy, |dQp. (66)
dt Jo, Qx ot

P

To derive a physically meaningful expression for the global evolution of .S, we substitute the weak form of the linear momentum
conservation equation (obtained via integration by parts) into the expression above. This naturally leads to a reformulation that
separates internal dissipation and the mechanical power of external forces, as described by

d

- SdQR_next=_/ Djne dQp; Hext=/ V'fRdQR+/ vp-tpdApg, (67)
dt Jo, Qr Qr Ploys

11
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where Il denotes the mechanical power of external forces. Thermodynamic consistency requires non-negative internal dissipation
Dy, > 0, ensuring the right-hand side of (67) is non-positive. This leads to the inequality
4 [ Sa0 Tl <0, (68)
dr Jo,
which is a global expression of the second law of thermodynamics [52]. Satisfaction of inequality (68) is a necessary ab initio require-
ment for stability and thermodynamic admissibility, aligning with the classical Coleman-Noll procedure [28,30,53,54].

Remark 5. For an isolated elastic body, where the external work from body and boundary forces vanish (i.e., Il = 0) and viscous
dissipation is absent (i.e., Dy, = 0), expression (67) simplifies to the conservation of total energy, given by

d
— SdQg=0. 69
dr Jq, R (69)

5. Smoothed particle hydrodynamics spatial discretisation
5.1. SPH approximation for conservation equations

We consider a solid discretised in space by a set of particles. In this collocation-based framework, each particle also serves as a
quadrature (integration) point. The material gradient of a velocity field v at particle a is then approximated as
1 1

Y
QR beEA, 2

Vor(X,, 1) () = 1,(0) ® Cppi Cpp =2Q5Q5VoW,(X ). (70)
Here, b € A, denotes the set of neighbouring particles b located within the support radius of particle a, and Q’;2 is the material volume
associated with neighbour b. The term —v, ensures zero contribution for a constant field. The corrected kernel gradient V,, enforces
exactness for linear fields given by [55-57]
-1
VoWs(X) = LVoWy(X): L= | X QRVeW,(X)® (X, - X,)| . 71)
beA,

Note that due to SPH gradient correction, C,, # —C,,. For further details, readers are referred to References [56,57].

In the current work, we adopt a reduced formulation for {pg, &, C;l } that retains the necessary kinematic and internal variables
whilst simplifying viscous calibration. Using the SPH velocity gradient approximation (70) and ensuring variational consistency
following References [2,58], we approximate the evolution of these variables as

d a
Pd%(’) = E,() T, + D,(; (72a)
dl;‘;(t) = Vou(X,.0); (72b)
df;;(t) = F,(t) X Vou(X ., 1); (72¢)
% =H, (1) : Vou(X,.1); (72d)
dc;! @ |
Vol _ (15 _ -1 . —
T‘x = (ca ) cw(t)), a={1....ny). (72€)

The external and internal forces acting on particle a are given by
A% 1
E, 0= Q—al‘%(t) + fR@; T, (1) = 2 T 4(1); T (1) = E(Pb(t)cba - P,(NCy). (73)
R beAb

where A% is the material tributary area and ¢} is the prescribed boundary traction. For particles not on the boundary, A% = 0'°, In
this SPH formulation, the pairwise internal force is antisymmetric T, = —T ,,, which guarantees local and global conservation of
linear momentum. Moreover, the discrete SPH formulations of the divergence and gradient operators are skew-adjoint, ensuring that
conservative forces do not lead to spurious dissipation [59]. The full SPH derivation of expressions (72a) and (72d) from their weak
form is provided in References [41,42].

Following previous work by the authors [1,2,58], the dissipation term satisfies pairwise antisymmetry, that is, D, = Y, A6 Doy
with D, = —D,,. Specifically,'"

Dah = Sah (vh - va)’ (74)

10 The numerical examples presented in this paper are driven by a prescribed initial velocity field, so no external prescribed boundary tractions
are applied and the tributary areas do not play a role.
11 See Appendix B for the derivation of the pair-wise dissipation using the time rate of the convex entropy extension.
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where S, is the self-adjoint dissipation operator, acting on the velocity jump [58,60,61]. Such a formulation is a characteristic
of Godunov-type upwinding terms [62], commonly referred to as Riemann solvers [4]. To achieve second-order accuracy, a linear
reconstruction procedure'? must be applied to reconstruct the associated velocities at the mid-edge between particle pairs a and b.
Further details can be found in References [1,63].

The symmetric positive semi-definite stabilisation matrix is then chosen to combine both pressure and shear waves components,
expressed as

1
Sap = 3R NCSE [y, @ ngy + (1 =y, @ 1) . (75)

where [+]**¢ = 2 ([+], + []3), C5™ = 3(C, — Cy,) and [|C55eY||2 = €S - €S,
Finally, to track the evolution of the deformed geometry, the following discretised kinematic relation is employed

de,()
dr

v, (). (76)
6. Time integration

Given the size of the semi-discrete equations, we employ a three-stage Runge-Kutta explicit time integrator [3,6,7] to advance the
solution from time step " to t"*! as

Ur=UT+ MU (U,

3 1 :
Uit =2 (VIR (V). 77)
Uit = v S (VT ().

Here, U, consists of the primary unknowns {p%.F,, H,,J,}. These variables, along with the particle geometry ¢,, are updated
explicitly in time using the Runge-Kutta scheme described above. The internal variables (72e), however, are updated analytically
over the same time increment Ar. In this work, the term C;' and the relaxation times , are held fixed during each time interval.
Under these conditions, the exact solution of the linear evolution Eq. (72e) reads

At

C;:::“ =(1- e)C;ﬂl:‘:' + eC;l’"; e=l-¢ @, (78)
where ¢ € [0, 1] is the relaxation fraction over the time step. This provides an exact temporal update of the internal viscoelastic
state, whilst the conservation equations for linear momentum, deformation measures, and geometry are advanced explicitly using
the Runge-Kutta scheme in (77). The maximum time step At is restricted by'>

ho.
At < min(aCFL min <%>,arelaxrmm>, 79
»

where 7,;, = min,z,. Here, acp; is the Courant-Friedrichs-Lewy (CFL) stability number, a,¢j,4 is typically chosen to be less than 1 to
account for the stability limit of the relaxation terms, c, is the pressure wave speed (as defined in (56)) which in this work is obtained
directly from the proposed viscoelastic constitutive model, and &, is the minimum (or characteristic) particle spacing within the
computational domain. In this work, we consider convective-dominated problems in which relaxation stability can be neglected. A
large 7.,;, value makes the convective term the primary constraint on At. Unless specified otherwise, a value of acy; = 0.9 is chosen
in the subsequent examples to ensure a balance between accuracy and stability.

7. Numerical examples

Several two- and three-dimensional problems are presented to demonstrate the capabilities of the proposed SPH algorithm. First,
a manufactured problem for linear viscelasticity is used to examine the convergence order of the scheme. Second, the stability of
the algorithm is assessed by verifying that it does not exhibit spurious zero-energy modes, using punch and tensile test cases. Third,
the performance of the algorithm under large strain is investigated through a twisting column and a thin plate problem. Fourth, the
applicability of the method to challenging thin-walled structures is demonstrated. In all examples, the viscoelastic material properties
(such as relaxation time r, and proportionality factor g,) are purely numerical and not experimentally calibrated. The primary
objective of the current paper is to assess the effectiveness and efficiency of the SPH algorithm for viscoelastic solids. Solutions
obtained with the proposed Total Lagrangian SPH scheme are compared with analytical results, an in-house Updated Reference
Lagrangian SPH (URL-SPH) scheme [2,3], and a vertex-centred Finite Volume Method (FVM) [4-6,64].

7.1. Assessment of consistency and convergence

The main objective of this example is to demonstrate the order of convergence of the proposed SPH algorithm. Following the
approach in References [1,30], we extend the analysis of an ad-hoc manufactured solution to linear viscoelasticity (see Appendix C).

12 No slope limiter is required as the numerical examples in this work are restricted to smooth, large strain solids and are not dominated by shocks.
13 The optimal time increment can be determined when appropriate maximum wave speeds are used, which generally depend on the constitutive
model.
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Table 1
Material properties for manufactured problem.

Equilibrium (long-term) linear elastic model

Young’s modulus [MPa] E 17
Material density [kg/m?] PR 1100
Poisson’s ratio v 0.3
Non-equilibrium linear viscous model
Number of Maxwell branch ny 1
Proportionality factor B 0.1
Relaxation time [s] 7 0.02
3 _ pex ;
@ ||v, — v 4 10°}| @ ([Pex — Prx |l :
i _ eX _ P .
5 1073} | & vy —vp¥l | B (| Py — Pyl
—~ —
—~ —
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— —
Q Q
a 4 a
~_ 107°%E i«
~ ~
101 1
1
107" 10° 107" 10°
Particle spacing [m] Particle spacing [m]

(a) (b)

Fig. 1. Manufactured problem. L? global convergence analysis at time ¢ = 0.0094 s for (a) the components of velocity, and (b) the components of
the first Piola-Kirchhoff stress tensor. A linear viscoelastic model is used with parameters listed in Table 1.

We consider a unit square plate under plane strain. The west and south boundaries are constrained to move only tangentially, whilst
the north and east boundaries are restricted to normal motion, as depicted in Figure 10 of Reference [1]. In the small deformation
case, the mapping function ¢(X,1) is chosen as

(X, t)—X+Uocos< \/Iit) bm( ;Y )COS<”)2(2> . (80)

2 —cos( ;()sm(”;(z)

For values of U, below 0.001 m, the solution can be considered to be linear. The parameter c, represents the shear wave for the linear
viscoelasticity and is defined as

(=1L a=u +Z< e) (81)

PR

Consequently, the exact velocity and deformation gradient tensor can be computed as

oz Uy | fegmt sin(&)cos(ﬁ>
v(X,1)=— \/50 sm<$> _c05<2§ )sin<5;2> (82)
and
1+acos (21 co —asin 293 U
F(X.1) = a:m (5”(%2) ) (b(%s > 1 _(x;los<( ))51 <(zﬂ%) : o= %ﬂ cos <c‘_\/7;>, (83)
respectively.

This plate is initially loaded with deformation gradient (by substituting = 0 into (83)) without any initial velocity. A list of
parameters used for this simulation is summarised in Table 1. As compared to the closed form solutions described in (82) and (83),
Fig. 1 shows the L? global convergence analysis at time r = 0.0094 s for (1) the components of the velocity v, and (2) the components
of the first Piola-Kirchhoff stress tensor P. As expected, the proposed SPH algorithm achieves equal second-order convergence for all
the variables solved, namely velocity and the stresses. This equal order convergence for all derived variables is one of the advantages
of the mixed-based framework.
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Table 2
Material properties for punch problem.

Equilibrium (long-term) Mooney-Rivin model

Young’s modulus [MPa] E 17
Material density [kg/m’] PR 1100
Poisson’s ratio v 0.45
Parameters [Pa] {&, ¢} {u/2,0}
Non-equilibrium viscous model

Number of Maxwell branch ny 1
Proportionality factor B 3
Relaxation time [s] 7 0.02

7.2. Assessment of robustness and numerical stability

In this section, we consider two dimensional problems under plane strain, previously studied in Reference [65]. The first problem
involves the compression of a square plate subjected to an initial compressive velocity field. The second problem is a tensile test, in
which the same plate with slightly modified boundary conditions, is stretched vertically. These examples are designed to assess the
robustness of the proposed SPH algorithm for viscoelastic solid dynamics.

7.2.1. Punch test

A punch test case is presented. A square plate with unit side length of Ly = Ly, =1 m is constrained by roller supports (i.e.,
symmetry boundary conditions) along the south, west, and east edges (see the left structure in Fig. 2). The domain is subjected to an
initial smooth vertical velocity profile v, given by'*

2XY

a ;0 0<X<Ly/2
v =v(X,t=0)=[ 0 ]; =4  Lxfr o (84)
=0 vy a X>Lyx/2

where a = —100 m/s. Three levels of particle refinement are considered, namely {M1, M2, M3} corresponding to {289,525, 1089}
particles, respectively. Material properties are summarised in Table 2.

First, a particle refinement study is carried out using the proposed SPH algorithm with compressible viscoelasticity. Fig. 3 shows
the deformation and pressure distribution at 1 = 3.1 ms (top row) and 7 = 10.2 ms (bottom row). The first three columns (from left
to right) show results for the proposed SPH algorithm at increasing refinement levels. The fourth column (second from the right)
shows results from URL-SPH [2,3], and the last column (on the right) shows results from the vertex-centred FVM [4] for comparison.
Both deformation patterns and pressure distributions converge as the particle resolution increases. Second, Fig. 4(a) presents the time
history of different energy measures during the deformation process. It is interesting to notice how kinetic energy converts into strain

14 The velocity profile is chosen to ensure smooth solutions, producing a deformation pattern with a wave-like spatial structure.

Uy ny

V2222277777777

x Ly Lx

Fig. 2. (Left) Structure initialised with a compressive vertical velocity v,. (Right) Structure initialised with a tensile vertical velocity v,.
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(b)
Pressure
-1.5e+07 -le+7 -5e+6 0 5e+6 le+7 1.5e+07

Fig. 3. Punch test. Comparison of deformed shapes using compressible viscoelasticity at time (a) r = 3.1 ms (b) r = 10.2 ms. The first three columns
(left to right) show the particle refinement of a structure simulated using the proposed Total Lagrangian SPH algorithm. The fourth column (second
from the right) shows results from an alternative in-house URL-SPH algorithm [3], and the last column (on the right) shows results from the
vertex-centred FVM [4]. Colour indicates the pressure profile. Material properties are summarised in Table 2.

Table 3
Material properties for tensile problem.

Equilibrium (long-term) Mooney-Rivin model

Young’s modulus [GPa] E 21
Material density [kg/m?] PR 7000
Poisson’s ratio v 0.3
Parameters [Pa] {&,¢) {u/2,0}
Non-equilibrium viscous model

Number of Maxwell branch Ny 1
Proportionality factor B 3
Relaxation time [s] 7 0.02

energy and viscoelastic dissipation, with a small portion converting to numerical dissipation. The rate of internal (viscous) dissipation
and the rate of numerical dissipation increase over time, ensuring discrete satisfaction of the second law of thermodynamics. This can
be seen in Fig. 4(b) and (c). Third, for qualitative assessment, Fig. 4(d) tracks the time evolution of the vertical velocity component at
X = [1,1]" m (top right corner of the plate), demonstrating convergence with refinement. Finally, Fig. 5 shows a series of deformed
states using the M3 model, with the pressure profile indicated by the colour contour plot. Stable solutions are observed even over
long-term simulations.

7.2.2. Tensile test

Similar to the punch test, a tensile test is considered to further study the material response under different loading conditions.
A square plate is initially pulled vertically upward with v, = 500 m/s (right structure in Fig. 2). The south boundary is fixed,
whilst the remaining edges are traction-free. Material properties are summarised in Table 3. Fig. 6 compares the hyperelastic model
(with parameter §; = 0) and the compressible viscoelastic model. Snapshots at time 7 = {0.62,0.93, 1.23, 1.54,1.86,2.17} ms show the
pressure field. As expected, the viscoelastic model exhibits reduced deformation due to the dissipative effect of material viscosity,
and the results agree well with those obtained using a vertex-centred FVM [4] (see Fig. 7). This behaviour is further analysed through
the time history of energy measures, illustrated in Fig. 8. Comparing Fig. 8(a) (hyperelastic model) and (b) (viscoelastic model),
the total energy (the sum of kinetic energy and strain energy) consistently decreases, primarily due to internal viscous dissipation.
Specifically, the time derivatives of material and numerical dissipation remain non-negative throughout the entire simulation, as
shown in Fig. 8(c) and (d). Moreover, the numerical dissipation introduced by the proposed SPH algorithm decreases with increasing
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Fig. 4. Punch test. (a) Time evolution of various energy measures computed with discretisation M3, including kinetic energy K, strain energy II,,
the total energy (summation of kinetic and strain energies), internal viscous dissipation D;,, and numerical dissipation D, . Time histories of
(b) numerical dissipation and (c) internal viscous dissipation for varying particle refinements. (d) Time history of vertical velocity v, at position
X =[1,1]" m. Material properties are provided in Table 2.

Table 4
Material properties for twisting problem.

Equilibrium (long-term) Mooney-Rivin model

Young’s modulus [MPa]

Material density [kg/m?]
Poisson’s ratio

Parameters [Pa]
Non-equilibrium viscous model
Number of Maxwell branch
Proportionality factor

Relaxation time [s]

v
{&.¢

v
A

7

17
1100
045

b {u/2,0)

1
1
0.02

particle refinement, indicating the consistency of the method. In this case, M1, M2, and M3 correspond to 225, 441, and 841 SPH
particles, respectively. For qualitative assessment, Fig. 9 monitors the time evolution of vertical velocity v, and displacement u, at
X = [1,1]7 m (top right corner of the plate). The SPH predictions agree closely with the vertex-centred FVM results, and accurate
responses are obtained even with relatively few particles.
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Fig. 5. Punch test. A sequence of deformed structures with pressure distribution att = {3.1,4.25,5.4,6.6,7.75,8.9,10.15,11.3,12.45,13.55,14.7,15.85, 17,

18.15,19.25,20.4} ms (from left to right and top to bottom), respectively. Results obtained using the compressible viscoelastic model with M3 model.

Material properties are summarised in Table 2.
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(a) Hyperelastic model (with 81 = 0)

(b) Compressible viscoelasticity (81 = 3 and 71 = 0.02 s)

Pressure
-1.0e+10 -6.5e+9 -3.3e+9 0 3.3e+9 6.5e+9 1.0e+10

Fig. 6. Tensile test. Sequence of deformed states at time 7 = {0.62,0.93,1.23, 1.54,1.86,2.17} ms (from left to right and top to bottom) for (a) hyper-
elastic model (with g, = 0) and (b) compressible viscoelasticity. Colour represents the pressure field. Material properties are provided in Table 3.
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(a) Compressible viscoelasticity (81 = 3 and 71 = 0.02 s)

Pressure
-1.0e+10 -6.5e+9 -3.3e+9 0 3.3e+9 6.5e+9 1.0e+10
[ I

Fig.7. Tensile test. Sequence of deformed states at time 7 = {0.62,0.93, 1.23, 1.54, 1.86, 2.17} ms (from left to right and top to bottom) for compressible
viscoelasticity using a vertex-centred FVM. Colour represents the pressure field. Material properties are provided in Table 3.

7.3. Analysis of large deformation behaviour

This well-documented three-dimensional example examines the capability of the SPH algorithm in the large strain regime. Initially
proposed by [64], it was later extensively explored in References [1,60,66], primarily for hyperelastic models. In this study, we
extend the benchmark to include viscoelasticity models, aiming to demonstrate that the proposed SPH algorithm remains free from
hourglassing modes, which commonly observed in this test case. A short column of length L = 6 m with a unit square cross section
is subjected to an initial sinusoidal velocity field about the origin, given by

0
= Qosin(%> [m/s], (85)
0

t=0

where Q, = 105 ms~! represents the velocity amplitude (see Figure 2c of Reference [67]). The relevant material properties are pro-
vided in Table 4.

The accuracy of the SPH algorithm for viscoelasticity is assessed through a particle refinement study using [M1] 625, [M2] 1715,
and [M3] 3969 particles. Fig. 10 shows that the deformations predicted by the proposed SPH algorithm (first three columns) converge
with increasing particle refinement and are in good agreement with results from the URL-SPH algorithm [3] and the in-house vertex-
centred FVM [4,5,48]. Similar deformation patterns (top view) are observed for both Total Lagrangian SPH and URL-SPH schemes
(see Fig. 11). For completeness, Fig. 12 shows the evolution of the accumulated twist angle at four positions: X 4, = [-0.5,6,-0.5]" m,
X =1[05,6,-0.5]" m, X =1[0.5,6,0.5]" m, and X, = [-0.5,6,0.5]" m. The results show near-identical behaviour when comparing
the proposed SPH algorithm with the URL-SPH scheme. It is important to assess how energy is transferred throughout the simulation
process. This is seen in Fig. 13(a) and (b). At time ¢ = 0, the total energy of the structure is primarily kinetic, which is governed by
the initial twisting velocity. As the column twists, kinetic energy is progressively converted into strain energy, with some energy
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Fig. 8. Tensile test. Time evolution of various energy measures with discretisation M3, including kinetic energy X, strain energy II,, the total energy
(summation of kinetic and strain energies), internal viscous dissipation D;, and numerical dissipation D, . These are presented for (a) hyperelastic
model and (b) compressible viscoelastic model. Time histories of (c) internal viscous dissipation and (d) numerical dissipation for varying particle
refinements. Material properties are provided in Table 3.

irrecoverably dissipated due to material viscosity (absent in the hyperelastic model) and a small portion dissipated as numerical
dissipation. Once the column reaches its maximum tensile twist, kinetic energy is zero, and strain energy dominates. During the
reverse twist, energy again transitions among strain energy, kinetic energy, material viscous dissipation, and numerical dissipation.
For the viscoelastic model, material viscous dissipation increases over time, as shown in Fig. 13(c). Furthermore, Fig. 13(d) illustrates
that the proposed algorithm introduces numerical dissipation over the duration of the simulation, ensuring the discrete satisfaction
of the second law of thermodynamics. The numerical dissipation consistently decreases as the number of particle increases. Finally,
Fig. 14 presents a series of deformed states via compressible viscoelasticity, with the pressure profile indicated by the colour contour
plot. No instabilities are observed.

7.4. Performance in thin-walled structures

7.4.1. Bending of a thin plate
The bending behaviour of a thin structure is examined to verify that the proposed SPH algorithm circumvents the usual locking
difficulties in simulating thin structure. The thin plate (see Figure 18 of Reference [27]) is subjected to an initial velocity profile given
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Fig. 9. Tensile test. Time history for (a) vertical velocity v, and (b) vertical displacement u, at position X =[1,1]” m. Material properties are
provided in Table 3.

Table 5
Material properties for a thin plate.

Equilibrium (long-term) Mooney-Rivin model

Young’s modulus [kPa] E 50.5
Material density [kg/m?] PR 1100
Poisson’s ratio v 0.3
Parameters [Pa] {&,¢}) {n/2,0}
Non-equilibrium viscous model
Number of Maxwell branch ny 1
Proportionality factor b 1
Relaxation time [s] 7 0.02
by the following expression
0 Vils (-555) v (457
v =a(X)| 0 |[m/s]; a(X)=1/=|exp| ———— ) +exp| ———— | |- (86)
=0 1 T 10 10

A compressible viscoelasticity model is adopted, with material parameters detailed in Table 5.

To demonstrate particle convergence, three progressively refined models are used: [M1] 867, [M2] 1875 and [M3] 4107 particles.
The first three columns of Fig. 15 compare the deformation process of the structure at times t+ = 1.5 s and ¢t = 4.5 s using these
models. For comparison, the problem is also tested using the mixed-based URL-SPH algorithm [3] with the M3 discretisation. The
deformed shape and pressure field remain consistent across all three models using the proposed SPH algorithm and closely match
the results from the URL-SPH algorithm. Fig. 16(a) presents the time history of the linear momentum components within the system,
showing that linear momentum components are conserved during spatial translation. Since this problem is primarily governed by
translation motion, some of the kinetic energy is converted into strain energy, whilst the rest is irreversibly lost due to material and
numerical dissipation. This loss is reflected in the decrease in global total energy, as shown in Fig. 16(b). To satisfy the second law of
thermodynamics, both material viscous dissipation and numerical dissipation (introduced by the SPH algorithm) increase consistently
over time. These are illustrated in Fig. 16(c) and (d). The results obtained using the proposed algorithm are nearly indistinguishable
from those of the URL-SPH algorithm, demonstrating strong agreement between the two approaches.

Furthermore, the importance of numerical dissipation, even when using viscoelasticity, is demonstrated in Fig. 17. To highlight
this, we first run the same problem using both the hyperelastic model (8, = 0) and the viscoelastic model, with no numerical dissipation
in either case. Pressure checkerboarding and incorrect deformation paths are observed in the third and fourth columns. These issues
are mitigated by the proposed algorithm with entropy-stable stabilisation, which shows excellent agreement with the URL-SPH results.
Finally, Fig. 18 illustrates the time evolution of the plate deformation'®, highlighting smooth pressure variations. Top and bottom
views of the deformed structures are also presented in Fig. 19. It is remarkable to see how well the deformation behaviour of the
structure is captured.

15 Self-contact is expected to occur at later times (when ¢ > 6 s), but this is beyond the scope of the present study.
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(b)

Pressure
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Fig. 10. Twisting column. Comparison of deformed shapes using compressible viscoelasticity at (a) r = 0.085 s and (b) 7 = 0.26 s. The first three
columns (left to right) show the particle refinement of a structure simulated using the proposed SPH algorithm. The fourth column (second from the
right) shows results from an alternative in-house URL-SPH algorithm [3], and the last column (on the right) shows results from the vertex-centred
FVM [4]. Colour indicates the pressure profile. Material properties are summarised in Table 4.
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Fig. 11. Twisting column. A sequence of deformation states from the top view using (a) the proposed SPH scheme, and (b) URL-SPH scheme at
times ¢ = {0,0.085,0.17,0.26} s. The colour represents the particle positions. The material parameters are provided in Table 4.

Table 6
Material properties for a cylindrical structure.

Equilibrium (long-term) Mooney-Rivin model

Young’s modulus [GPa] E 5.56
Material density [kg/m?] PR 1000
Poisson’s ratio v 0.3
Parameters [Pa] {&.¢) {u/2,0}
Non-equilibrium viscous model

Number of Maxwell branch Ny 1
Proportionality factor B 1
Relaxation time [s] 7 0.02

7.4.2. Pinched cylindrical structure

The final example considered in this paper is a pinched cylindrical structure, a benchmark problem [68-70] often studied under
quasi-static conditions. The deformation process may involve the formation of wrinkles, which typically requires high-order schemes
for accurate capture. The cylinder (see Fig. 20) has a radius R = 10 m, length L =20 m, and thickness 7 = 0.1 m. It is subjected at
point A to a pair of symmetrical radial pinching velocities v, '°, defined by a Gaussian profile as

0(0) a [ (- ,0)2]
v = 0 [m/s]; v, =— exp | — — |- (87)
0 aV2n 2a,

where the parameters a; = 0.075m, a, = 5X 10™* s, and t, = 2 x 1073 5. The cylinder ends are closed with rigid diaphragms, restricting
displacement to the y-direction. Due to symmetry, only one-eighth of the geometry is modelled using 2583 particles. Fig. 21 illustrates
that the temporal evolution of velocities and displacements at points B and C is in good agreement with the URL-SPH solution. The
deformed shapes obtained from both methods also match closely, and the pressure profiles remain stable without spurious modes, as
shown in Figs. 22 and 23. These results demonstrate that the proposed SPH scheme is robust and provides a compelling alternative
for analysing the deformation of thin-walled structures.

16 Since the focus here is on dynamic inertial effects, we slightly modify the problem by driving it with prescribed velocities rather than boundary
forces.
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Fig. 12. Twisting column. Time history of the accumulated twist angle via different discretisation at four locations, namely (a) 6, at X, =
[-0.5,6,—0.5]" m, (b) 0 at X 5 = [0.5,6,—-0.5]" m, (c) 6. at X, = [0.5,6,0.5]" m, and (d) 6,, at X, = [-0.5,6,0.5]" m. Compressible viscoelasticity
model is used. The relevant material parameters are tabulated in Table 4.
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Fig. 13. Twisting column. Time evolution of various energy measures with discretisation M3, including kinetic energy K, strain energy I, the
total energy (summation of kinetic and strain energies), internal viscous dissipation D;,;, and numerical dissipation D, . These are presented for

(a) hyperelastic model and (b) the compressible viscoelasticity. Time histories of (c) internal viscous dissipation and (d) numerical dissipation for
varying particle refinements. Material properties are provided in Table 4.
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Pressure
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————— o —
Fig.  14. Twisting column. A  sequence of deformed structures with  pressure distribution at times ¢ =

{85,105, 135,165, 195,225,255, 285,315,345,375,405} ms (from left to right and top to bottom), respectively. Results obtained using a com-
pressible viscoelastic model with M3 model. Material properties are summarised in Table 4.
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(a)

(b)
Pressure
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Fig. 15. Bending of a thin plate. Comparison of deformed shapes at (a) t = 1.5 s and (b) 1 = 4.5 s. In (a), the top row represents the top view, and
the bottom row represents the bottom view. The same applies to (b). The first three columns (from left to right) show the particle refinement of a
structure simulated using the proposed SPH algorithm, whereas the last column (rightmost) presents results from an alternative in-house Updated
Reference Lagrangian SPH algorithm [3]. Colour indicates the pressure profile. Material properties are summarised in Table 5.
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Fig. 16. Bending of a thin plate. (a) Time evolution of the linear momentum components within the system with discretisation M3. (b) Time
evolution of various energy measures with discretisation M3, including kinetic energy K, strain energy II,, the total energy (summation of kinetic
and strain energies), internal viscous dissipation D;,., and numerical dissipation D,,,. Time histories of (c) internal viscous dissipation and (d)
numerical dissipation for varying particle refinements. Material properties are provided in Table 5.
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(d)
Pressure
-4,0e+03 -2000 0 2000 4,0e+03
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Fig. 17. Bending of a thin plate. Comparison of deformed shapes at (a) r = 4.5 s (side view), (b) = 5 s (top view), (c) = 5.5 s (bottom view), and
(d) t = 6 s (slanted view). The first column shows results using the proposed SPH algorithm, the second column presents the URL-SPH algorithm, the
third column shows the hyperelastic model (8, = 0) with no numerical dissipation, and the fourth column presents the viscoelastic model (4, = 1)
without numerical dissipation. Colour indicates the pressure profile. Material properties are provided in Table 5.
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Pressure
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Fig. 18. Bending of a thin plate. A sequence of deformed plate shapes in a 3D slanted view with pressure distribution at times r =
{0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6} s (from left to right, top to bottom). Results are obtained using a compressible viscoelastic model with the
M3 model. Material properties are summarised in Table 5.
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Fig. 19. Bending of a thin plate. A sequence of deformed plate shapes in (a) top view and (b) bottom view, with pressure distribution at times r =
{0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6} s (from left to right, top to bottom). Results are obtained using a compressible viscoelastic model with the M3
model. Material properties are summarised in Table 5.
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Fig. 20. (Left) Cylindrical structure pinched with radial velocity v,. (Right) Only one-eighth of the structure is modelled due to symmetry.
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Fig. 21. Pinched cylindrical structure. Time histories of vertical and radial responses of the cylindrical structure: (a) vertical velocity v, and (b)
vertical displacement u,, at position C, and (c) radial velocity v, and (d) radial displacement u, at position B. Material properties are summarised in
Table 6.
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Fig. 22. Cylindrical structure. A sequence of deformed shapes in the X-Y view with pressure distribution at times t = {1.5,2,2.5,3} ms (from top
to bottom). The left column shows results from the proposed SPH algorithm, and the right column displays the corresponding URL-SPH solutions.
Material properties are summarised in Table 6.

34



C.H. Lee et al. Computer Methods in Applied Mechanics and Engineering 452 (2026) 118742

Pressure
-4.5e+08 -2e+8 0 2e+8 4.5e+08

S O —

Fig. 23. Cylindrical structure. A sequence of deformed shapes in the Y-Z view with pressure distribution at times t = {1.5,2,2.5,3} ms (from top
to bottom). The left column shows results from the proposed SPH algorithm, and the right column displays the corresponding URL-SPH solutions.
Material properties are summarised in Table 6.
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8. Conclusions

This paper has presented a first-order hyperbolic framework for large strain viscoelastic solids, incorporating relaxation terms
to model internal dissipation. A key objective was to guarantee hyperbolicity, ensuring real wave speeds across all deforma-
tion states. To achieve this, we introduced a convex generalised entropy function, which required a multi-variable strain en-
ergy function jointly convex with respect to the deformation measures & = {F, H,J} and the extended set of internal variables
Y={Y.y,Yy»,.... Y, .y, }, where ny is the total number of Maxwell branches. This enabled symmetrisation of the first-order
hyperbolic conservation laws with relaxation terms, leading to a thermodynamically consistent and well-posed formulation. The hy-
perbolicity and relaxation properties were analysed via the eigenproblem, yielding nonlinear expressions for the pressure and shear
wave speeds.

The hyperbolic framework was implemented within an upwinding Smoothed Particle Hydrodynamics (SPH) scheme. The SPH
algorithm ensured semi-discrete satisfaction of the second law of thermodynamics, with internal and numerical dissipation monitored
separately through the time rate of the generalised convex entropy. Several benchmark problems, including a manufactured solution,
demonstrated that the SPH method produced accurate, consistent, and stable results, capturing deformation, energy transfer, and
dissipation processes whilst maintaining stable pressure fields and avoiding spurious modes. Comparisons with an in-house Updated
Reference Lagrangian SPH algorithm showed excellent agreement, confirming the robustness and reliability of the approach. These
findings highlight the effectiveness of the proposed method, particularly for thin-walled structures where wrinkling and large strain
effects are significant. Future work will extend the current framework to consider fully incompressible viscoelasticity and incorporate
thermal effects.
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Appendix A. Conjugate stresses and Hessian operators

Based on the polyconvex energy functions defined in (19) and (20), the thermodynamic conjugate stresses corresponding to the
equilibrium and non-equilibrium components are given by

2 2 A
TP =2%F; TR =2H 3@ =-22) g o=y
(A1)
_ « Ha
X V) =u YL @) =0 X Y)=-TF
The corresponding thermodynamic conjugate stresses with respect to the internal variables are
Ha o,y ~1 Ha g

=, =-22y lcy’;, oz, =-Lyl A2
Y, 2 a C a Ya 2 ya ( )

For consistent linearisation and stability analysis, the diagonal components of the long-term (equilibrium) Hessian [Hf},] are
computed as

26+20) _
J?

where T is the fourth-order identity tensor with components [I];;;; = §;;6,,. All remaining components of [H5;,] (18) are zero.

Wi =21 Wy =21, W5=i+ 1o, (A.3)
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Additionally, the diagonal components of the viscous Hessian [H}, ] are

U
Wep = ”UIIY;I; Wi, = J_;; W;ZY“ = 4y C; W/yaayu = 7ya > (A.4)
and the non-zero off-diagonal components are
Wi,’Y“ = —UA; WI‘,””F =—u,B, (A.5)

where the fourth-order tensors are defined by

Alpmgr = [FY']x [Y2 s
[Blymkr = [Y;I]IK[FY;I]ML;
(Climke = 1Y CY Nk [V

. (A.6)
a ]ML’
[IY;'],'I/J =6y¥ ;s
All other components of [[I-I](;’,V] (18) vanish.

Appendix B. Entropy-stable stabilisation
Using expression (66), the semi-discrete entropy function of the system can be approximated via particle integration as

dpR dF .
2 R dt = Z ( +P, d1a> - ZQ‘IZQD?M' (B.1)
a

Incorporating the discrete linear momentum and deformation gradient updates from (72a) and (72b), the sum of the first two terms
in (B.1) becomes

dpy dF
297<<"“' dtR +P,: dtﬂ) =| Y Qu(P: Vou(X -, T,) |+ Y, A%y -1
a a -
0

+2S2‘;zva~f?{+2va~Da.
a a

Substituting this relation into (B.1) and rearranging terms yields

(B.2)

R dt Hex = 2 Qa :Int + (_ z Uy Da> s (B.3)
a
—_——
Dnum

where the semi-discrete power contribution IT. is
l;lext = z Qa fa + 2 Aa ta a . (B.4)
a

To satisfy the second law of thermodynamics (68) at the semi-discrete level, it is necessary to demonstrate that the two terms
within the square brackets on the right-hand side of expression (B.3) are non-negative. The first term is straightforward, as the internal
dissipation D“ > 0 must be non-negative by definition. For the second term, we must demonstrate the total numerical dissipation
Dyum > 0is also non-negative. This can be achieved by equivalently swapping indices a and b, yielding

Dy = = Zv ‘D, __Z Z vy Dop) = Z Z vy Dy,) Z Z (5 D). (B.5)

a beh, a beh, a beh,

num =

By averaging the second and fourth terms in the above expression and noting the anti-symmetric nature of the stabilisation term as
D,, = -D,, expression above can be alternatively shown as

Dyum = z Z a ab (B.6)

@ peAb

a

Sufficient conditions for Dy, > 0 are given by
Dab = Sab(vb - va)’ (B7)
where S, is a symmetric positive semi-definite stabilisation matrix.
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Appendix C. Linear viscoelastic model

This Appendix is included to derive the expressions for the Cauchy stress tensor and the evolution of internal variables for linear
viscoelasticity. We begin by relating the small strain tensor ¢ to the deformation gradient tensor F

€= %(V0u+(V0u)T) = %(F+FT—21), (2]

where u is the displacement field and I is the identity tensor.
The strain energy density for the linear viscoelastic model is expressed as the sum of a long-term (equilibrium) component Woti“
and a viscous (non-equilibrium) component WwLin

M
WLin(e’Eva) = WoLcin(E) + z WaLin(f’ eun)’ (C.Z)
a=1
with
W () = u(e : e); Wi e, )= (e —¢ ) : (e —€ ) (C.3a)
© c©h a > Coy a vy )t v )2 .

where y and y, are the shear moduli of the long-term and viscous branches, respectively, and ny; denotes the number of Maxwell
branches. The Cauchy stress tensor is then obtained from this energy as

nM
o-(e,evw) =0,(e) + Z o-,l(s,eua). (C.4)

a=1

with components

O, = 2/E; o, =24, (e -£, ) (C.5)
The viscous internal variables evolve according to a standard linear relaxation law
de v 1
o =—(e-¢, ), C.6
dt |¢ 7, ( Ca ) (C.6)

where 7, is the relaxation time of branch a. The exact time integration of this evolution equation over a time increment Ar = t, — t
yields

At

£ +eg; e=1l—¢ . (C.7)
1

ol =1 -6k, .

5]
This formulation provides a consistent, linear viscoelastic framework in which stresses and internal variables are determined by the
strain, the viscous history, and the material parameters.
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