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Introduction

Cancer registries play a crucial role in collecting patient 
data and driving improvements in cancer care (Cancer 
Research UK, 2018; Forsea, 2016; Giusti et  al., 2023). 
These registries provide essential information on cancer 
burden, new guidelines, and quality and standards of 
healthcare services (Abildgaard et al., 2023; Forsea, 2016; 
Giusti et al., 2023). While cancer registration is mandatory 
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by law in most of the European cancer registries (Forsea, 
2016), there is still some variability in this process in some 
registries, where informed consent is required to register a 
cancer patient (Siesling et  al., 2015). Despite regulations 
around cancer registration, there is a lack of good quality 
cancer registration in Europe. A third of European countries 
are affected by this, with 85% of the world’s population 
lacking accurate cancer case reporting (Forsea, 2016). The 
quality of data collection varies across Europe, with the 
highest performance being recorded within Nordic cancer 
registries, where 80% of the registries collect data to report 
epidemiology or for screening evaluation. The lowest 
reporting rates have been recorded in Eastern European 
cancer registries, where only 30% of the registries collect 
data for clinical audits, clinical guidelines or screening 
evaluation (Forsea, 2016; Siesling et al., 2015). Incomplete 
cancer data registration makes it challenging to estimate the 
true burden of disease (Ferlay et al., 2018), affecting cancer 
care, epidemiological research, public health planning and 
policy-making efforts. Furthermore, incomplete registra-
tion affects reporting rates of common as well as rare can-
cers, leading to underestimation of the true incidence of 
these cancers (Ferlay et al., 2018; Trama et al., 2016).

One such example of underreported cancer is basal cell 
carcinoma (BCC; Pukkala et al., 2018), the most common 
skin cancer worldwide (Gancan, 2022). BCC remains 
underreported in many cancer registries (Pukkala et  al., 
2018), where only the first occurrence of BCC or squamous 
cell carcinoma (SCC) is registered per patient lifetime 
(Cancer Research UK, 2014; Goodwin et al., 2004; National 
Cancer Registration and Analysis Service’s Cancer 
(NCRAS), 2022). This underreporting leads to a significant 

underestimation of the disease. For example, in the United 
Kingdom, true incidence is reported to be 50% higher 
(Goodwin et al., 2004; Ibrahim et al., 2023; Kwiatkowska 
et  al., 2021). An exception to the SCC registration is 
Scotland, where registry staff manually register all of their 
cases, leading to a more accurate reporting of this type of 
cancer (Kwiatkowska et al., 2021; Venables et al., 2019). 
Routine data are collected from a variety of sources, includ-
ing hospital records, discharge summaries, radiology 
departments, death certificates (Forsea, 2016), multidisci-
plinary team meetings, pathology reports, treatment records 
and molecular testing results (Henson et  al., 2020). 
Although a variety of data sources are used to report cancer, 
there are shortfalls attributed to the lack of general popula-
tion coverage by the cancer registries. Underdevelopment 
of computer-assisted coding systems in some European 
countries that hinder accurate reporting of cancer data is 
also thought to have a contributory role (Diz et al., 2017).

The European Network of Cancer Registries (ENCR, 
2025) was developed in 1990 to facilitate collaborations 
between existing cancer registries and to improve cancer 
data collection and reporting (Forsea, 2016; Risk et  al., 
2018). One nascent method of improving data management 
is through automated clinical coding, which is a branch of 
computer-assisted coding that facilitates the translation of 
diagnostic unstructured data into a structured text, without 
human intervention (Dong et al., 2022; Stanfill et al., 2010). 
Artificial intelligence (AI) systems, which include several 
different types of algorithms (see Figure 1), have been 
widely used in cancer research (Kourou et al., 2015) to pro-
vide an evidence-based approach for a variety of tumours 
(Musa et al., 2022). AI methods, such as machine learning 

Figure 1.  Diagram representing artificial intelligence algorithms commonly used for automation.
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(ML) and deep learning (DL), have been used for cancer 
identification, screening, treatment and surveillance 
(Kalaiyarasi et al. 2020; National Cancer Institute Artificial 
Intelligence (AI) in Cancer Research, n.d.) and there is a 
growing trend in using these technologies to predict cancer 
outcomes, susceptibility, recurrence and survival (Kourou 
et  al., 2015). DL, a subset of ML, has shown promise in 
improving cancer screening, treatment and surveillance 
(National Cancer Institute Artificial Intelligence (AI) in 
Cancer Research, n.d.).

Natural language processing (NLP) methods, which 
have been developed since the 1940s (Kimia et al., 2015), 
have the potential to advance oncological research, particu-
larly in identifying cancer cases (Yim et al., 2016). These 
systems have also been successfully implemented in other 
domains such as patient prognosis prediction, interpretation 
of genomic data, detection of bacterial infections, discov-
ery of novel biomarkers, radiology report recommenda-
tions, multiple sclerosis traits and the automation of adverse 
drug reaction detection (Kourou et  al., 2021; Yim et  al., 
2016). Overall, these technologies have the potential to sig-
nificantly improve cancer data collection and reporting, 
leading to better cancer care and improved public health 
outcomes. There are a variety of classification systems used 
within the European cancer registries, including Inter
national Classification of Diseases 9 (ICD-9), International 
Classification of Diseases 10 (ICD-10) and International 
Classification of Diseases O (ICD-O), alongside special-
ised systems for coding variables such as TNM staging, 
biomarkers or immunophenotype (Trojanowski et  al., 
2025). ICD-10 and Systematized Nomenclature of 
Medicine – Clinical Terms are used in some of the cancer 
registries, where the automation process is not fully devel-
oped yet. These computer-based technologies commonly 
use rule-based methods to encode free texts into machine-
readable codes. However, the process can be automated 
with the aid of DL methods or NLP when applied to large 
datasets, reducing the labour-intensive work (Chen et al., 
2021; Gaudet-Blavignac et al., 2021).

Automation has been trialed for use in clinical coding 
since the late 1960s, with its use continuing to grow in the 
healthcare industry (Dinwoodie and Howell, 1973 in 
Stanfill et  al., 2010). In recent years, the quality and 
improvement in data collection, incorporating systems for 
staging of disease or ethnicity, has improved reporting of 
statistics on disease (Henson et al., 2020). Auto-processing 
of skin cancer, which involves automatic registration  
of BCC and SCC following extraction from pathology 
reports and nationalisation of cancer registration, has 
resulted in accuracy comparable to manual data extraction 
(Kwiatkowska et al., 2021). Implementation of computer-
assisted coding has led to an improvement in the clinical 
coding accuracy, reducing the errors generated by manual 
coding and increasing the quality of data extracted 
(Campbell and Giadresco, 2020). Performance of the  
automation technologies depend on the complexity of the 
database used, with accuracy reaching 95% for certain 
extraction tasks (Nguyen et al., 2015). Automated clinical 

coding has shown promising results in extracting data from 
pathology reports within the cancer registries (Fabacher 
et al., 2020). Pathology reports tend to be more structured; 
therefore, NLP models generally perform well, with accu-
racy comparable to human extractors (Yu et  al., 2021). 
Increasing implementation of automated clinical coding 
could facilitate clinical coders to focus more on ensuring 
completeness of the data for patients with missing informa-
tion (Fabacher et al., 2020).

Despite the previous work of our group highlighting that 
the United Kingdom and Ireland Association of Cancer 
Registries (UKIACR) members all use some form of auto-
mated reporting, to date there is no literature examining 
specific methods of automated coding within the UK or 
European cancer registries (Ibrahim et  al., 2021). 
Automation technologies have been successfully used to 
detect cancer cases from the electronic health records 
(EHRs), but their role within cancer registries needs to be 
quantified. The aim of this study was to establish the cur-
rent use of automation in cancer registries in order to evalu-
ate the role in cancer data collection.

Method

Materials and data collection

An online electronic questionnaire was designed using 
Google Forms (Google LLC, Menlo Park, CA, USA; see 
Appendix 1, Supplemental file) by clinicians in our research 
group with expertise in NLP, to assess current practice and 
harness opinion on the use of automation within UK and 
European cancer registries. The questions were specifically 
targeted towards the use of automated clinical coding, in 
order to establish the extent, type, common automated tasks 
and human intervention incorporated into current cancer reg-
istry practice. This was a multichoice questionnaire where 
respondents could select all the answers applicable to their 
cancer registry. Where answers were not applicable, respond-
ents could reply as a free-text, represented as “Other” in the 
survey. Likert scales (1–5) were also used for some ques-
tions, ranked 1 (strongly disagree) to 5 (strongly agree). The 
survey was sent to all UKIACR members (NCRAS, Welsh 
Cancer Intelligence and Surveillance Unit, Scottish Cancer 
Registry, Northern Ireland Cancer Registry and National 
Cancer Registry Ireland) and to all European cancer regis-
tries that were publicly contactable on the ENCR website 
(European Network of Cancer Registries (ENCR) [2025]). 
We ran the survey from August to December 2022, with 
three follow-up emails sent until the deadline.

Data analysis

Data analysis was performed using Microsoft Excel 2015® 
version 15.13.3 (Microsoft Cooperation, Redmond, WA, 
USA). We tailored the survey to gain responses from those 
registry respondents who currently used automated clinical 
coding, and those that did not, in an effort to gauge broad 
opinions and perceptions on the technology.
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Ethics approval

Ethical approval was obtained from Swansea University 
Medical School, Wales, UK, prior to the start of the research 
study (SUMS RESC 2022-0059).

Results

Characteristics of participating registries

Online questionnaires were sent to 117 cancer registries, rep-
resenting 33 countries, in order to assess the variability in 
their use of automated clinical coding. In total, 23 responses 
were received from representatives of registries in the United 
Kingdom and Europe, giving an overall response rate of 
19.6%. Representatives of all of the UK cancer registries 
(100%) and 18 of the European cancer registries (16.1%) 
responded. Participating European cancer registries were rep-
resented by Latvia and Sweden in Northern Europe; France, 
Netherlands, Belgium, Germany and Switzerland in Western 
Europe; Italy, Spain and Portugal in Southern Europe and 
Slovenia in Central Europe (see Figure 2); there were no 
responses from registries in Eastern Europe. Registry 
respondents to the survey represented a mix of cancer registry 
leads, statisticians, data analysts, data coordinators, data man-
agers and registry managers (hereafter registry respondents).

Automation inception and technology 
development

Of the participating cancer registries, 12 of 15 (80%) con-
firmed they used automation both in cancer care and skin 
cancer, with Latvia, Canaries and Madrid (20%) not having 
introduced any forms of automated coding for skin cancer 
at the time of the study. There was variability in the intro-
duction of automated clinical coding within the cancer reg-
istries, with the earliest being introduced in the Northern 
Ireland Cancer Registry in January 1994. The earliest 
European cancer registry to introduce this technology was 
the Belgian Cancer Registry in January 2006, with the 
majority of registries using automation since 2015. These 
technologies were developed in-house in seven of the can-
cer registries (46.6%), in partnership with industry in three 
cancer registries (20%), and in partnership with academia 
in one cancer registry (6.6%). The Northern Ireland Cancer 
Registry and NCRAS developed automation tools in-house, 
in partnership with industry and academia, respectively.

The most common forms of automation used within the 
cancer registries were NLP and ML techniques, with some 
other novel forms of automation, as shown in Table 1. 
Medical record linkage used by the Scottish Cancer registry, 
involved matching patient records from various datasets in 
order to build health records, improve the quality of the 

Figure 2.  Heat map showing the UK and European cancer registries that replied to our survey with different colours representing 
the number of respondent cancer registries within each country.
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health data, and to allow retrospective or prospective studies 
to be carried out (Coeli et al., 2015; Sauleau et al., 2005).

Data sources, common tasks used and 
perceived benefits of automation

The most common data sources used by the cancer regis-
tries were pathology laboratory reports in 11 of 15 cancer 
registries (73.3%), followed by discharge summaries in 2 
cancer registries (13.3%), treatment records in 1 cancer 
registry (6.6%), multidisciplinary meeting records in 1 can-
cer registry (6.6%), tumour board reports in 1 cancer regis-
try (6.6%), death certificates in 1 cancer registry (6.6%) 
and outpatients records in 1 cancer registry (6.6%; see 
Figure 3). Automated coding was mainly used for tasks in 
topography and morphology in 11 of 15 cancer registries 
(73.3%), demographics such as age, race, sex and postcode 
in 10 cancer registries (66.6%), primary diagnosis in 6  
cancer registries (40%), staging of disease and surgical  
procedures in 3 cancer registries, respectively (20%) and 
comorbidities, identification of new patients or extraction 
of biomarkers from histopathology reports in 1 cancer reg-
istry, respectively (6.6%; see Figure 4).

Of the sampled cancer registries using automation, 9 
(60%) considered this process best suited for automating 
data collection for pathological diagnosis; 8 for patient 
demographics (53.3%), 5 for epidemiological data (33.3%), 

2 for comorbidities (13.3%), and 1 for tumour or patient 
matching, analysis of collected data or extraction of TNM 
staging and biomarkers from histopathology reports, 
respectively (6.66%). On the other hand, 8 of the 15 cancer 
registries (53.3%) reported that automation was least suited 
for surgical complications, 6 for patient comorbidities 
(40%), 3 for epidemiology data (20%), 2 for pathological 
diagnosis (13.3%) and 1 cancer registry (6.6%) for patient 
demographics, coding for high-quality data, topography 

Table 1.  Different types of automation used by the United Kingdom and European cancer registries.

Country/region Cancer registry Forms of automation

Scotland Scottish cancer registry MRL along with Oracle
Ireland Northern Ireland cancer registry In built system patient and tumour matching rules

National cancer registry Ireland None
England National cancer registration and analysis service NLP, ML, various lookup and mapping tables, other heuristics
Wales Welsh cancer intelligence and surveillance unit NLP
Sweden Swedish cancer registry None
Latvia Latvian cancer registry Uses automation, no response to forms of automation used
France Haut-Rhin cancer registry None
Netherlands Netherlands cancer registry Uses automation, no response to forms of automation used
Belgium Belgian cancer registry NLP
Germany Cancer registry of North Rhine-Westphalia NLP ML
Switzerland Basel cancer registry None

Cancer registry of central Switzerland ML, regular expressions
Aargau cancer registry foundation None

Italy Cancer registry of Puglia-Province of Barletta-
Andria-Trani

NLP

Mantoya and Cremona cancer registry None
Veneto cancer registry NLP
Puglia cancer registry NLP

Portugal North region cancer registry of Portugal None
Spain Registro Poblacional de cancer de la comunidad 

autonoma de Canarias
NLP, SNOMED CT coding in pathological reports, ICD-10 in 
hospital discharge and death certificates

Registro de cancer de Granada None
Registro Poblacional de cancer en la infancia y 
adolescencia de la comunidad de Madrid

NLP

Slovenia Cancer registry of Republic of Slovenia Uses automation, no response to forms of automation used

NLP: natural language processing; ML: machine learning; MRL: medical record linkage; ICD-10: international classification of diseases 10th revision; 
SNOMED-CT: systematized nomenclature of medicine-clinical terms.

Figure 3.  Bar chart demonstrating % out of the 15 cancer 
registries involved in automation and common data sources 
used within the cancer registries.
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and morphology and staging of disease, respectively. 
Interestingly, 6 of the 8 cancer registries (75%) that were 
not involved in automation, reported that these technolo-
gies were better suited for epidemiological data; and 5 
(62.5%) suggested it was better suited for patient demo-
graphics, patient comorbidities or pathological diagnosis. 
Automation tasks were perceived as least suited for surgi-
cal complications in 4 out of 8 cancer registries (50%), 
patient demographics in 2 cancer registries (25%), comor-
bidities in 2 cancer registries (25%) and pathological diag-
nosis in 2 cancer registries (25%).

Of the 15 cancer registries using automation, 13 (86.6%) 
considered it to be time efficient; 3 (20%) that it improved 
the quality of healthcare data; 2 (13.3%) that it provided 

less risk of bias; and 1 cancer registry (6.6%) that it moni-
tored the quality of patient care between different regions 
(see Figure 5). Individual cancer registries indicated that 
automation can create new provisional records, help to 
improve data quality, but does not replace human coders’ 
work. On the other hand, some registry respondents sug-
gested that automation has the potential to automate data 
from underutilised data sources, although this process may 
result in information of poorer quality.

Current performance and usage

Regarding current algorithms used in difficult automated 
tasks, 9 out of 23 registry respondents (39.1%) strongly 
agreed that it needed further development, 8 agreed 
(34.8%), 4 were neutral (17.4%) and 1 disagreed (4.3%); 
and 1 did not provide any answer to this question. Of the 15 
cancer registries using automation, 12 registry respondents 
(80%) confirmed that humans were involved in this process 
to ensure good quality data collection. Only 1 out of 15 
(6.6%) confirmed that they used automation for all the can-
cer registrations, while some cancer registries only used 
automation for certain tasks or certain tumour types.

Discussion

The results of this study provide insight into the current use 
and perceptions of automated clinical coding in cancer reg-
istries across Europe, highlighting the variability in imple-
mentation, data sources used and perceived benefits of 
automation. While there was variability in the use of auto-
mated clinical coding in Europe, the majority of the UK 
cancer registries have already implemented automation in 
cancer care. The most commonly used forms of automation 
were NLP and ML techniques. This study also found that 
the most commonly used data sources were pathology labo-
ratory reports, and the most common automated tasks were 
topography and morphology.

Cancer registration in the United Kingdom has been 
shown to be less accurate (McConnell et  al., 2017). 
Completeness of cancer case identification depends on the 
quality of data sources used and reporting standards within 
the cancer registries (Merriel et  al., 2017). Single data 
sources used within the UK cancer registries, such as death 
certificates, have been shown to miss up to 15% of cancer 
cases. This could be attributed to incorrect registration due 
to inexperienced clinicians or clinical coding errors (Kalsi 
et al., 2021). In England, data provided to the cancer regis-
tries are delivered from different sources. Therefore, man-
ual verification with the assistance of automated tools has 
to be performed in order to ensure accuracy of data collec-
tion (Henson et al., 2020).

ML techniques have shown good performance on single 
cancer pathology reports classification in French cancer 
registries (Fabacher et  al., 2020). ML has also been suc-
cessfully used for the registration of both topography  
and morphology for multiple primary cancers, despite the 
variability in reporting pathology reports (Jouhet et  al., 
2012). These computer-based algorithms have been shown 

Figure 5.  Clustered bar chart illustrating the opinion of the 15 
cancer registries using automation and 8 cancer registries not 
currently involved in automation (described in %) and areas of 
perceived benefit within their cancer registry.
Note: Other: Cancer registries using automation: helps improve data 
quality but it does not replace human coders’ work; only uses person 
data-place of living, sex; to get completeness of data; believe automa-
tion results in less quality information. Cancer registries not currently 
involved in automation: opens up potentially underutilised data sources, 
existing sources do not allow to be prioritised.

Figure 4.  Bar chart showing % out of the 15 cancer registries 
using automation and the common tasks used within their 
registries.
Note: Other: comorbidity, identification of new patients, extraction of 
biomarkers from histopathology reports.
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to improve cancer data linkage in order to match tumour 
records to patients in German cancer registries (Rochner 
and Rothlauf, 2024). The use of multiple sources such as 
operating notes, clinical letters or multidisciplinary team 
reports could increase the completeness of cancer data reg-
istration (Jouhet et al., 2012). Automating data extraction 
could reduce the time of data extraction up to a half com-
pared to manual data extraction, allowing cancer registrars 
to focus more fully on ensuring completeness of clinical 
records (Fabacher et al., 2020).

Manual coding in cancer registries is a costly and time-
consuming process, with up to 15% of full-time equivalent 
budgets being allocated towards it (HLA-Global, 2021). 
Furthermore, manual coding is prone to errors, and limita-
tions on the volume and type of information collected can 
hinder accurate data collection (Kourou et al., 2021). Training 
clinical coders can also be a challenging process, requiring 
several months of education and ongoing training to stay up-
to-date with changing standards (Dong et  al., 2022). To 
address these issues, AI-based tools such as NLP have the 
potential to enhance the efficiency and quality of data extrac-
tion from EHRs, leading to near real-time cancer reporting 
(Mellia et al., 2021). NLP is a less expensive and more objec-
tive method of converting unstructured clinical text into 
usable data, and has the potential to create large datasets 
from EHRs, with the potential to improve cancer registry 
data capture and reporting (Mellia et al., 2021). The develop-
ment and implementation of automated clinical coding tools 
should be a priority for cancer registries worldwide.

While cancer registry respondents to this study reported 
that automation was more time-efficient and improved the 
quality of healthcare data compared to human coding, there 
was still some reluctance to use these technologies without 
human involvement (Stanfill et  al., 2010). Despite their 
efficiency, automation technologies are not without limi
tations, with poor accuracy observed when multiple para
meters are involved (Stanfill et  al., 2010). Of all registry 
respondents to our survey, 39.1% suggested that current 
automation technology requires further development in 
order to be used in complex tasks. Thus, while automation 
has proven to be as efficient as manual clinical coding in 
simple binary tasks (Stanfill et al., 2010), improvements in 
technology and further research are needed to enable its use 
in more complex tasks.

The use of NLP and other forms of automation in clini-
cal coding has shown promising results, but limited exter-
nal validation and a lack of standardised performance 
requirements have hindered widespread adoption in clini-
cal and research settings (Burger et al., 2016; Mellia et al., 
2021). Additionally, specific contextual and vocabulary 
terms present challenges in accurate coding, further high-
lighting the need for ongoing development and improve-
ment of these tools (Kreimeyer et al., 2017). Limitations to 
the widespread adoption of these computer-based algo-
rithms such as regulations, ability to integrate, and ethical 
factors will need to addressed in order to maximise the 
potential of these technologies (Ball, 2021). Despite these 
limitations, the potential benefits of automated clinical  
coding, including improved efficiency, reduced errors, and 

enhanced data extraction, make continued investment in 
these technologies a priority. Developing gold-standard 
clinical coding datasets and training models to adapt to 
changing terminologies will be crucial to improving the 
reliability and accuracy of these tools (Dong et al., 2022). 
In addition, regular validation and publication of outcomes 
by cancer registries involved in automation will promote 
wider adoption and knowledge-sharing among the medical 
community. Ultimately, improved cancer data capture and 
analysis through automation has the potential to directly 
improve patient care and outcomes.

Strength and limitations

This study achieved a satisfactory response rate of 100% 
coverage in the United Kingdom, but only 16.1% coverage 
across mainland Europe, which may be attributed to the 
inability to contact all cancer registries within the ENCR. 
Only two countries in the Eastern and South-Eastern Europe 
with publicly contactable details on the ENCR website were 
contacted, but neither replied. Another limitation to this 
study was that the survey was designed in English, which 
could have represented a barrier for the Slavic language-
speaking population. Also, certain aspects related to report-
ing pathways, funding resources, legislation regarding 
cancer data registration were not explored in this study. As 
there are currently no guidelines in place, we have contacted 
ENCR for recommendations on the use of automation, 
which is an area of interest they will need to explore in the 
future. This study found that the majority of respondents 
already used automation in their registries, potentially intro-
ducing a response bias as non-automated registries may 
have been less likely to respond. To address this bias, a sepa-
rate survey was designed to capture the views of non-auto-
mated registries on the use of automated clinical coding. 
Nonetheless, these findings may underrepresent the preva-
lence of automated clinical coding use in Europe.

Conclusion

In past decades, computer-based algorithms have been used 
for automated clinical coding in the UK and European can-
cer registries in different forms; however, to the best of our 
knowledge, there is no current literature underpinning the 
specific methods and role of automation within these regis-
tries. Our survey has shown that pathology reports were the 
main data source used to automate cancer data extraction in 
the cancer registries; therefore, standardised datasets and 
accurate reporting could leverage a wider application of 
automated clinical coding. This transition to full automa-
tion requires ongoing monitoring and evaluation to address 
any issues that may arise. Implementing automated clinical 
coding in health care could improve data quality and accu-
racy, save resources and accelerate research. Within the 
cancer registries, rigorous training of these computer-based 
algorithms is needed in order to overcome challenges to 
performing certain tasks and to maximise their potential in 
extracting data in order to improve cancer case capture. Our 
study was the first systematic investigation into the usage 
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of automation within UK and European cancer registries, 
highlighting the underutilised potential of coding unstruc-
tured clinical data from EHRs. By delivering quantifiable 
and reportable results, automation has the potential to 
transform cancer research and patient outcomes.
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