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Abstract

In recent decades, the biomechanical and biophysical properties of human red blood cells
(RBCs) have been greatly explored by numerous researchers for diverse reasons. In
normal physiological conditions, RBCs undergo large deformation when traversing thin
microcapillaries, however, upon infection by different blood-related diseases such as
malaria, sickle cell anemia and diabetes mellitus, they experience impaired deformability.
Several experimental and numerical techniques have been proposed to elucidate the
primary reasons for the observed impaired deformability and increased stiffening of RBC
membrane. Multiscale modelling as a candidate numerical technique for this purpose is
of particular interest since it incorporates more intrinsic details such as cellular
architecture, microscale defects and substructural changes into its constitutive
formulation, often resulting to improved accuracy and better computational efficiency.
This chapter discusses some of the recent advances in multiscale modelling of the
biomechanical properties of red blood cells. These advances include, among many others,
efforts to accurately predict the biomechanical properties of healthy and diseased RBCs
using a multiscale meshfree modelling framework. It also provides insights into how
microstructural and temperature changes influence their deformability, pathogenesis,
and pathophysiology. Furthermore, some perspectives on the multiscale modelling of
biomechanical behaviors of RBCs are presented.
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1. Introduction

Hematological fluid in animals, known as blood, serves the vital function of conveying
essential elements like nutrients and oxygen to cells while carrying away metabolic
byproducts from these cells. This intricate and distinctive fluid can be conceptualized as
a blend of Red Blood Cells (RBCs) or erythrocytes, White Blood Cells (WBCs) or
leukocytes, platelets, and blood plasma within a non-Newtonian fluid. Particulate
constituents, especially RBCs, make up over 99% of the material in blood, contributing to
approximately 40-45% of its volume (Kloppel & Wall, 2011). Furthermore, indications
point to the fact that the characteristics and conditions of the cells play a crucial role in
shaping the collective behavior of the blood.

RBCs are biconcave, elastic, and non-nucleated, with diameter and thickness of about 8
um and 2.5 um, respectively. The main component of their membrane is a fluid-like lipid
bilayer that is fundamental to resisting bending. Additionally, there is an interconnected
cytoskeleton based on spectrin, which not only helps maintain the cell's shape but also
aids in its mobility. The connections between the lipid bilayer and spectrin domains are
facilitated by transmembrane proteins. Specifically, the cytoskeleton structure of the RBC
membrane can be described as a two-dimensional (2D) hexagonal arrangement,
comprising spectrin tetramers and actin complexes (Pan et al., 2018). Biomechanical
properties of the membrane are widely recognized as vital for maintaining cellular
functions due to its large reversible deformation capability while traversing vessels
during microcirculation. Nevertheless, deviations in these properties are intricately
associated with various physiological and pathological processes, potentially leading to
the development of diverse blood-related diseases, whether hereditary or non-
hereditary.

Among these, malaria stands out as one of the most significant blood-related infections,
which claims the lives of more children worldwide than any other infectious disease.
According to the World Malaria Report 2024 published by the World Health
Organization, approximately 263 million new cases of malaria (range 238-294 million)
and 597,000 malaria deaths (range 548,000-723,000) were reported worldwide in 2023,
with the African region accounting for most global cases (up to 94%). Following invasion
by the malaria parasite, the host's RBC membrane experiences a diminished
deformability and a reduced capability to regain its initial shape when subjected to fluid
shear stress in vitro (Cranston et al., 1984). This alteration leads to a notable elevation in
shear modulus, rigidity, and cell viscosity (Suresh, 2006), causing an impediment in the
microcirculation process. Consequently, this disruption contributes to the dysfunction of
various organs within the human body. In spite of the progress in understanding malaria



pathogenesis, the primary mechanism responsible for the loss of deformability remains
unclear.

To understand this phenomenon, numerous experimental methods have been proposed
to analyze and mimic the behavior, motion, and deformation of healthy and diseased
RBCs within microcapillaries. Previous studies in literature have shown that the
deformability of the red blood cell (RBC) can be assessed in terms of its membrane elastic
and mechanical behaviors. This achievement was realized through various experimental
techniques, including atomic force microscopy (Dulinska et al., 2006; Kuznetsova et al.,
2007), micropipette aspiration (Chien et al., 1978; Evans, 1973), RBC edge flicker
microscopy (Strey et al., 1995), microfluidic experiments (Franke et al., 2011; Quinn et al.,
2011), tracking of fluorescent nanometer beads attached to RBCs (Lee & Discher, 2001)
and RBC deformation by optical tweezers (Henon et al., 1999; Lenormand et al., 2001;
Dao et al., 2003; Mills et al., 2004; Tan et al., 2009).

Nevertheless, computational models have been developed in recent years as a promising
way for studying the structural, mechanical, and rheological properties of RBCs both in
health and disease. These numerical approaches can be categorized as particle-based,
continuum-based, and multiscale models. In particle-based methods, the RBC membrane
structure is depicted using a network of springs and particulate assembly. The key benefit
lies in the straightforward mathematical representation, enabling the avoidance of
intricate solid mechanics formulations in their numerical implementations. Nevertheless,
the spring constant values are empirical, and the mechanical properties are highly
influenced by the configuration of the network (Imai et al., 2016). Discher and colleagues
(Discher et al., 1998) examined several elastic characteristics of the RBC spectrin network.
They identified three structural models, specifically the stress-free model, the prestress
model, and the condensed model. Additionally, the utilization of particle-based
techniques, such as the approach associated with coarse-grained molecular dynamics (Li
et al., 2005), dissipative particle dynamics (Pivkin et al., 2008; Fedosov et al., 2020), the
moving particle method (Tsubota et al.,, 2006; Ahmadian et al., 2011), the lattice
Boltzmann method (Kriiger et al., 2011), and the smoothed particle hydrodynamics (SPH)
method (Hosseini and Feng, 2009), has been extensively explored for diverse
investigations into RBC properties.

On the other hand, within continuum-based techniques, the membrane is discretized
through a triangular mesh, where the equations of solid mechanics governing the
membrane are solved. This method proves valuable for determining membrane tension
in the presence of fluid flow. Nevertheless, it frequently suffers from numerical
instabilities stemming from membrane compression. Various researchers have



endeavored to incorporate a bending resistance into the model to counteract this
instability, but a conclusive solution has not been reached to date. Among all the existing
state-of-the-art literature, it could be highlighted that the work of Hansen et al., (1996)
established a continuum model for predicting the bulk elastic shear modulus and the area
expansion modulus of RBC membranes. In this line, Dao and co-workers (Dao et al., 2003)
studied the deformation behavior of a single RBC by simulating the optical tweezers
experiment using the finite element method, and Besides, Kloppel and Wall (Kloppel and
Wall, 2011) developed a novel two-layer, coupled finite element approach for modelling
the nonlinear elastic and viscoelastic behavior of RBC membrane.

Finally, in multiscale-based models, the benefits of atomistic simulation and continuum
modelling are integrated. This involves utilizing a particle-based model to calculate
biomechanical properties of the membrane, such as strain energy density, stress tensors,
and tangent modulus matrix (Ademiloye, 2017). Subsequently, these computed
parameters are utilized to establish the constitutive material response, which is then
applied in numerical simulations within the framework of continuum mechanics. As an
example of this approach, Dupin and his colleagues (Dupin et al, 2007) implemented a
3D Lattice Boltzmann Method to investigate the dynamics of healthy, malaria-infected,
and sickle RBCs. They modelled the elastic properties of the cell membrane as a network
of springs and represented the surrounding fluid using a Eulerian Navier-Stokes solver.
A different course of action was proposed by Fedosov et al. (2011), who employed a
dissipative particle dynamics (DPD) method to model both RBC mechanics and
surrounding flow. Hartmann (2010) used a multiscale model to simulate optical tweezers
experiments to study mechanical properties of RBC.

Ademiloye and co-workers (Ademiloye et al., 2015) developed a 2D atomistic-continuum
model based on the higher-order Cauchy-Born rule. This work improved the previous
studies in literature (Wang et al., 2014) by considering all energy contributions in the RBC
membrane and subsequently studied the effect of area and volume constraint coefficients
on the elastic and mechanical properties of RBC membrane. To extend the utility of the
proposed approach for large deformation studies on the RBC membrane, a new
formulation that models the RBC as a 2D surface within a 3D space whilst accounting for
the precise membrane thickness has also been proposed (Ademiloye et al., 2017;
Ademiloye et al., 2018). More recently, Ma et al. (2022) employed a two-step multiscale
computational framework based on coarse-grained molecular dynamics to probe the
viscoelastic properties of the surface-altered RBCs in aging and mechanical fatigue.



In the remaining section of this chapter, we focus on modelling the biomechanical
properties of RBC membrane in healthy and diseased conditions based on a three-
dimensional (3D) multiscale meshfree framework.

2. Method and Models
21. RBC Membrane Structural Model Description

The RBC membrane structural model is defined based on the microstructural pattern of
its underlying spectrin cytoskeletal network, in which a representative cell is selected as
a symmetrical hexagon. The selected representative cell is composed of seven junction
complexes and six spectrin links. All spectrin links in the representative cell are assumed
to have the same initial length L;, persistence length p and maximum contour length L, 4,
at any point in time, as shown in Fig. 1 below.

Figure 1. Representative cell of the RBC membrane showing junction complex I,
spectrin link length L; and area (2;. A, is the area of triangle plaquette formed by three
vertexes. The membrane bending energy Ejp.pnqing due to two adjacent triangle plaquettes
can be defined in term of an instantaneous curvature angle 6.4 using normal vectors n
and ny (Source: Ademiloye et al., 2017, permission requested)

2.2. Multiscale Cauchy-Born RBC Model

The construction of a 3D multiscale hyperelastic constitutive model based on the first-
order Cauchy-Born rule (Tadmor et al., 1999) is concisely presented. The first-order
Cauchy-Born rule was utilized to derive the continuum material properties based on an



underlying atomistic model in a physically consistent way such that the relationship
between the deformed and undeformed lattice vector between two nodes in terms of the
tirst-order deformation gradient tensor is defined as follows:

TU ~ Grad . RI]I (1)

where Grad = G;je; ® e;, and R;; denote the first-order deformation gradient tensor and
the undeformed lattice vector in the material configuration, respectively. The
corresponding lattice vector in the deformed configuration is represented by 7/, (or L;).

In addition, the first-order deformation gradient tensor Grad can be defined as

Grad(i,]) = 2—;, where i,] = 1,2,3. X = (X1, X3, X3) is the coordinate of a nodal point in
the material configuration, and x = (x4, x,, x3) denotes its corresponding spatial position

after the application of external loading.

The strain energy density function (Wr) corresponding to the energy at a junction
complex I in the representative cell is computed as a function of the total coarse-grained
Helmholtz free energy density (Wang et al., 2014; Ademiloye et al.,, 2015), assumed

membrane thickness, h,, and average area per junction complex in the original

2
configuration, €;, calculated using \/% This can be expressed mathematically as

follows:

ho ho [1 1
Wr = WT(Grad) = -Q_IVI = -Q_I [E Z?:l Ewic (1"1]) + 52)6:1 C/Ay + Zi:l Ebending (9919)]-
(2)

We defined the expression %Z?zl Ewrc(r;))in Eq. (2) above as the energy due to the

entropic free energy stored in the underlying spectrin protein network, in which the
component Ey ¢ is a function of the equilibrium spectrin link length, r;; and is given by

kBT Linax(3x5-2x3)
4p (1-Xxo)

Ewic(Ly) = 3)

where x, is the ratio of the maximum contour length to the equilibrium length of the
spectrin links, T is the temperature and kj is the Boltzmann constant with a value of
1.38 x 102 J K. Secondly, the expression §Z$=1 C/A, represents the hydrostatic elastic
energy stored in the lipid bilayer and other protein materials. A, denotes the area of each
triangular plaquette in the representative unit cell and C is a constant, calculated using:

_ 3V3kpTL3axx5(4x5—-9x0+6)
- 64p(1—x0)2

C

(4)



Lastly, energy contributions from the bending energy term in Eq. (2) due to the
interactions between neighboring triangular plaquettes can be obtained using the
expression in Eq. (5) below,

Ebending = Eb Z(g,ﬂ)[l - COS( 9(;19)]' )

where k, is the RBC membrane bending coefficient, given by %, kp is the bending

stiffness of the lipid bilayer, taken to be 2.4 x 107*? ], and the sum runs over all pairs (¢, 9)
of neighboring faces of the tessellated membrane surface. 6.9 is the instantaneous
curvature angles between two neighboring triangles, computed using the surface normal,
n. and ny, as illustrated in Figure 1 above. The cosine of the instantaneous curvature
angle can be computed using the dot product of the normal vectors.

2.3. RBC Membrane Constitutive Relationship

In this subsection, we present a simplified approach to obtain the constitutive responses
(namely, the first Piola-Kirchhoff stress tensor and the tangent modulus matrix) of the
RBC membrane based on the relationships between the geometry of the representative
cell, the strain energy density function expressed in Eq. (2) and the first-order Cauchy-
Born rule given in Eq. (1) above.

The first-order Piola-Kirchhoff stress tensor P and the tangent modulus matrix M are the
tirst- and second-order derivatives of the strain energy density function (Wr) (introduced
in the previous subsection) with respect to Grad, respectively, and can be calculated using
(Xiang & Liew, 2013):

ow: 22w
T and M= L

P= dGrad dGrad? ’ (6)

In order to construct the multiscale constitutive relationship for the RBC membrane, we
define the coordinates of the junction complexes at the end of the spectrin links in the
original reference configuration in vector form as

R, = (X1,X3,X3, X7, X3, X3, X7, X3, X3, X1, X3, X3, X, X3, X3, X0, X3, X9)",  (7)

and the coordinates of the junction complexes at the end of the spectrin links in the
current configuration after deformation computed using Eq. (1), is stored in vector form
as

— ¢l .1 .1.2 .2 .2 .3 .3 .3 .4 .4 4 .5.5.5 6 .6 67T
r;= (x1,x32,X3,X1,X3,X3, X1, X3, X3, X1, X3, X3, X7, X2, X3, X1, X2, X3)" . (8)



Following the computations above, the deformation gradient tensor and the first-order
Piola-Kirchhoff stress tensor are assembled into vector form as follows

Grad = (G141, G2, G13, G21, G2, G23, G31, G3p, 633)T/ )
P = (P11, P13, Py3, P21,Pzz;st;P31:P32:P33)T- (10)

Lastly, the stress vector and the tangent modulus matrix can be calculated using the
expressions below:

ow or ow:
P = [ T] = [ I ] . [ T] , (11)
dGrad 9x1 dGrad 9x18 al‘” 18x1
T N o
~ loGraa? 9%9 ~ loGrad 9%18 oryy? 18x18 dGradlgx1g’

In summary, this section introduces the 3D multiscale hyperelastic constitutive model
based on the first-order Cauchy-Born rule, which was used to link the deformation of the
atomistic scale representative unit cell of the RBC membrane to the continuum level. The
coarse-grained Helmholtz free energy density was then used to define the strain energy
density function of the RBC membrane. The current multiscale approach offers several
advantages since it avoids the need for empirical constitutive relationship on the
macroscale since the precise material properties and constitutive relations are computed
directly from the atomistic representative microstructure.

2.4. Nonlinear 3D Multiscale Meshfree Framework

The three-dimensional (3D) nonlinear multiscale meshfree analysis framework for the
numerical simulation of the large deformation behavior of RBC membrane in healthy and
diseased conditions is presented here. As mentioned previously, the RBC membrane is
treated as a 2D surface embedded in a 3D space, therefore, all nodes have three degrees
of freedom. For our meshfree computations, the 3D improved moving least-square
(IMLS) shape function with the linear basis function and the cubic spline weight functions
with a circular support domain were employed (Zhang et al., 2008; Zhang et al., 2019).

The deformation of a material particle X € 2, (where (2, denote the region originally
occupied by the body) at time t is described by x(X, t) through the mapping functions ¢

1S

x(X,t) = u(X,t) + X, (13)



where u is the displacement of this material particle. The first-order deformation
gradients (Grad) can be defined as

0x du
Grad = X X + L (14)
The displacement of the deformed RBC membrane relative to the undeformed RBC

membrane when loading is applied can be approximated using
u'(x) = XiL; ¢ili(x) = (0T, (15)

where U represents the nodal parameter, ¢; denotes the meshfree shape function
obtained from the IMLS approximation at the ith node and N is the total number of nodes
covered by the compact support domain. For the sake of simplicity, the superscript 1 in
Eq. (15) signifying an approximation is dropped.

The support domain for all the nodes discretizing the problem domain was obtained by
tirst implementing a k-nearest neighbor algorithm to compute the distance between the
node of interest and the selected nearest node (d;). The radius of the support domain
(dm) can therefore be obtained by multiplying the distance, d; with the meshfree scaling
parameter d,,qy.

The first-order deformation gradients (Grad) corresponding to the displacement
gradients in Eq. (16) are approximated using Eqs. (14) and (15) as

N
Grad = z ¢i,Xai + l,
i=1
=YV i1 bip Pizl"Q +], (16)

where ¢; x(X = 1,2,3) is the first-order derivative of the meshfree shape function with
respect to the original undeformed configuration.

The total energy of the system can be calculated as

1= fQo Wr(Grad)dQ — fQo u-bydQ— [, u-tyds, (17)

where Wr(Grad) is the atomistic scale strain energy density function, computed with the
aid of the representative cell as discussed in section 2.2 and t§ represents the first-order
stress tractions on the surface of the original domain. Contributions from the body force
term (by) is neglected. The Ritz parameters are adjusted such that dI1= 0. The weak form
of the governing equation can be written as



fQo §Grad” - PdQ — [, 6u” - t5dS = 0. (18)

Following the discretization of the nonlinear continuum model in Eq. (18) above, a system
of nonlinear algebraic equations is obtained. The use of an iterative procedure is
necessary to obtain a solution for such equations. Furthermore, owing to the geometrical
nonlinearity and the need to guarantee the second-order convergence rate, a consistent
linearization of the weak form is also essential. To achieve this, the vector of unknown
stress components at time ¢ + At, denoted by P, ,, is decomposed into a stress vector P,
at the time ¢ in which the stress components are known, and AP,;; which contains the
hitherto unknown components of the stress increment. The scalar variable t was used as
a pseudo-time to parameterize sequences of configurations (i.e. quasi-static
deformations).

The stress at the (n+1)th iterative step can be obtained by
Pry1 =Py + APpyyq. (19)

Substituting the additive decomposition in Eq. (19) above into Eq. (18), the weak
equilibrium equation at this iterative step can be rewritten as

fQo 8Gradj, - AP,,1d0Q = [, 6uj,, - t;dS — fQo 5Grad?,; - P,dQ. (20)

At the iteration step n+1, by linearizing the equation above (Yan et al., 2012), we obtain
Egs. (21) and (22) below

Supp1 = (U, + Auyyg) = 6AUg, g, (21)
éGrad,,,, = §(Grad,, + AGrad,,,,) = §AGrad,,,;. (22)
Based on Egs. (21) and (22) above, Eq. (20) can be written in the form

Joy, 8AGrady,; - AP,,,dQ = [, 6AL,, - t§dS — [, SAGrad],, - P,dQ, (23)

where AP, ,; = M - AGrad,;; and tangent modulus matrix M is the constitutive material
matrix formulated using the first-order Cauchy-Born rule and the atomistic scale strain
energy density function. Therefore, Eq. (23) can be rewritten as

fQo §AGrady,, - M- AGrad,,, dQ = [, §Auj,, - t;dS — fQo SAGrad?, , - P,,dQ.
(24)



The Ritz trial function, which corresponds to the displacement increment (Au,,1) in Eq.
(24) of the evaluating point, can be approximated using the IMLS meshfree shape
function ®(x) and nodal parameter At 4, as

Alyyq = (Auy, Aup, Aug)" = ®AT,, 4, (25)
where
¢+ 0 0 ¢ 0O 0O ¢y 0 O
=10 ¢ 0 0 ¢ O 0 ¢ O / (26)
0 0 ¢, 0 0 ¢, ~ 0 0 o¢n (3x3N)
Ay = [Allyy Ally, Al Allyy Allyy Allpg -+ - -+ Allyy Allyg Aﬁ1\13](T1><31v)-
(27)

Using the IMLS approximation, the deformation gradient increment can be calculated as
AGrad,; = LAu,; = L&AU,,,, (28)

where L is an assembled differential operator matrix with respect to the reference

configuration
F] F] F]
. ox, 9K, 0 0 0 0 0 0
F) a a
a a a
0 0 0 0 0 0 X ox, 9K,

The displacement vector and its variation are approximated by substituting the IMLS
shape function into the linearized total energy functional given in Eq. (24) and applying
the Ritz minimization procedure (Lim et al., 2005; Zhang et al., 2015) as shown in Eq. (30)
below:

Mo, = Au, i=12N, (30)

The resulting incremental system equation can be written as
Kn+1AUp11 = Foy, (31)

where Ali,;,; contains the nodal parameters of all meshfree nodes. K,,; and F,;4
represent the global stiffness matrix and non-equilibrium force vector, and are expressed
as follows



Kps1 = Jo [(LP)M(LD) dO, (32)

_ pext int
Fn+1_ n+1 -~ Tn+1s (33)

where the external force vector F¢Y; and internal force vector F% are given by

FEt = [ ®TEdS, (34)
Rt = [, (L®)TP,dO. (35)

The stiffness matrix in Eq. (32) and the internal force vector in Eq. (35) are integrated
using the Gauss quadrature integration technique while the external force vector in Eq.
(34) is computed using the direct nodal force application technique. Owing to the
computational efficiency of the Newton approach, it was adopted in this study to solve
the incremental equilibrium equation, however, the stiffness matrix may become non-
positive definite. This drawback can be resolved by simply replacing K, 1 with K, +
klg, where k is a positive number that is slightly larger than the magnitude of the most
negative eigenvalue of K,.;, and Iy is an identity matrix. After a few cycles of
replacements, K,,,; become positive definite and the standard Newton-Raphson method
resumes.

3. Results and discussion

3.1. Simulation Procedure

In order to study the large deformation behavior of the RBC membrane in healthy and
malaria-infected conditions, we employed the meshfree framework described in section
2.4. above. Here, we simulated the optical tweezers experiment. The optical tweezers
experiment is a type of cell stretching experiment in which a single RBC with silica beads
attached to its ends is trapped by means of two laser beams. The trapped blood cell is
stretched by pulling one of the silica beads, using the laser beam, in the axial direction
while the other bead is fixed (Figure 2). The RBC is stretched under the influence of an
increasing force, which is dependent on laser power, usually ranging from zero to about
200 picoNewton (pN). Once the cell is stretched, the axial (D) and transverse (Dr)
diameters, corresponding to the applied stretching force, are recorded.



Free silica bead for

Silica bead adhered trapping and subsequent
to the glass slide stretching via a laser
N < beam
—F +— Dr — +F
Do Dy
(a) (b)

Figure 2. Schematic drawings showing the (a) experimental setup of the optical tweezer
with the silica beads attached to the RBC ends, and (b) deformed configuration of the
RBC stretched with equal and opposite forces representing the response of the fixed and
movable silica beads (Source: Ademiloye et al., 2018, permission requested).

3.2. Simulation Parameters

The normalized geometry of the healthy and malaria-infected RBC membrane, used for
numerical simulations in this study, was obtained using the expression in Eq. (36), where
x,y and z represent the coordinates of a point cloud representing the RBC surface in a 3D
space, while ¢y, ¢;, and ¢, denote the RBC shape coefficients (Evans and Fung, 1972):

z= 405X 1—(x2+y2) X [co + c;(x? + V%) + c,(x? + y?)?]. (36)

The biconcave RBC geometry was obtained with shape coefficients ¢, = 0.207, ¢; = 2.002
and ¢, = —1.123, while nearly spherical cell geometry was obtained with shape
coefficients ¢, = 1.70, ¢; = 0.00 and ¢, = 0.00. The healthy RBC was discretized with
N, = 162 meshfree nodes and 766 quadrilateral background cells with four (4) Gauss
points in two directions were employed for the numerical integration of Egs. (32) and
(35). For this study, no displacement boundary condition was enforced since the problem
domain is a 2D manifold without boundaries, however, in order to ensure that the
numerical simulations remain numerically stable and accurate, we applied equal and
opposite forces on the two ends of the single cell, following Newton’s third law of motion.

Table 1 shows the set of RBC membrane geometry and microstructure parameters
employed in our studies. These parameters are dependent on the pathophysiological
condition of the cell membrane. It is believed that as the malaria parasite develops the
spectrin link length and persistence length, respectively, increases and decreases.



Table 1. Numerical simulation parameters for healthy RBC (hRBC) and malaria-infected
RBC (iRBC) membrane in different intraerythrocytic developmental stages, namely ring
stage (Pf-Rrbc), trophozoite stage (P/~tRBC) and schizont stage (Pf-sRBC). (Source: Zhang

et al. 2017, permission requested)

RBC membrane geometry and microstructure parameters

Cell condition /

. . Equilibrium spectrin ~ Persistence =~ Maximum contour =~ RBC diameter
infection stage

length, L (nm) length, p (nm)  length, L4, (nm) (um)
hRBC 87.0 8.5 238 7.820
Pf-rRBC 134.85 7.5 238 7.480
PftRBC 139.2 6.0 238 7.260
Pf-sRBC 160.95 4.0 238 7.219

All numerical simulations were computed using our in-house meshfree code developed
in MATLAB®. For the meshfree simulations in section 3.3, the following additional
parameters were used: bending coefficient, k, =277 x 10719, temperature T = 300 K,
assumed membrane thickness hy = 12nm, and meshfree scaling parameter, d,,,, is taken
as 1.462. Interested readers are referred to the details presented in Zhang et al. (2017).

3.3. Large Deformation Behavior of RBC membrane in healthy condition
Based on the optical tweezer experiments described in section 3.1, we conducted
numerical experiments on healthy and malaria-infected RBCs using our proposed
meshfree framework. As shown in Figure 3, the stretching response obtained using our
proposed meshfree method is in good agreement with the optical experiments. A
comparison between the 3D multiscale meshfree solution and existing methods, namely,
spectrin level modeling and the quasi-continuum meshfree simulation, are also
presented. This improved prediction can be attributed to the performance of the IMLS
meshfree approximation, which requires a smaller number of meshfree nodes in the
problem domain and the inclusion of membrane thickness in the formulation (Ademiloye
et al., 2018).
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Figure 3. Variations of axial and transverse diameters of the healthy RBC as a function of
stretching force in comparison with optical tweezers experiment (Mills et al.,, 2004), quasi-
continuum (QC) meshfree method (Wang et al. 2014), and spectrin level modelling approach (Li
et al. 2005). (Source: Ademiloye et al. 2018, permission requested).



The nonlinear formulation employed in the current multiscale meshfree scheme also
contributes to its improved prediction, especially in the large deformation region. As
shown in Figure 3, our result closely follows the nonlinear trend observed in the
experiment and gives better prediction in the large deformation region between 50 pN
and 180 pN. Furthermore, the transverse diameter of the RBC membrane was well
captured in our numerical experiments in comparison to the other methods. This could
be attributed to the inclusion of the precise membrane thickness in our current
formulation. It is opined that the current approach to obtain a more realistic prediction
of the behavior of RBC membrane in thinner microcapillaries.

We also performed sensitivity analysis on the effect of some important physiological and
microstructure parameters, namely temperature, spectrin link length and persistent
length. As shown in Figure 4, we can observe that an increase in physiological
temperature leads to a corresponding decrease in the deformability of the healthy RBC
membrane in terms of its axial and transverse diameter stretch (deformability) decreases.
This observation can be attributed to the gradual denaturation of RBC membrane protein
with an increase in temperature, thus leading to an increase in the membrane rigidity.
Interestingly, we observed that the change in temperature has a more noticeably
influence on the axial diameter of the RBC membrane in comparison to that of the
transverse diameter. Figure 5 shows that there is an increment in the deformability of the
RBC membrane as the initial equilibrium and persistence lengths of the spectrin links
increase. This finding is also in complete agreement with the observation in our previous
study based on a semi-analytical method (Ademiloye et al. 2015) that the overall rigidity
of the RBC membrane decreases with the increase in microstructure parameters
especially the persistence length, p.
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Figure 4. Variations of axial and transverse diameters of the healthy RBC as a function of
stretching force using different temperatures in comparison with optical tweezers experiment
(Mills et al., 2004), and spectrin level modelling approach (Li et al. 2005) at 300 K. (Source:

Ademiloye et al. 2018, permission requested).
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Figure 5. Variations of axial and transverse diameters of the healthy RBC as a function of
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(Mills et al., 2004), and spectrin level modelling approach (Li et al. 2005) at 300 K. (Source:

Ademiloye et al. 2018, permission requested).



3.4. Numerical Study on the Large Deformation Behavior of Malaria-Infected

Red Blood Cell Membrane

As previously stated, it has been widely established that the deformability of RBC
membrane is reduced in malaria-infection. Of all four known species of malaria parasite
that infect humans, Plasmodium (P.) falciparum has been identified as the most prevalent
and lethal malaria parasite (Udeinya et al, 1981). Malaria-infected RBCs (iRBCs)
progressively lose their deformability as well as the ability to recover their biconcave
shape as the merozoites mature during the different intraerythrocytic developmental
stages, namely ring stage (Pf-rRBC), trophozoite stage (P/~tRBC) and schizont stage (Pf-
sRBC), resulting in a significant increase in shear modulus, rigidity and cell viscosity
(Suresh, 2006). Using the technique described in section 3.1, the large deformation
behavior of iRBC membrane was investigated by means of numerical simulation of the
optical tweezer experiments. The pathophysiological parameters representing the iRBC
membrane in our constitutive model as the malaria-infection progresses are presented in
Table 1.

Based on the optical tweezer experiments (as shown in Figure 2), the relationship
between varying applied stretching force and changes in axial and transverse diameters
of iRBC membrane in Pf-rRBC, Pf-tRBC and Pf-sRBC stages are shown in Figures 6, 7 and
8, respectively. These numerical results are also presented in comparison with
experimental and numerical results in the literature. Our results obtained using a
multiscale meshfree simulation agree well with the experimental results and data in the
literature (Suresh et al., 2005).
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Figure 6. Variations of axial and transverse diameters of a malaria-infected RBC membrane

during the ring stage (P/~rRBC) as a function of stretching force in comparison with experimental
data (Suresh et al., 2005) and DPD simulations (Fedosov et al., 2010). (Source: Zhang et al. 2017,

permission requested).

Although it has been suggested in literature that the morphology of RBCs changes from

biconcave to nearly spherical shape as malaria infection progresses, a comparison

between the numerical results obtained using a biconcave and nearly spherical geometry

are presented in Figures 7 and 8 for the trophozoite and schizont infection stages. Our



numerical results show that a more accurate prediction of the large deformation
behaviors of the iRBC membrane in terms of its transverse diameter can be obtained if
the cell geometry is assumed to remain biconcave as infection progresses. Here, we
suggest that since the precise shape of iRBC membranes can vary significantly, the
biconcave cell geometry, which is well established and known, should be employed for
numerical simulations to minimize the error associated with geometry uncertainty.
Furthermore, by using the current multiscale modelling approach, computational errors
associated with the assumption of iRBC membrane properties such as Young’s modulus
and shear modulus as well as problem domain approximation can be avoided since the
constitutive responses of the iRBC membrane were computed from the microstructure
parameters of the spectrin network rather than assumed material properties.
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4. Concluding Remarks and Prospects

In this chapter, a meshfree multiscale modelling technique for investigating the
biomechanical properties of human red blood cells (RBCs) is presented. This approach
combines the accuracy of atomistic level modelling by accounting for microscopic
properties of RBC membrane in healthy and diseased conditions as well as the reduced
computational cost associated with continuum level modelling. Furthermore, the precise
effect of membrane thickness is directly incorporated into the formulation, thus ensuring
that the RBC membrane is correctly treated as a 2D surface in a 3D space. The results
obtained using the current approach are in excellent agreement with experimental
studies in literature and it provides specific insights into the precise influence of
microstructural alterations on the macroscale behavior of RBCs during large
deformation.

Despite the overall advantages of the proposed multiscale technique, there are several
opportunities for further developments. For instance, the current approach is purely
mechanistic, which must be coupled with appropriate kinetic models in order to provide
insights into the influence of biochemical alterations on the deformability of RBCs in
metabolic diseases such as Type 2 diabetes mellitus. Moreover, the improved element-
free Galerkin method employed in the current formulation could limit the use of the
multiscale technique for studying RBC dynamics in blood flow. Meshfree methods are
generally more computationally expensive due to their shape function construction cost.
In addition to this, the essential boundary conditions in meshfree methods cannot be
directly imposed as in the finite element method without additional intervention due to
their lack of Kronecker delta property.

Finally, the construction of a linkage between the atomistic and continuum levels was
obtained using the first-order Cauchy—Born rule, which depends on the deformation
gradient of the representative unit cell. The higher-order Cauchy—Born rule could be
employed to correctly describe the bending effect and buckling deformation of the
membrane (Ademiloye et al., 2015; Sunyk & Steinmann, 2003). Furthermore, the use of
machine learning could be employed to explore the linkage between different scales and
predict the behavior of RBCs in different pathological conditions, if there is enough data
available. By combining machine learning with multiscale modelling (Nguyen et al.,
2023), new insights in terms of features and correlations across different scales can be
obtained and the cost of computations can be reduced using surrogate models for
approximation of complex simulations. This combination could create a pathway for



improved diagnostics as well as the development of new therapeutics for RBC-related
disorders.
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