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Abstract 

In recent decades, the biomechanical and biophysical properties of human red blood cells 

(RBCs) have been greatly explored by numerous researchers for diverse reasons. In 

normal physiological conditions, RBCs undergo large deformation when traversing thin 

microcapillaries, however, upon infection by different blood-related diseases such as 

malaria, sickle cell anemia and diabetes mellitus, they experience impaired deformability. 

Several experimental and numerical techniques have been proposed to elucidate the 

primary reasons for the observed impaired deformability and increased stiffening of RBC 

membrane. Multiscale modelling as a candidate numerical technique for this purpose is 

of particular interest since it incorporates more intrinsic details such as cellular 

architecture, microscale defects and substructural changes into its constitutive 

formulation, often resulting to improved accuracy and better computational efficiency. 

This chapter discusses some of the recent advances in multiscale modelling of the 

biomechanical properties of red blood cells. These advances include, among many others, 

efforts to accurately predict the biomechanical properties of healthy and diseased RBCs 

using a multiscale meshfree modelling framework. It also provides insights into how 

microstructural and temperature changes influence their deformability, pathogenesis, 

and pathophysiology. Furthermore, some perspectives on the multiscale modelling of 

biomechanical behaviors of RBCs are presented. 
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1. Introduction 

Hematological fluid in animals, known as blood, serves the vital function of conveying 

essential elements like nutrients and oxygen to cells while carrying away metabolic 

byproducts from these cells. This intricate and distinctive fluid can be conceptualized as 

a blend of Red Blood Cells (RBCs) or erythrocytes, White Blood Cells (WBCs) or 

leukocytes, platelets, and blood plasma within a non-Newtonian fluid. Particulate 

constituents, especially RBCs, make up over 99% of the material in blood, contributing to 

approximately 40-45% of its volume (Klöppel & Wall, 2011). Furthermore, indications 

point to the fact that the characteristics and conditions of the cells play a crucial role in 

shaping the collective behavior of the blood.  

RBCs are biconcave, elastic, and non-nucleated, with diameter and thickness of about 8 

µm and 2.5 µm, respectively. The main component of their membrane is a fluid-like lipid 

bilayer that is fundamental to resisting bending. Additionally, there is an interconnected 

cytoskeleton based on spectrin, which not only helps maintain the cell's shape but also 

aids in its mobility. The connections between the lipid bilayer and spectrin domains are 

facilitated by transmembrane proteins. Specifically, the cytoskeleton structure of the RBC 

membrane can be described as a two-dimensional (2D) hexagonal arrangement, 

comprising spectrin tetramers and actin complexes (Pan et al., 2018). Biomechanical 

properties of the membrane are widely recognized as vital for maintaining cellular 

functions due to its large reversible deformation capability while traversing vessels 

during microcirculation. Nevertheless, deviations in these properties are intricately 

associated with various physiological and pathological processes, potentially leading to 

the development of diverse blood-related diseases, whether hereditary or non-

hereditary.  

Among these, malaria stands out as one of the most significant blood-related infections, 

which claims the lives of more children worldwide than any other infectious disease. 

According to the World Malaria Report 2024 published by the World Health 

Organization, approximately 263 million new cases of malaria (range 238–294 million) 

and 597,000 malaria deaths (range 548,000–723,000) were reported worldwide in 2023, 

with the African region accounting for most global cases (up to 94%). Following invasion 

by the malaria parasite, the host's RBC membrane experiences a diminished 

deformability and a reduced capability to regain its initial shape when subjected to fluid 

shear stress in vitro (Cranston et al., 1984). This alteration leads to a notable elevation in 

shear modulus, rigidity, and cell viscosity (Suresh, 2006), causing an impediment in the 

microcirculation process. Consequently, this disruption contributes to the dysfunction of 

various organs within the human body. In spite of the progress in understanding malaria 



pathogenesis, the primary mechanism responsible for the loss of deformability remains 

unclear.  

To understand this phenomenon, numerous experimental methods have been proposed 

to analyze and mimic the behavior, motion, and deformation of healthy and diseased 

RBCs within microcapillaries. Previous studies in literature have shown that the 

deformability of the red blood cell (RBC) can be assessed in terms of its membrane elastic 

and mechanical behaviors. This achievement was realized through various experimental 

techniques, including atomic force microscopy (Dulińska et al., 2006; Kuznetsova et al., 

2007), micropipette aspiration (Chien et al., 1978; Evans, 1973), RBC edge flicker 

microscopy (Strey et al., 1995), microfluidic experiments (Franke et al., 2011; Quinn et al., 

2011), tracking of fluorescent nanometer beads attached to RBCs (Lee & Discher, 2001) 

and RBC deformation by optical tweezers (Henon et al., 1999; Lenormand et al., 2001; 

Dao et al., 2003; Mills et al., 2004; Tan et al., 2009). 

Nevertheless, computational models have been developed in recent years as a promising 

way for studying the structural, mechanical, and rheological properties of RBCs both in 

health and disease. These numerical approaches can be categorized as particle-based, 

continuum-based, and multiscale models. In particle-based methods, the RBC membrane 

structure is depicted using a network of springs and particulate assembly. The key benefit 

lies in the straightforward mathematical representation, enabling the avoidance of 

intricate solid mechanics formulations in their numerical implementations. Nevertheless, 

the spring constant values are empirical, and the mechanical properties are highly 

influenced by the configuration of the network (Imai et al., 2016). Discher and colleagues 

(Discher et al., 1998) examined several elastic characteristics of the RBC spectrin network. 

They identified three structural models, specifically the stress-free model, the prestress 

model, and the condensed model. Additionally, the utilization of particle-based 

techniques, such as the approach associated with coarse-grained molecular dynamics (Li 

et al., 2005), dissipative particle dynamics (Pivkin et al., 2008; Fedosov et al., 2020), the 

moving particle method (Tsubota et al., 2006; Ahmadian et al., 2011), the lattice 

Boltzmann method (Krüger et al., 2011), and the smoothed particle hydrodynamics (SPH) 

method (Hosseini and Feng, 2009), has been extensively explored for diverse 

investigations into RBC properties.  

On the other hand, within continuum-based techniques, the membrane is discretized 

through a triangular mesh, where the equations of solid mechanics governing the 

membrane are solved. This method proves valuable for determining membrane tension 

in the presence of fluid flow. Nevertheless, it frequently suffers from numerical 

instabilities stemming from membrane compression. Various researchers have 



endeavored to incorporate a bending resistance into the model to counteract this 

instability, but a conclusive solution has not been reached to date. Among all the existing 

state-of-the-art literature, it could be highlighted that the work of Hansen et al., (1996) 

established a continuum model for predicting the bulk elastic shear modulus and the area 

expansion modulus of RBC membranes. In this line, Dao and co-workers (Dao et al., 2003) 

studied the deformation behavior of a single RBC by simulating the optical tweezers 

experiment using the finite element method, and Besides, Klöppel and Wall (Klöppel and 

Wall, 2011) developed a novel two-layer, coupled finite element approach for modelling 

the nonlinear elastic and viscoelastic behavior of RBC membrane.  

Finally, in multiscale-based models, the benefits of atomistic simulation and continuum 

modelling are integrated. This involves utilizing a particle-based model to calculate 

biomechanical properties of the membrane, such as strain energy density, stress tensors, 

and tangent modulus matrix (Ademiloye, 2017). Subsequently, these computed 

parameters are utilized to establish the constitutive material response, which is then 

applied in numerical simulations within the framework of continuum mechanics. As an 

example of this approach, Dupin and his colleagues (Dupin et al, 2007) implemented a 

3D Lattice Boltzmann Method to investigate the dynamics of healthy, malaria-infected, 

and sickle RBCs. They modelled the elastic properties of the cell membrane as a network 

of springs and represented the surrounding fluid using a Eulerian Navier-Stokes solver. 

A different course of action was proposed by Fedosov et al. (2011), who employed a 

dissipative particle dynamics (DPD) method to model both RBC mechanics and 

surrounding flow. Hartmann (2010) used a multiscale model to simulate optical tweezers 

experiments to study mechanical properties of RBC.  

Ademiloye and co-workers (Ademiloye et al., 2015) developed a 2D atomistic-continuum 

model based on the higher-order Cauchy-Born rule. This work improved the previous 

studies in literature (Wang et al., 2014) by considering all energy contributions in the RBC 

membrane and subsequently studied the effect of area and volume constraint coefficients 

on the elastic and mechanical properties of RBC membrane. To extend the utility of the 

proposed approach for large deformation studies on the RBC membrane, a new 

formulation that models the RBC as a 2D surface within a 3D space whilst accounting for 

the precise membrane thickness has also been proposed (Ademiloye et al., 2017; 

Ademiloye et al., 2018).  More recently, Ma et al. (2022) employed a two-step multiscale 

computational framework based on coarse-grained molecular dynamics to probe the 

viscoelastic properties of the surface-altered RBCs in aging and mechanical fatigue.  



In the remaining section of this chapter, we focus on modelling the biomechanical 

properties of RBC membrane in healthy and diseased conditions based on a three-

dimensional (3D) multiscale meshfree framework. 

2. Method and Models 

2.1. RBC Membrane Structural Model Description 

The RBC membrane structural model is defined based on the microstructural pattern of 

its underlying spectrin cytoskeletal network, in which a representative cell is selected as 

a symmetrical hexagon. The selected representative cell is composed of seven junction 

complexes and six spectrin links. All spectrin links in the representative cell are assumed 

to have the same initial length 𝐿𝑖, persistence length 𝑝 and maximum contour length 𝐿𝑚𝑎𝑥 

at any point in time, as shown in Fig. 1 below.  

 

Figure 1.  Representative cell of the RBC membrane showing junction complex I, 

spectrin link length 𝐿𝑖 and area 𝛺𝐼. 𝐴𝛾 is the area of triangle plaquette formed by three 

vertexes. The membrane bending energy 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 due to two adjacent triangle plaquettes 

can be defined in term of an instantaneous curvature angle 𝜃𝜍𝜗 using normal vectors 𝐧𝜍 

and 𝐧𝜗 (Source: Ademiloye et al., 2017, permission requested) 

2.2. Multiscale Cauchy-Born RBC Model 

The construction of a 3D multiscale hyperelastic constitutive model based on the first-

order Cauchy-Born rule (Tadmor et al., 1999) is concisely presented. The first-order 

Cauchy-Born rule was utilized to derive the continuum material properties based on an 



underlying atomistic model in a physically consistent way such that the relationship 

between the deformed and undeformed lattice vector between two nodes in terms of the 

first-order deformation gradient tensor is defined as follows: 

𝒓𝐼𝐽 ≈ 𝑮𝒓𝒂𝒅 ⋅ 𝑅𝐼𝐽,       (1) 

where 𝐆𝐫𝐚𝐝 = 𝐺𝑖𝐽𝑒𝑖 ⊗ 𝑒𝐽, and 𝑹𝐼𝐽 denote the first-order deformation gradient tensor and 

the undeformed lattice vector in the material configuration, respectively. The 

corresponding lattice vector in the deformed configuration is represented by 𝒓𝐼𝐽 (or 𝐿𝑖). 

In addition, the first-order deformation gradient tensor 𝑮𝒓𝒂𝒅 can be defined as 

𝑮𝒓𝒂𝒅(𝑖, 𝐽) =
𝜕𝒙

𝜕𝑿
,   where 𝑖, 𝐽 = 1,2,3.  𝑿 = (𝑋1, 𝑋2, 𝑋3) is the coordinate of a nodal point in 

the material configuration, and 𝒙 = (𝑥1, 𝑥2, 𝑥3) denotes its corresponding spatial position 

after the application of external loading.  

The strain energy density function (𝑊𝑇) corresponding to the energy at a junction 

complex I in the representative cell is computed as a function of the total coarse-grained 

Helmholtz free energy density (Wang et al., 2014; Ademiloye et al., 2015), assumed 

membrane thickness, ℎ𝑜, and average area per junction complex in the original 

configuration, Ω𝐼, calculated using 
√3𝐿𝑖

2

2
.  This can be expressed mathematically as 

follows: 

𝑊𝑇 = 𝑊𝑇(𝑮𝒓𝒂𝒅) =
ℎ𝑜

𝛺𝐼
𝑉𝐼 =

ℎ𝑜

𝛺𝐼
[
1

2
∑ 𝐸WLC

6
𝐽=1 (𝒓𝐼𝐽) +

1

3
∑ 𝐶/𝐴𝛾

6
𝛾=1 + ∑ 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔

3
𝑘=1 (𝜃𝜍𝜗)].  

 (2) 

We defined the expression 
1

2
∑ 𝐸WLC(𝒓𝐼𝐽)

6
𝐽=1 in Eq. (2) above as the energy due to the 

entropic free energy stored in the underlying spectrin protein network, in which the 

component 𝐸WLC is a function of the equilibrium spectrin link length, 𝒓𝐼𝐽 and is given by 

𝐸WLC(𝐿𝑖) =
𝑘𝐵𝑇𝐿𝑚𝑎𝑥(3𝑥0

2−2𝑥0
3)

4𝑝 (1−𝑥0)
      (3) 

where 𝑥0 is the ratio of the maximum contour length to the equilibrium length of the 

spectrin links, T is the temperature and 𝑘𝐵 is the Boltzmann constant with a value of 

1.38 ×  10-23 J K-1. Secondly, the expression 
1

3
∑ 𝐶/𝐴𝛾

6
𝛾=1  represents the hydrostatic elastic 

energy stored in the lipid bilayer and other protein materials. 𝐴𝛾 denotes the area of each 

triangular plaquette in the representative unit cell and 𝐶 is a constant, calculated using: 

𝐶 =
3√3𝑘𝐵𝑇𝐿𝑚𝑎𝑥

3 𝑥0
4(4𝑥0

2−9𝑥0+6)

64𝑝(1−𝑥0)2
    (4) 



Lastly, energy contributions from the bending energy term in Eq. (2) due to the 

interactions between neighboring triangular plaquettes can be obtained using the 

expression in Eq. (5) below, 

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑘𝑏 ∑ [1 − cos( 𝜃𝜍𝜗)]⟨𝜍,𝜗⟩ ,     (5) 

where 𝑘𝑏 is the RBC membrane bending coefficient, given by 
2𝑘𝑏

√3
, 𝑘𝑏 is the bending 

stiffness of the lipid bilayer, taken to be 2.4 × 10−19 J, and the sum runs over all pairs ⟨𝜍, 𝜗⟩ 

of neighboring faces of the tessellated membrane surface. 𝜃𝜍𝜗 is the instantaneous 

curvature angles between two neighboring triangles, computed using the surface normal, 

𝐧𝜍 and 𝐧𝜗,  as illustrated in Figure 1 above. The cosine of the instantaneous curvature 

angle can be computed using the dot product of the normal vectors. 

2.3. RBC Membrane Constitutive Relationship 

In this subsection, we present a simplified approach to obtain the constitutive responses 

(namely, the first Piola-Kirchhoff stress tensor and the tangent modulus matrix) of the 

RBC membrane based on the relationships between the geometry of the representative 

cell, the strain energy density function expressed in Eq. (2) and the first-order Cauchy-

Born rule given in Eq. (1) above.  

The first-order Piola-Kirchhoff stress tensor 𝐏 and the tangent modulus matrix M are the 

first- and second-order derivatives of the strain energy density function (𝑊𝑇) (introduced 

in the previous subsection) with respect to 𝐆𝐫𝐚𝐝, respectively, and can be calculated using 

(Xiang & Liew, 2013):  

𝐏 =
𝜕𝑊𝑇

𝜕𝐆𝐫𝐚𝐝
 and  𝐌 =

𝜕2𝑊𝑇

𝜕𝐆𝐫𝐚𝐝2 .    (6) 

In order to construct the multiscale constitutive relationship for the RBC membrane, we 

define the coordinates of the junction complexes at the end of the spectrin links in the 

original reference configuration in vector form as 

 𝑹𝐼𝐽 = (𝑋1
1, 𝑋2

1, 𝑋3
1, 𝑋1

2, 𝑋2
2, 𝑋3

2, 𝑋1
3, 𝑋2

3, 𝑋3
3, 𝑋1

4, 𝑋2
4, 𝑋3

4, 𝑋1
5, 𝑋2

5, 𝑋3
5, 𝑋1

6, 𝑋2
6, 𝑋3

6)𝑇, (7) 

and the coordinates of the junction complexes at the end of the spectrin links in the 

current configuration after deformation computed using Eq. (1), is stored in vector form 

as 

𝒓𝐼𝐽 = (𝑥1
1, 𝑥2

1, 𝑥3
1, 𝑥1

2, 𝑥2
2, 𝑥3

2, 𝑥1
3, 𝑥2

3, 𝑥3
3, 𝑥1

4, 𝑥2
4, 𝑥3

4, 𝑥1
5, 𝑥2

5, 𝑥3
5, 𝑥1

6, 𝑥2
6, 𝑥3

6)𝑇.      (8) 



Following the computations above, the deformation gradient tensor and the first-order 

Piola-Kirchhoff stress tensor are assembled into vector form as follows 

𝐆𝐫𝐚𝐝 = (𝐺11, 𝐺12, 𝐺13, 𝐺21, 𝐺22, 𝐺23, 𝐺31, 𝐺32, 𝐺33)
𝑇,   (9) 

𝐏 = (𝑃11, 𝑃12, 𝑃13, 𝑃21, 𝑃22, 𝑃23, 𝑃31, 𝑃32, 𝑃33)
𝑇.    (10) 

Lastly, the stress vector and the tangent modulus matrix can be calculated using the 

expressions below: 

𝐏 = [
𝜕𝑊𝑇

𝜕𝐆𝐫𝐚𝐝
]
9×1

= [
𝜕𝐫𝐼𝐽

𝜕𝐆𝐫𝐚𝐝
]
9×18

⋅  [
𝜕𝑊𝑇

𝜕𝐫𝐼𝐽
]
18×1

,    (11) 

𝐌 = [
𝜕2𝑊𝑇

𝜕𝐆𝐫𝐚𝐝2]
9×9

= [
𝜕𝐫𝐼𝐽

𝜕𝐆𝐫𝐚𝐝
]
9×18

⋅  [
𝜕2𝑊𝑇

𝜕𝐫𝐼𝐽
2 ]

18×18

⋅  [
𝜕𝐫𝐼𝐽

𝜕𝐆𝐫𝐚𝐝
]
9×18

𝑇

.  (12) 

 

In summary, this section introduces the 3D multiscale hyperelastic constitutive model 

based on the first-order Cauchy-Born rule, which was used to link the deformation of the 

atomistic scale representative unit cell of the RBC membrane to the continuum level. The 

coarse-grained Helmholtz free energy density was then used to define the strain energy 

density function of the RBC membrane. The current multiscale approach offers several 

advantages since it avoids the need for empirical constitutive relationship on the 

macroscale since the precise material properties and constitutive relations are computed 

directly from the atomistic representative microstructure. 

 

2.4. Nonlinear 3D Multiscale Meshfree Framework 

The three-dimensional (3D) nonlinear multiscale meshfree analysis framework for the 

numerical simulation of the large deformation behavior of RBC membrane in healthy and 

diseased conditions is presented here. As mentioned previously, the RBC membrane is 

treated as a 2D surface embedded in a 3D space, therefore, all nodes have three degrees 

of freedom. For our meshfree computations, the 3D improved moving least-square 

(IMLS) shape function with the linear basis function and the cubic spline weight functions 

with a circular support domain were employed (Zhang et al., 2008; Zhang et al., 2019). 

The deformation of a material particle 𝐗 ∈ 𝛺0 (where 𝛺0 denote the region originally 

occupied by the body) at time t is described by 𝐱(𝐗, 𝑡) through the mapping functions   

is  

𝐱(𝐗, 𝑡) = 𝐮(𝐗, 𝑡) + 𝐗,      (13) 



where 𝐮 is the displacement of this material particle. The first-order deformation 

gradients (𝐆𝐫𝐚𝐝) can be defined as 

𝐆𝐫𝐚𝐝 =
𝜕𝐱

𝜕𝐗
=

𝜕𝐮

𝜕𝐗
+ 𝚰.     (14) 

The displacement of the deformed RBC membrane relative to the undeformed RBC 

membrane when loading is applied can be approximated using 

𝐮ℎ(𝑥)  = ∑ 𝜙𝑖𝑢̂(𝑥𝑖)
𝑁
𝑖=1 = 𝚽(𝒙)𝐮̂,      (15) 

where 𝐮̂ represents the nodal parameter, 𝜙𝑖 denotes the meshfree shape function 

obtained from the IMLS approximation at the ith node and N is the total number of nodes 

covered by the compact support domain. For the sake of simplicity, the superscript h in 

Eq. (15) signifying an approximation is dropped. 

The support domain for all the nodes discretizing the problem domain was obtained by 

first implementing a k-nearest neighbor algorithm to compute the distance between the 

node of interest and the selected nearest node (𝑑𝐼). The radius of the support domain 

(𝑑𝑚𝐼) can therefore be obtained by multiplying the distance, 𝑑𝐼 with the meshfree scaling 

parameter 𝑑𝑚𝑎𝑥. 

The first-order deformation gradients (Grad) corresponding to the displacement 

gradients in Eq. (16) are approximated using Eqs. (14) and (15) as 

𝐆𝐫𝐚𝐝 = ∑𝜙𝑖,𝑋𝑢̂𝑖

𝑁

𝑖=1

+ 𝚰, 

        = ∑ [𝜙𝑖,1 𝜙𝑖,2 𝜙𝑖,3]𝑇 𝑢̂𝑖
𝑁
𝑖=1  + 𝚰,         (16) 

where 𝜙𝑖,𝑋(𝑋 = 1,2,3) is the first-order derivative of the meshfree shape function with 

respect to the original undeformed configuration. 

The total energy of the system can be calculated as 

∏ = ∫ 𝑊𝑇(𝐆𝐫𝐚𝐝)𝑑Ω
Ω0

− ∫ 𝐮 ⋅ 𝐛0𝑑Ω −
Ω0

∫ 𝐮 ⋅ 𝐭0
𝑃𝑑S,

𝜕Ω
    (17) 

where 𝑊𝑇(𝐆𝐫𝐚𝐝) is the atomistic scale strain energy density function, computed with the 

aid of the representative cell as discussed in section 2.2 and 𝐭0
𝑃

 represents the first-order 

stress tractions on the surface of the original domain. Contributions from the body force 

term (𝐛0) is neglected. The Ritz parameters are adjusted such that δΠ = 0. The weak form 

of the governing equation can be written as 



∫ 𝛿𝐆𝐫𝐚𝐝𝑇 ⋅ 𝐏 𝑑Ω
Ω0

− ∫ 𝛿𝐮𝑇 ⋅ 𝐭0
𝑃𝑑S

𝜕Ω
= 0.    (18) 

Following the discretization of the nonlinear continuum model in Eq. (18) above, a system 

of nonlinear algebraic equations is obtained. The use of an iterative procedure is 

necessary to obtain a solution for such equations. Furthermore, owing to the geometrical 

nonlinearity and the need to guarantee the second-order convergence rate, a consistent 

linearization of the weak form is also essential. To achieve this, the vector of unknown 

stress components at time 𝑡 + Δ𝑡, denoted by 𝐏𝑛+1, is decomposed into a stress vector 𝐏𝑛 
at the time 𝑡 in which the stress components are known, and Δ𝐏𝑛+1 which contains the 

hitherto unknown components of the stress increment. The scalar variable t was used as 

a pseudo-time to parameterize sequences of configurations (i.e. quasi-static 

deformations). 

The stress at the (n+1)th iterative step can be obtained by 

𝐏𝑛+1 = 𝐏𝑛 + Δ𝐏𝑛+1.     (19) 

Substituting the additive decomposition in Eq. (19) above into Eq. (18), the weak 

equilibrium equation at this iterative step can be rewritten as 

∫ 𝛿𝐆𝐫𝐚𝐝𝑛+1
𝑇 ⋅ Δ𝐏𝑛+1𝑑𝛺

Ω0
= ∫ 𝛿𝐮𝑛+1

𝑇 ⋅ 𝐭0
𝑃𝑑S

𝜕Ω
− ∫ 𝛿𝐆𝐫𝐚𝐝𝑛+1

𝑇 ⋅ 𝐏𝑛𝑑Ω
Ω0

.         (20) 

At the iteration step n+1, by linearizing the equation above (Yan et al., 2012), we obtain 

Eqs. (21) and (22) below  

𝛿𝐮𝑛+1 = 𝛿(𝐮𝑛 + Δ𝐮𝑛+1) = 𝛿Δ𝐮𝑛+1,     (21) 

𝛿𝐆𝐫𝐚𝐝𝑛+1 = 𝛿(𝐆𝐫𝐚𝐝𝑛 + Δ𝐆𝐫𝐚𝐝𝑛+1) = 𝛿Δ𝐆𝐫𝐚𝐝𝑛+1.    (22) 

Based on Eqs. (21) and (22) above, Eq. (20) can be written in the form 

∫ 𝛿Δ𝐆𝐫𝐚𝐝𝑛+1
𝑇 ⋅ Δ𝐏𝑛+1𝑑Ω

Ω0
= ∫ 𝛿Δ𝐮𝑛+1

𝑇 ⋅ 𝐭0
𝑃𝑑𝑆

𝜕Ω
− ∫ 𝛿Δ𝐆𝐫𝐚𝐝𝑛+1

𝑇 ⋅ 𝐏𝑛𝑑Ω
Ω0

,  (23) 

where Δ𝐏𝑛+1 = 𝐌 ⋅ Δ𝐆𝐫𝐚𝐝𝑛+1 and tangent modulus matrix M is the constitutive material 

matrix formulated using the first-order Cauchy-Born rule and the atomistic scale strain 

energy density function. Therefore, Eq. (23) can be rewritten as 

∫ 𝛿Δ𝐆𝐫𝐚𝐝𝑛+1
𝑇 ⋅ 𝐌 ⋅ Δ𝐆𝐫𝐚𝐝𝑛+1 𝑑Ω

Ω0
= ∫ 𝛿Δ𝐮𝑛+1

𝑇 ⋅ 𝐭0
𝑃𝑑S

𝜕Ω
− ∫ 𝛿Δ𝐆𝐫𝐚𝐝𝑛+1

𝑇 ⋅ 𝐏𝑛𝑑Ω
Ω0

.  

 (24) 



The Ritz trial function, which corresponds to the displacement increment (Δ𝐮𝑛+1) in Eq. 

(24) of the evaluating point, can be approximated using the IMLS meshfree shape 

function 𝚽(𝒙) and nodal parameter Δ𝐮̂𝑛+1 as 

Δ𝐮𝑛+1 = (Δ𝑢1, Δ𝑢2, Δ𝑢3)
𝑇 = 𝚽Δ𝐮̂𝑛+1,     (25) 

where 

𝚽 = [

𝜙1 0 0 𝜙2 0 0 ⋱ 𝜙𝑁 0 0

0 𝜙1 0 0 𝜙2 0 ⋱ 0 𝜙𝑁 0

0 0 𝜙1 0 0 𝜙2 ⋱ 0 0 𝜙𝑁

]

(3×3𝑁)

,       (26) 

Δ𝐮̂𝑛+1 = [Δ𝑢̂11  Δ𝑢̂12  Δ𝑢̂13  Δ𝑢̂21  Δ𝑢̂22  Δ𝑢̂23  ⋯   ⋯   ⋯   Δ𝑢̂𝑁1  Δ𝑢̂𝑁2  Δ𝑢̂𝑁3 ](1×3𝑁)
𝑇 .     

 (27) 

Using the IMLS approximation, the deformation gradient increment can be calculated as 

Δ𝐆𝐫𝐚𝐝𝑛+1 = 𝐋Δ𝐮𝑛+1 = 𝐋𝚽Δ𝐮̂𝑛+1,    (28) 

where L is an assembled differential operator matrix with respect to the reference 

configuration  

𝐋 =

[
 
 
 
 

𝝏

𝝏𝑿𝟏

𝝏

𝝏𝑿𝟐

𝝏

𝝏𝑿𝟑
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎
𝝏

𝝏𝑿𝟏

𝝏

𝝏𝑿𝟐

𝝏

𝝏𝑿𝟑
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝝏

𝝏𝑿𝟏

𝝏

𝝏𝑿𝟐

𝝏

𝝏𝑿𝟑]
 
 
 
 
𝑻

.  (29) 

The displacement vector and its variation are approximated by substituting the IMLS 

shape function into the linearized total energy functional given in Eq. (24) and applying 

the Ritz minimization procedure (Lim et al., 2005; Zhang et al., 2015) as shown in Eq. (30) 

below: 

𝜕∏

𝜕𝛈
= 0,  𝛈 = Δ𝐮𝑖 ,     𝑖 = 1, 2, … ,𝑁.     (30) 

The resulting incremental system equation can be written as  

𝐊𝑛+1Δ𝐮̂𝑛+1 = 𝐅𝑛+1,       (31) 

where Δ𝐮̂𝑛+1 contains the nodal parameters of all meshfree nodes. 𝐊𝑛+1 and 𝐅𝑛+1 

represent the global stiffness matrix and non-equilibrium force vector, and are expressed 

as follows  



𝐊𝑛+1 = ∫ [(𝐋𝚽)𝑇𝐌(𝐋𝚽) ]𝑑Ω
Ω0

,     (32) 

𝐅𝑛+1 = 𝐅𝑛+1
𝑒𝑥𝑡 − 𝐅𝑛+1

𝑖𝑛𝑡 ,      (33) 

where the external force vector 𝐅𝑛+1
𝑒𝑥𝑡

 and internal force vector 𝐅𝑛+1
𝑖𝑛𝑡

 are given by 

𝐅𝑛+1
𝑒𝑥𝑡 = ∫ 𝚽𝑇𝐭0

𝑃𝑑S
𝜕Ω

,       (34) 

𝐅𝑛+1
𝑖𝑛𝑡 = ∫ (𝐋𝚽)𝑇𝐏𝑛𝑑Ω

Ω0
.      (35) 

The stiffness matrix in Eq. (32) and the internal force vector in Eq. (35) are integrated 

using the Gauss quadrature integration technique while the external force vector in Eq. 

(34) is computed using the direct nodal force application technique. Owing to the 

computational efficiency of the Newton approach, it was adopted in this study to solve 

the incremental equilibrium equation, however, the stiffness matrix may become non-

positive definite. This drawback can be resolved by simply replacing 𝐊𝑛+1 with 𝐊𝑛+1 +

𝜅𝐈𝐾 , where 𝜅 is a positive number that is slightly larger than the magnitude of the most 

negative eigenvalue of 𝐊𝑛+1, and 𝑰𝐾 is an identity matrix. After a few cycles of 

replacements, 𝐊𝑛+1 become positive definite and the standard Newton-Raphson method 

resumes. 

3. Results and discussion 

3.1. Simulation Procedure 

In order to study the large deformation behavior of the RBC membrane in healthy and 

malaria-infected conditions, we employed the meshfree framework described in section 

2.4. above. Here, we simulated the optical tweezers experiment. The optical tweezers 

experiment is a type of cell stretching experiment in which a single RBC with silica beads 

attached to its ends is trapped by means of two laser beams. The trapped blood cell is 

stretched by pulling one of the silica beads, using the laser beam, in the axial direction 

while the other bead is fixed (Figure 2). The RBC is stretched under the influence of an 

increasing force, which is dependent on laser power, usually ranging from zero to about 

200 picoNewton (pN). Once the cell is stretched, the axial (𝐷𝐴) and transverse (𝐷𝑇) 

diameters, corresponding to the applied stretching force, are recorded.  



 
 

Figure 2. Schematic drawings showing the (a) experimental setup of the optical tweezer 

with the silica beads attached to the RBC ends, and (b) deformed configuration of the 

RBC stretched with equal and opposite forces representing the response of the fixed and 

movable silica beads (Source: Ademiloye et al., 2018, permission requested).  

3.2. Simulation Parameters 

The normalized geometry of the healthy and malaria-infected RBC membrane, used for 

numerical simulations in this study, was obtained using the expression in Eq. (36), where 

𝑥, 𝑦 and 𝑧 represent the coordinates of a point cloud representing the RBC surface in a 3D 

space, while 𝑐0, 𝑐1, and 𝑐2 denote the RBC shape coefficients (Evans and Fung, 1972):  

𝑧 =  ±0.5 × √1 − (𝑥2 + 𝑦2) × [𝑐0 + 𝑐1(𝑥
2 + 𝑦2) + 𝑐2(𝑥

2 + 𝑦2)2].  (36) 

The biconcave RBC geometry was obtained with shape coefficients 𝑐0 = 0.207, 𝑐1 = 2.002 

and 𝑐2 = −1.123, while nearly spherical cell geometry was obtained with shape 

coefficients 𝑐0 = 1.70, 𝑐1 = 0.00 and 𝑐2 = 0.00. The healthy RBC was discretized with 

𝑛𝑚 = 162 meshfree nodes and 766 quadrilateral background cells with four (4) Gauss 

points in two directions were employed for the numerical integration of Eqs. (32) and 

(35). For this study, no displacement boundary condition was enforced since the problem 

domain is a 2D manifold without boundaries, however, in order to ensure that the 

numerical simulations remain numerically stable and accurate, we applied equal and 

opposite forces on the two ends of the single cell, following Newton’s third law of motion.  

Table 1 shows the set of RBC membrane geometry and microstructure parameters 

employed in our studies. These parameters are dependent on the pathophysiological 

condition of the cell membrane. It is believed that as the malaria parasite develops the 

spectrin link length and persistence length, respectively, increases and decreases.  

 



Table 1. Numerical simulation parameters for healthy RBC (hRBC) and malaria-infected 

RBC (iRBC) membrane in different intraerythrocytic developmental stages, namely ring 

stage (Pf-Rrbc), trophozoite stage (Pf-tRBC) and schizont stage (Pf-sRBC). (Source: Zhang 

et al. 2017, permission requested) 
 

Cell condition / 

infection stage 

RBC membrane geometry and microstructure parameters 

Equilibrium spectrin 

length, L (nm) 

Persistence 

length, p (nm) 

Maximum contour 

length, 𝐿𝑚𝑎𝑥 (nm) 

RBC diameter 

(µm) 

hRBC 87.0 8.5 238 7.820 

Pf-rRBC 134.85 7.5 238 7.480 

Pf-tRBC 139.2 6.0 238 7.260 

Pf-sRBC 160.95 4.0 238 7.219 
 

All numerical simulations were computed using our in-house meshfree code developed 

in MATLAB®. For the meshfree simulations in section 3.3, the following additional 

parameters were used: bending coefficient, 𝑘̄𝑏 = 2.77 ×  10−19 𝐽, temperature T = 300 K, 

assumed membrane thickness ℎ0 = 12nm, and meshfree scaling parameter,  𝑑𝑚𝑎𝑥 is taken 

as 1.462. Interested readers are referred to the details presented in Zhang et al. (2017). 

3.3. Large Deformation Behavior of RBC membrane in healthy condition 

Based on the optical tweezer experiments described in section 3.1, we conducted 

numerical experiments on healthy and malaria-infected RBCs using our proposed 

meshfree framework. As shown in Figure 3, the stretching response obtained using our 

proposed meshfree method is in good agreement with the optical experiments. A 

comparison between the 3D multiscale meshfree solution and existing methods, namely, 

spectrin level modeling and the quasi-continuum meshfree simulation, are also 

presented. This improved prediction can be attributed to the performance of the IMLS 

meshfree approximation, which requires a smaller number of meshfree nodes in the 

problem domain and the inclusion of membrane thickness in the formulation (Ademiloye 

et al., 2018).  



 

Figure 3. Variations of axial and transverse diameters of the healthy RBC as a function of 

stretching force in comparison with optical tweezers experiment (Mills et al., 2004), quasi-

continuum (QC) meshfree method (Wang et al. 2014), and spectrin level modelling approach (Li 

et al. 2005). (Source: Ademiloye et al. 2018, permission requested). 

 



The nonlinear formulation employed in the current multiscale meshfree scheme also 

contributes to its improved prediction, especially in the large deformation region. As 

shown in Figure 3, our result closely follows the nonlinear trend observed in the 

experiment and gives better prediction in the large deformation region between 50 pN 

and 180 pN. Furthermore, the transverse diameter of the RBC membrane was well 

captured in our numerical experiments in comparison to the other methods. This could 

be attributed to the inclusion of the precise membrane thickness in our current 

formulation. It is opined that the current approach to obtain a more realistic prediction 

of the behavior of RBC membrane in thinner microcapillaries. 

We also performed sensitivity analysis on the effect of some important physiological and 

microstructure parameters, namely temperature, spectrin link length and persistent 

length. As shown in Figure 4, we can observe that an increase in physiological 

temperature leads to a corresponding decrease in the deformability of the healthy RBC 

membrane in terms of its axial and transverse diameter stretch (deformability) decreases. 

This observation can be attributed to the gradual denaturation of RBC membrane protein 

with an increase in temperature, thus leading to an increase in the membrane rigidity. 

Interestingly, we observed that the change in temperature has a more noticeably 

influence on the axial diameter of the RBC membrane in comparison to that of the 

transverse diameter. Figure 5 shows that there is an increment in the deformability of the 

RBC membrane as the initial equilibrium and persistence lengths of the spectrin links 

increase. This finding is also in complete agreement with the observation in our previous 

study based on a semi-analytical method (Ademiloye et al. 2015) that the overall rigidity 

of the RBC membrane decreases with the increase in microstructure parameters 

especially the persistence length, p. 

 



 

Figure 4. Variations of axial and transverse diameters of the healthy RBC as a function of 

stretching force using different temperatures in comparison with optical tweezers experiment 

(Mills et al., 2004), and spectrin level modelling approach (Li et al. 2005) at 300 K. (Source: 

Ademiloye et al. 2018, permission requested). 

 



 

Figure 5. Variations of axial and transverse diameters of the healthy RBC as a function of 

stretching force using microstructure parameters in comparison with optical tweezers experiment 

(Mills et al., 2004), and spectrin level modelling approach (Li et al. 2005) at 300 K. (Source: 

Ademiloye et al. 2018, permission requested). 

 



3.4. Numerical Study on the Large Deformation Behavior of Malaria-Infected 

Red Blood Cell Membrane 

As previously stated, it has been widely established that the deformability of RBC 

membrane is reduced in malaria-infection. Of all four known species of malaria parasite 

that infect humans, Plasmodium (P.) falciparum has been identified as the most prevalent 

and lethal malaria parasite (Udeinya et al., 1981). Malaria-infected RBCs (iRBCs) 

progressively lose their deformability as well as the ability to recover their biconcave 

shape as the merozoites mature during the different intraerythrocytic developmental 

stages, namely ring stage (Pf-rRBC), trophozoite stage (Pf-tRBC) and schizont stage (Pf-

sRBC), resulting in a significant increase in shear modulus, rigidity and cell viscosity 

(Suresh, 2006). Using the technique described in section 3.1, the large deformation 

behavior of iRBC membrane was investigated by means of numerical simulation of the 

optical tweezer experiments. The pathophysiological parameters representing the iRBC 

membrane in our constitutive model as the malaria-infection progresses are presented in 

Table 1.  

Based on the optical tweezer experiments (as shown in Figure 2), the relationship 

between varying applied stretching force and changes in axial and transverse diameters 

of iRBC membrane in Pf-rRBC, Pf-tRBC and Pf-sRBC stages are shown in Figures 6, 7 and 

8, respectively. These numerical results are also presented in comparison with 

experimental and numerical results in the literature. Our results obtained using a 

multiscale meshfree simulation agree well with the experimental results and data in the 

literature (Suresh et al., 2005). 



 
Figure 6.  Variations of axial and transverse diameters of a malaria-infected RBC membrane 

during the ring stage (Pf-rRBC) as a function of stretching force in comparison with experimental 

data (Suresh et al., 2005) and DPD simulations (Fedosov et al., 2010). (Source: Zhang et al. 2017, 

permission requested). 

 

Although it has been suggested in literature that the morphology of RBCs changes from 

biconcave to nearly spherical shape as malaria infection progresses, a comparison 

between the numerical results obtained using a biconcave and nearly spherical geometry 

are presented in Figures 7 and 8 for the trophozoite and schizont infection stages. Our 



numerical results show that a more accurate prediction of the large deformation 

behaviors of the iRBC membrane in terms of its transverse diameter can be obtained if 

the cell geometry is assumed to remain biconcave as infection progresses. Here, we 

suggest that since the precise shape of iRBC membranes can vary significantly, the 

biconcave cell geometry, which is well established and known, should be employed for 

numerical simulations to minimize the error associated with geometry uncertainty. 

Furthermore, by using the current multiscale modelling approach, computational errors 

associated with the assumption of iRBC membrane properties such as Young’s modulus 

and shear modulus as well as problem domain approximation can be avoided since the 

constitutive responses of the iRBC membrane were computed from the microstructure 

parameters of the spectrin network rather than assumed material properties.  



 

Figure 7.  Force-diameter curve of the malaria-infected RBC membrane during the trophozoite 

(Pf-tRBC) stage obtained using biconcave and nearly spherical cell geometries in comparison with 

experimental data (Suresh et al., 2005) and DPD simulations (Fedosov et al., 2010). (Source: Zhang 

et al. 2017, permission requested). 



 

Figure 8.  Force-diameter curve of the malaria-infected RBC membrane during the schizont (Pf-

sRBC) stage obtained using biconcave and nearly spherical cell geometries in comparison with 

experimental data (Suresh et al., 2005) and DPD simulations (Fedosov et al., 2010). (Source: Zhang 

et al. 2017, permission requested). 

 

 



4. Concluding Remarks and Prospects 

In this chapter, a meshfree multiscale modelling technique for investigating the 

biomechanical properties of human red blood cells (RBCs) is presented. This approach 

combines the accuracy of atomistic level modelling by accounting for microscopic 

properties of RBC membrane in healthy and diseased conditions as well as the reduced 

computational cost associated with continuum level modelling. Furthermore, the precise 

effect of membrane thickness is directly incorporated into the formulation, thus ensuring 

that the RBC membrane is correctly treated as a 2D surface in a 3D space. The results 

obtained using the current approach are in excellent agreement with experimental 

studies in literature and it provides specific insights into the precise influence of 

microstructural alterations on the macroscale behavior of RBCs during large 

deformation. 

Despite the overall advantages of the proposed multiscale technique, there are several 

opportunities for further developments. For instance, the current approach is purely 

mechanistic, which must be coupled with appropriate kinetic models in order to provide 

insights into the influence of biochemical alterations on the deformability of RBCs in 

metabolic diseases such as Type 2 diabetes mellitus. Moreover, the improved element-

free Galerkin method employed in the current formulation could limit the use of the 

multiscale technique for studying RBC dynamics in blood flow. Meshfree methods are 

generally more computationally expensive due to their shape function construction cost. 

In addition to this, the essential boundary conditions in meshfree methods cannot be 

directly imposed as in the finite element method without additional intervention due to 

their lack of Kronecker delta property. 

Finally, the construction of a linkage between the atomistic and continuum levels was 

obtained using the first-order Cauchy–Born rule, which depends on the deformation 

gradient of the representative unit cell. The higher-order Cauchy–Born rule could be 

employed to correctly describe the bending effect and buckling deformation of the 

membrane (Ademiloye et al., 2015; Sunyk & Steinmann, 2003). Furthermore, the use of 

machine learning could be employed to explore the linkage between different scales and 

predict the behavior of RBCs in different pathological conditions, if there is enough data 

available. By combining machine learning with multiscale modelling (Nguyen et al., 

2023), new insights in terms of features and correlations across different scales can be 

obtained and the cost of computations can be reduced using surrogate models for 

approximation of complex simulations. This combination could create a pathway for 



improved diagnostics as well as the development of new therapeutics for RBC-related 

disorders. 
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