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Abstract

The rapid advancement of large language models has significantly enhanced the

quality of AI-generated text, making it increasingly difficult for detection sys-

tems to distinguish from human-written content. Existing detection methods,

such as statistical, linguistic, machine learning, and deep learning approaches,

often exhibit a decline in performance when applied to new or previously un-

seen large language models. Additionally, they tend to become outdated due to

their static frameworks and inability to adapt to emerging patterns in generative

text. To address this limitation, we introduce a novel dynamic fusion frame-

work that integrates multi-scale feature fusion to capture diverse text patterns

and employs continual learning with Elastic Weight Consolidation (EWC) to

adapt to new models while mitigating catastrophic forgetting. This is the first

attempt, to the best of our knowledge, to develop such a dynamic framework

for AI-generated text detection. Evaluated on the TuringBench and Deepfake-

TextDetect benchmark datasets, our framework achieves an average accuracy

of 95.78% and 92.39%, outperforming the standard model by 5.88% and 7.98%,

respectively, in distinguishing AI-generated from human-written text across var-
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ious language generative model architectures. The continual learning ensures

that the model remains adaptive and accurate over time, which is essential for

practical applications in dynamic environments. This dynamic and adaptive ap-

proach paves the way for resilient AI-generated text detection systems capable

of evolving alongside the rapidly advancing landscape of generative language

technologies.

Keywords: Natural Language Processing, Generative Artificial Intelligence,

Large Language Models, AI-generated Text Detection, Continual Learning,

Elastic Weight Consolidation

1. Introduction

In recent years, the rapid advancement of generative Artificial Intelligence

(AI), particularly with the emergence of language models such as Bidirectional

Encoder Representations from Transformers (BERT) [18] and subsequently ’pow-

erful’ large language models (LLMs) like ChatGPT [2], T5 [59], and LLaMA

[70], has revolutionised natural language processing (NLP). These models gen-

erate highly coherent and contextually rich text, enabling applications across

industries like content creation, education, and customer service. Although

these capabilities offer numerous benefits and are reshaping various industries

with unprecedented efficiency, they also introduce significant risks, particularly

in the form of misinformation, plagiarism, automated content manipulation

[66, 37, 52, 36], and the skew of public opinion and discourse [10]. As LLMs

become more sophisticated, distinguishing between AI-generated and human-

written text has become a pressing concern across academic, media, and digi-

tal communication platforms. Thus, the development of models to detect AI-

generated text is not only a technical necessity but also a critical safeguard to

maintain the integrity of information.

However, identifying AI-generated text is a complex task, particularly due

to the diversity and evolving nature of language generation models. Traditional

detection methods, ranging from statistical [29] and linguistic approaches [40]
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to deep learning models [4, 42], are static (which do not evolve for the new

introduced LLMs) and often become outdated as new LLMs emerge. These

methods, designed for specific models, fail to adapt to the unique patterns of

newer models, leading to a decline in detection performance over time. For

example, static detectors trained on earlier models like BERT may fail to identify

outputs from newer, more sophisticated models like ChatGPT, highlighting the

need the need for dynamic and adaptive detection systems that evolve alongside

generative technologies [53].

To address these limitations, continual learning offers a promising solution

by allowing models to learn incrementally from new data without forgetting

previously acquired knowledge [64]. This is particularly crucial in AI-generated

text detection, where models must evolve to keep pace with the continuous

advancements in Large Language Models (LLMs). As newer LLMs introduce

increasingly sophisticated and diverse patterns of AI-generated text, models

need to retain past knowledge while adapting to these novel forms of text.

Effective continual learning for AI-generated text detection requires feature

representations that are robust and adaptable for handling new LLMs. These

models can change text statistics, leading to feature drift [54, 8]. Hence, if the

feature extractor of the previously used model is overly specialised, adaptation

to these new text statistical characteristics is challenging [57]. It is then es-

sential to develop a feature representation that is stable yet flexible, capable of

capturing both universal features common across AI-generated text and model-

specific features unique to each LLM [17, 77]. This makes Multi-scale feature

fusion crucial, as it combines features from various linguistic analysis levels. It

integrates detailed local features, like token-level anomalies, with broader global

patterns, such as semantic coherence. This process allows the model to develop

a more robust and adaptable representation [30, 44].

Multi-scale feature fusion in continual learning is motivated by the non-

stationary nature of AI-generated text [74]. Unlike human-written content,

which often maintains consistent themes and structures, text produced by au-

toregressive LLMs exhibits significant variation in its statistical properties across
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different segments [24, 31]. These variations create a temporal signature, where

the likelihood of a token being machine-generated is not uniform but varies

depending on its position and context within the document [69]. Multi-scale

feature fusion captures these temporal dynamics by analysing text at different

granularities, from local token-level anomalies to higher-level discourse struc-

tures [80]. This enables the model to track the evolution of text patterns over

time, providing a more nuanced and accurate detection of AI-generated content,

and by capturing both local and global patterns, multi-scale feature fusion en-

hances the model’s ability to detect temporal changes in AI-generated text [79].

Local patterns help identify model-specific features like token co-occurrences or

syntactic errors, while global patterns reflect structures such as semantic co-

herence and discourse flow [19, 45], and this dual approach allows the model

to adapt to new LLMs while maintaining stability across different models [39].

Multi-scale feature fusion with continual learning allows the detection system to

recognise new LLM signatures while retaining older model traits [60, 75]. This

synergy helps the model evolve with generative technologies, ensuring adapt-

ability and future-proofing for AI-generated text detection.

In this work, we propose a novel framework for detecting AI-generated text

(AIGT), termed the dynamic fusion method, which integrates multi-scale (local

and global) feature fusion using convolutional neural networks (CNNs) [41],

Bidirectional Long Short-Term Memory Networks (BiLSTM) [26], and local &

global attention mechanisms, with continual learning through Elastic Weight

Consolidation (EWC) [39]. This framework enables the model to adapt to new

LLMs without the need for retraining from scratch, allowing it to continuously

improve its performance. Our system is designed to learn from diverse AI-

generated text sources, improving its ability to generalise across both current

and emerging language models.

Extensive experiments conducted on two publicly available benchmark datasets

demonstrate that the proposed method outperforms existing approaches. For

example, on the TuringBench dataset, the proposed dynamic fusion framework

achieves an accuracy of 95.78%, surpassing the OpenAI detector by 17.05%.
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Similarly, on the DeepfakeTextDetect dataset, the proposed method reaches

an accuracy of 92.39%, outperforming the recent DetectGPT by 31.91%. Ad-

ditionally, we investigate the effectiveness of continual learning by comparing

the incorporation of Elastic Weight Consolidation (EWC) with a version of the

framework without EWC, highlighting its adaptability across emerging LLMs.

The experiments further demonstrate the framework’s stability as AI models

progressively advance, suggesting its resilience and will not become outdated as

generative models evolve. Overall, the results highlight the robustness of the

proposed method in effectively addressing the challenges posed by the growing

number of large language models.

The main contributions of this study are as follows:

• We present a novel dynamic framework using multi-scale feature fusion

to effectively detect AI-generated text by capturing diverse text patterns

and complex linguistic structures in various large language models.

• We strategically integrate Elastic Weight Consolidation (EWC) into the

proposed framework to enable continual learning and mitigate catastrophic

forgetting while ensuring adaptability to emerging large language models.

• We show that our approach outperforms several non-continual and state-

of-the-art models in distinguishing AI-generated from human-written text

across two established datasets.

The article is organised as follows: Section 2 reviews related work. Section

3 describes in details the entire methodology of this investigation. Section 4

discusses the experimental results. Finally, Section 5 concludes this work and

identifies future work and research directions.

2. Related Work

This section reviews the evolution of detection methodologies, highlighting

their strengths and limitations, and positioning our proposed approach within
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this landscape.

2.1. Statistical and Linguistic Feature-Based Methods

Early detection techniques initially depended on statistical analysis of lin-

guistic characteristics. For example, the studies in [16, 35] used metrics such

as sentence length, frequency of function words, and word pair distributions.

The research cited in [6, 5] identified syntactic irregularities such as the “phrase

salad” phenomenon. While these methods were effective for earlier and simpler

models, they are not well suited to modern LLMs due to their reliance on static,

manually crafted features.

2.2. N-gram and Repetition-Based Approaches

More recent studies have explored statistical irregularities in LLM outputs.

Those in [29] proposed methods based on high-order n-gram repetition and

BScore metrics. Hamed and Wu [29] demonstrated that only 23% of the bi-

grams in ChatGPT-generated texts were unique, allowing high-accuracy de-

tection. However, these approaches are often model-specific and struggle to

generalise across diverse LLMs.

However, our empirical observations reveal a key limitation in using linguistic

feature statistics: these methods rely heavily on extensive corpus statistics and

are often tailored to specific types of LLMs. This dependency can limit their

generalisability and reduce their effectiveness in detecting text from newer or

less studied models.

2.3. Machine Learning (ML) with Stylistic Features

Classifiers trained in stylistic characteristics, such as syllable count, punctu-

ation usage, and sentence structure, have shown promise [63, 65]. In [40] study,

a novel algorithm was introduced that uses stylometric signals to detect when AI

begins to generate tweets within a timeline. Similarly, in [55], the authors pro-

posed StyloAI, a data-driven model that employs 31 stylometric features and a

Random Forest classifier to distinguish AI-generated texts across multi-domain
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datasets, achieving high identification accuracy. Although interpretable and

effective in some contexts, these methods are vulnerable to stylistic mimicry

by advanced LLMs, limiting their robustness in detecting misinformation or

deceptive content.

2.4. Deep Learning and Fine-Tuned Language Models

There is a substantial amount of research [7, 1, 71, 4, 42] that investigates

how well fine-tuned language models can detect text generated by LLMs. In

particular, studies in 2019 recognized that fine-tuning transformer-based models

such as RoBERTa [46] serves as a strong baseline for this task. These models

can deliver optimal classification results across different encoding setups [20, 23].

The OpenAI detector [58] later adopted a similar fine-tuning approach. Recent

studies [27, 49, 50, 14, 76] further validate the superior performance of the fine-

tuned BERT family, which outperforms linguistic feature statistics, stylistic

features, and machine learning classifier methods, demonstrating resilience to

various attack techniques within domain settings.

Nevertheless, encoder-based fine-tuning approaches often lack robustness

[7, 71, 4, 42]. These models tend to overfit to their training data or the source

model’s distribution, leading to a decline in performance when tested on un-

seen text from new AI models. Furthermore, fine-tuning LM classifiers faces

limitations when dealing with text generated by different models [62].

PLM-based detectors often show a decline in performance when identifying

AI-generated text from new or previously unseen LLMs, except in studies like

[15]. The superior performance reported by the PLM-based detector in this

study can be interpreted as a result emerging from the narrow test dataset

employed. Using a larger dataset could easily change this trend and reveal a

deterioration in performance. On the other hand, detectors trained on a specific

LLM often struggle to generalize to others, even in controlled domain settings.

For instance, in [28], a RoBERTa detector trained on GPT-3.5 responses in the

HC3 corpus achieved an impressive F1 score of 99.82%. However, when tested

on variants of ChatGPT using the same prompts and domain settings, the per-
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formance dropped by up to 19%. This decrease was attributed to variations in

perplexity across models, rather than content or domain shifts. Similarly, in

[78], a RoBERTa-Base detector trained on GPT-3.5-turbo summaries from the

DetectRL benchmark achieved an AUROC of 99%, but saw a significant decline

to 55% when tested on Claude-instant outputs from the same documents. The

authors mentioned that the drop was due to differences in statistical patterns,

rather than domain-related factors. The EAGLE framework in [11] also raised

similar concerns, with performance decreasing by 5-15% when tested on unseen

models like GPT-3.5 and Claude, owing to distributional mismatches between

LLMs. Lastly, a study using the MIRAGE benchmark [21] observed a 17% drop

in AUROC for a RoBERTa-Base detector trained on GPT-3.5 text when tested

on Claude-3.5-haiku outputs, which the authors attributed to increased vari-

ability in token sequences, rather than domain-related shift. Collectively, these

studies indicate that the decline in these detectors performance is primarily due

to LLMs differences, emphasizing the need for more robust detection systems.

A schematic comparative summary across multiple models and datasets is

shown in Table 1.

Table 1: Comparison across the reviewed methods. For each class, we indicate the level of

adaptability to new LLMs and whether the models use multi-scale feature (MSF) fusion.

Methods Description Adaptability MSF

Statistical Uses features like word frequency, sentence length,
✗ ✗

[16, 35, 6, 5] and n-grams to detect AI-generated text.

Linguistic Uses high-order n-grams and BScore to detect
✗ ✗

[22, 29] LLM-generated text based on similarity features.

ML Uses classifiers based on stylistic features
Very Limited ✗

[65, 63, 55] (e.g., syllable count, word length, sentence structure).

DL Uses fine-tuning transformer models, which usually
Limited ✗

[7, 46, 27] show higher performances in AI-text detection.

Our Method
Uses continual learning, thus adapting the system

Very High ✓
to evolving LLMs without retraining from scratch.
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2.5. Limitations and Research Gap

Current detection methods struggle with identifying content generated by

new, advanced models, such as ChatGPT-4 [53], which they have not encoun-

tered before. Many detectors, as highlighted in recent studies [56], often fail to

recognise these new LLMs, leading to poor detection performance. For example,

the OpenAI detector [67], which was trained on GPT-2 data, achieves only a

74.74% AUROC when identifying texts from newer models like GPT-3.5-Turbo

and GPT-4. However, it performs accurately with GPT-2-generated texts. This

indicates a significant challenge for detectors to generalise across different LLMs,

especially those not present in the training dataset. Mostly existing detectors

face similar difficulties in adapting to unseen and new models, despite showing

good results with known models. This highlights the need for a detection sys-

tem that can adapt and generalise effectively across various LLMs is crucial for

real-world applications.

To address these gaps, in this research, we propose a novel dynamic fusion

framework that leverages multi-scale feature fusion to extract diverse features

from various AI models. By incorporating continual learning that enables the

detection system to adapt to new and emerging LLMs over time without re-

quiring retraining from scratch. This combination allows for a more robust,

scalable, and long-term solution to cross-LLMs detection, even with a small

sample size, ensuring that detectors can generalise well to newly introduced

LLMs in real-world scenarios.

3. Workflow overview

We present a methodology for building our AI-generated text detection

framework and evaluating its performance that goes through a pipeline con-

sisting of the four main phases below.

1. Preparation of the dataset in sub-datasets for continual learning (section

3.1);

2. Designing a new framework for AI-generated text detection (section 3.3);
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3. Adopting the continual learning strategy (section 3.4);

4. Evaluating the model performance (sections 4).

Detailed elaborations of these steps are provided in the following sections,

and a graphical overview is depicted in Figure 1.

Figure 1: Methodology, a graphical overview.

3.1. Datasets

To evaluate the effectiveness of our framework, we employ two well-known

public benchmark datasets, TuringBench [72] and DeepfakeTextDetect [42].

Both contain a balanced mix of human-written and AI-generated texts from

a wide range of LLMs, making them highly relevant for studying detection in

dynamic and evolving scenarios.

The TuringBench dataset explores “Turing tests” for neural text generation

includes 10k human-written content primarily from news articles such as CNN.
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It features articles ranging from 200 to 400 words alongside text from 19 text

generation models, including GPT-1, various GPT-2 versions, GPT-3, multiple

GROVER versions, CTRL, XLM, XLNet, FAIR, Transformer-XL, and PLM

variants. Each model supplied 8k samples, classified by label.

The DeepfakeTextDetect dataset combines human-written text from ten

diverse datasets such as news articles, stories, scientific writing, and etc. this

dataset is pair with 27 major LLMs, including those of OpenAI, LLaMA, and

EleutherAI, as well as pieces of text produced by GPT-4 and their paraphrased

version to further challenge detection systems.

3.2. Data preparation for continual learning

To simulate a continual learning scenario, each dataset is divided into smaller

subsets, referred to as "tasks" (Figure 1). In our framework, a task represents

a detection process performed using a dedicated pool of large language models

(LLMs). Moreover, a task is a cohesive unit of AI-generated text samples within

a specific time window, where models are selected based on their prevalence,

architectural advancements, and data availability during that period (details are

presented in Table 2 and Table 3). We employed a time-based grouping strategy

to ensure that each task corresponds to a specific set of LLMs, reflecting the

temporal evolution of AI-generated content, as newer models are continuously

introduced. This approach is designed to mimic how newer LLMs are introduced

and how the characteristics of generated text change over time. As new LLMs

are introduced, the model is updated incrementally, learning from each new

task without needing to retrain from scratch. This ensures that the model

continuously adapts to the evolving landscape of AI-generated text.

To maintain a balanced and fair evaluation, each task is designed with an

equal distribution of human- and AI-generated text. The TuringBench dataset

is divided into six subdatasets, each forming a unique task as detailed in Table

2, while the DeepfakeTextDetect dataset is divided into seven subdatasets, as

shown in Table 3. This structure ensures that the performance of the model is

evaluated in different pools of LLM and varying types of AI-generated content,
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which is consistent with the dynamic nature of AI text generation.

Table 2: Tasks (sub-datasets) information on the AI-generated text (TuringBench dataset)

Task
AI-generated text

Models Comments

Task 1 GPT-1 [Early 2019]
First powerful AI

system for text generation.

Task 2
GPT-2 variants : small, medium, Marked a significant leap

large, xl & pytorch [Mid and Late 2019] in model scale and complexity.

Task 3
GPT-3, CTRL, GPT-3 (175 · 109 parameters)

GROVER-(base, large & mega) [2020] with specialised text models.

Task 4 XLM, XLNet-(base & large) [2020-21]
Handle multi-lingual ,

and long-range dependencies

Task 5
FAIR (WMT19), FAIR (WMT20), Specialised translation models and

Transformer-XL [Mid 2021] memory-efficient sequence handling.

Task 6 PLM-(distill & GPT-2) [Late 2021]
Optimised models for

faster text generation

Table 3: Tasks (sub-datasets) information on the AI-generated text (DeepfakeTextDetect

dataset)

Task
AI-generated text

Models Comments

Task 1 GPT-J-6B [Early 2021]
Early phase models, smaller and simpler,

foundational to LLM development.

Task 2
Early GPT-3 Series, Initial GPT-3 models forming the foundation

text-davinci-002 [2021] for large language models

Task 3
text-davinci-003, Enhanced versions of GPT-3, .

gpt-3.5-turbo [2022] offering better performance and fine-tuning

Task 4
FLAN-T5-(small, base), LLMs offering improved scalability

LLaMA(7B,13B) [Early 2023] and fine-tuning for diverse tasks.

Task 5

GPT-NeoX-20B, FLAN-T5-large, Larger, more complex

OPT(125M,350M,1.3B, 2.7B, 6.7B, models for improved

13B, 30B,iml-max-1.3B,iml-30B), performance and

LLaMA(30B, 65B) [Mid 2023] task versatility.

Task 6 FLAN-T5(xl, xxl) [2023]
Cutting-edge models handling complex tasks

with significant performance advancements.

Task 7 BLOOM-7B, T0(3B,11B)[Late 2023]
Advanced models designed for complex tasks

with specialized capabilities.
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3.3. The proposed framework

We proposed a groundbreaking deep learning architecture to detect AI-

generated text by extracting and fusing local and global semantic features, while

incrementally adapting to new LLMs without retraining from scratch, as shown

in Figure 2. The framework consists of six different components.

Figure 2: Proposed framework

Input Representation via Pre-trained BERT

We employed DistilBERT-base-uncased [61] to transform raw input text into

meaningful embeddings due to its ability to produce contextual, semantically

rich representations with low computational overhead, making it suitable for

our framework. The input text is tokenized into a sequence of m tokens, where

m varies based on the text length. Each token is mapped to a d-dimensional
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embedding vector, yielding an embedding matrix E ∈ Rm×d, with d = 768.

This transformation process is defined as Eq. 1.

E = DistilBERTbase-uncased(T ) = [e1, e2, . . . , em], ei ∈ Rd (1)

where T denotes the input text sequence, E ∈ Rm×d is the embedding matrix,

and each ei ∈ Rd is a column vector representing the contextual embedding of

the i-th token, derived from the pre-trained DistilBERT model. This embedding

matrix captures both syntactic and semantic features of the input text, enabling

effective downstream processing for our AI-generated text detection task.

Text length analysis has been performed to select a suitable backbone en-

coder, showing that the vast majority of text in both datasets fits within the

DistilBERT 512 token window. Tables A.14, A.15 and A.16 summarising input

length statistics and ablation results are included in Appendix A, demonstrating

the overall impact of encoder choice on model performance.

Local Feature Extraction with CNN

We used CNN layers to the BERT embeddings E from previous step to ex-

tract local features [32], effectively modelling n-gram patterns and short-range

dependencies. Max-pooling is used to reduce feature dimensionality while pre-

serving high-activation patterns. We used PyTorch’s default hyper-parameters

for convolutional layers to capture local features like edges. Additional hyper-

parameters, such as kernel size and number of filters, are empirically tuned via

grid search as listed in Table 4.

Table 4: CNN Architectural Hyper-Parameter Settings

Hyper-Parameter Value Range Tested

number_of_input_channels 768 Fixed (BERT embeddings)

number_of_layers 3 2, 3, 4, 5

cnn_filters 64 32, 64, 128

kernel_size 3 3, 5, 7

padding 1 0, 1, 2
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Global Feature Extraction with BiLSTM

In addition to CNN, Bidirectional LSTM is applied on embeddings E to

capture long-range dependencies. It processes the sequence in both forward

and backward directions and outputs concatenated hidden states that encode

global context. This step ensures the model discovers sentence-level semantics

and broader narrative flow as well. BiLSTM hyper-parameters, like hidden size

and bidirectional setting, as shown in Table 5, were tuned via grid search to

optimise performance.

Table 5: BiLSTM Architectural Hyper-Parameter Settings for Text Classification

Hyper-Parameter Value Range Tested

input_feature_vector 768 Fixed (BERT embeddings)

num_layers 3 1, 2, 3

lstm_hidden 128 64, 128, 256

bidirectional True True, False

batch_first True Fixed

Attention Mechanisms

Attention mechanisms are applied in two scopes: Local Attention on CNN

outputs (Flocal) and Global Attention on BiLSTM outputs (Fglobal). Local At-

tention focusses on contextually relevant local features by using a fixed window

approach. This mechanism enables the model to capture finer details within

a smaller localised context. Global Attention, on the other hand, allows the

model to weight features across the entire sequence, enabling it to prioritise

important long-distance dependencies. The attention scores for both local and

global attention are computed using the query-key-value scheme and softmax

normalisation, as follows:

The Local Attention is calculated as Eq. 2:

Attentionlocal(q,K, V ) = softmax
(
qKT

√
dk

)
V (2)

Where q is the query vector, K is the key matrix, V is the value matrix, and

dk is the dimension of the key. This equation computes attention for each local

window, focussing on a limited context around each element.
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The Global Attention is defined as Eq. 3:

Attentionglobal(q,K, V ) = softmax
(
qKT

√
dk

)
V (3)

In global attention, the query q is compared with all keys K from the entire

sequence, allowing the model to capture long-range dependencies throughout

the input sequence. These attention scores are then normalised via softmax,

ensuring that the weight across the sequence is distributed proportionally to

the relevance of each part of the sequence. These local and global attention

calculations used here follow those in previous work [48, 3].

Multi-scale Feature Fusion

The local and global features enhanced with attention mechanisms are con-

catenated into a single multi-scale feature using Eq. 4 below.

Ffused = [Flocal, Fglobal] (4)

Final Classification via DNN

We employ a Deep Neural Network (DNN) to classify text as AI-generated

or human-written, leveraging a fused feature vector Ffused. The DNN comprises

fully connected layers that transform Ffused, followed by a sigmoid activation

function. The network configuration, detailed in Table 6, is optimised to ef-

fectively distinguish AI-generated text. Hyperparameters were optimised via a

grid search, selecting the best combination based on performance.

Table 6: DNN Architectural Hyper-Parameter Settings

Hyper-Parameter Value Range Tested

hidden_layer 5 3, 5, 7

threshold 0.5 0.3, 0.5, 0.7

loss_function BCE BCE

activation_function
ReLU (hidden layer), ReLU,Tanh

Sigmoid (output layer) Sigmoid
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3.4. Training with Continual Learning

The goal of continual learning is to let a model to learn new tasks while pre-

serving knowledge from previously learned tasks. To achieve this, we utilised

Elastic Weight Consolidation (EWC), which helps prevent Catastrophic inter-

ference [39]. This section describes methodology, training setup, and key com-

ponents of the continual learning processes, as shown in the third block of Figure

1.

Elastic Weight Consolidation

EWC balances plasticity for quick adaptation to new data with stability to

retain past knowledge. Excessive plasticity can lead to forgetting old tasks,

so stability helps preserve learned information. The EWC assesses the weights

based on their importance in prioritising essential weights while allowing others

to adapt. The challenge lies in maintaining key parameters from past tasks

while learning new ones.

To train a model with EWC, the dataset is divided into tasks. As shown

in Figure 3, at each step t of the EWC process, two key components must

be calculated: First, the optimal weight matrix W ∗
t−1, obtained by training

the model on the previous task (t − 1); and second, the Fisher information

matrix Ft−1, which quantifies the importance of the parameters learned from

Task t − 1, computed following the procedure outlined in [39]. The Fisher

matrix is recalculated for each task, starting from Task 1 and continuing through

each subsequent task, ensuring incremental learning while retaining important

knowledge from prior tasks. We have used the diagonal approximation approach

to compute the Fisher matrix, which reduces computational complexity and

enhances scalability.

Hence, the the matrices for task 1 must be calculated before iterating tasks

2 to n. Information on EWC and parameters (as used in this study) is given in

Algorithm 1.

According to Algorithm 1, a Fisher information matrix-based regularisation

is added to the loss function to protect important weights from earlier tasks.
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Figure 3: EWC procedure - a graphical representation.

Algorithm 1 EWC Pseudocode [39]
Input:

Tasks 1 to n

λ: Regularisation strength ▷ We empirically set it to 1e3

Lt: Loss function for task t = 1, . . . , n ▷ We use BCE (Eq. 6)

Train on task 1 to obtain initial parameters W∗
1 .

W∗
1 = argminW L1(W)

Calculate the Fisher information matrix for task 1.

F1 = E
[
∇W log p(Task1|W)∇W log p(Task1|W)T

]
▷ see [39]

for (t == 2; t <= n; t++) do

Calculate the Fisher information matrix for task t:

Ft = E
[
∇W log p(Task1|W)∇W log p(Task1|W)T

]
▷ to use in Task t+ 1

Train on task t with the loss function incorporating EWC regularisation:

L(W) = Lt(W) +
∑t−1

i=1
λ
2
Fi (Wi −W∗

i )
2

W←W − α∇WL(W) ▷ Update W

end for

Output: Optimised parameters W.
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This helps the model learn new tasks while maintaining past performance. Pa-

rameters are updated via gradient descent to minimise both task-specific loss

and the regularisation, ensuring stability during adaptation.The loss function

in EWC consists of two components: the loss associated with the current task

and the distance between the weight vector of the current task and that of the

previous task. we report EWC loss function in Eq. 5,

L(W ) = LB(W ) + λ
∑
i

1

2
Fi(Wi −W ∗

A,i)
2 (5)

where LB(W ) represents the loss for the current task, λ denotes the relative

importance of the previous task in comparison to the current task, Wi repre-

sents the parameters of the current task, W ∗
A,i represents the parameters of the

previous task, and Fi is the Fisher information matrix for task i.

The training loss is often the binary cross-entropy (BCE) loss, commonly

used for binary classification tasks, which we report in Eq. 6,

LBCE = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (6)

where yi is the binary label (0/1) for the ith sample, ŷi is the predicted proba-

bility (0 to 1) for the ind sample, and N is the total number of samples.

Note that when applying EWC to our framework, we train it using the

learning hyperparameters indicated in Table 7.

3.5. Experimental setup

We implemented a dynamic fusion framework for AI-generated text detec-

tion in Python 3.11, using PyTorch 2.6.0 and the Hugging Face transformers

library, running on an NVIDIA Tesla A100 GPU (40 GB VRAM, CUDA 12.1).

The framework employs the pre-trained distilbert-base-uncased model to

generate text embeddings. To optimise computational efficiency and memory

usage, we applied mixed-precision training using GradScaler and autocast.

The model was trained for 5 epochs with the Adam optimiser, using an

70/15/15 train/validation/test split. This split was achieved using the train_test_split
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function from scikit-learn, which applies a random partitioning method to en-

sure that each experimental run uses a different subset of the data. The process

was repeated for five independent runs to evaluate the model’s performance con-

sistently. The results reported represent the average performance across these

runs, ensuring that the findings are robust and not dependent on any single

data partitioning.

For reproducibility, key learning parameters are detailed in Table 7, with

additional architecture parameters provided in their respective section tables.

Hyperparameter optimisation was performed via grid search, where we explored

variations in learning rate, batch size, dropout rate, and other key parameters.

The results of this optimisation are detailed in Table 7.

Table 7: Learning Hyper-Parameter Settings

Hyper-Parameter Value Range Tested

Learning Rate 1e-5 1e-5, 2e-5, 5e-5

Batch Size 16 8, 16, 32

Number of Epochs 5 3, 5

Optimiser Adam Adam, SGD

Dropout Rate 0.3 0.1, 0.3, 0.5

EWC regularisation coefficient (λ) 103 101, 102, 103

We evaluated the performance of our model using accuracy, precision, recall

and F1-score. These metrics provide a comprehensive understanding of the

model’s performance.

Accuracy (A) measures the overall correctness of the model as Eq. 7, where

TP is the number of true positives, TN is the number of true negatives, FP is

the number of false positives, and FN is the number of false negatives.

A =
TP + TN

TP + TN + FP + FN
(7)

Precision (P ) measures the proportion of correctly predicted positive in-

stances (AI-generated text) out of all instances predicted as positive using Eq. 8.

It is important for ensuring that when the model classifies text as AI-generated,

it is likely to be correct.
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P =
TP

TP + FP
(8)

Recall (R) measures the proportion of correctly predicted positive instances

(AI-generated text) out of all actual positive instances using Eq. 9. It is critical

in applications where it is more important to detect all AI-generated text, even

at the cost of some false positives.

R =
TP

TP + FN
(9)

F1-Score (F1) is the harmonic mean of precision and recall, balancing the

trade-off between them using Eq. 10. The F1-score provides a balanced view

of the model’s ability to detect AI-generated text, especially when there is an

uneven class distribution.

F1 = 2× P ×R

P +R
(10)

These metrics were chosen because they offer a thorough evaluation of the

model’s performance to detect both true positives (AI-generated text) and min-

imise false negatives and false positives. Using these metrics, we ensure a more

robust and nuanced assessment of the capabilities of our model. Furthermore,

these results were compared with the baseline models reported in the original

papers [72, 43] (see Table 11).

We also use further metrics from [38] to measure the competence of a model

in retaining past knowledge while learning new tasks using Eq. 11, 12, and 13.

Ωbase =
1

T

T∑
i=1

αbase,i (11)

Ωnew =
1

T

T∑
i=1

αnew,i (12)

Ωall =
1

T

T∑
i=1

αall,i (13)

Here, T is the total task count, αbase,i is the base task’s accuracy after

learning task i, αideal is the offline model’s base task accuracy, αnew,i is the
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accuracy on task i post-learning task i, and αall,i is the overall accuracy on all

data after learning task i. In particular, Ωbase measures base task retention

after new learning, Ωnew gauges performance on newly learned task i, and Ωall

examines retaining old knowledge while acquiring new.

4. Results and Analysis

This section outlines the effectiveness evaluation of our proposed framework

using two benchmark datasets, TuringBench and DeepfakeTextDetect, and com-

pares the results with state-of-the-art methods. We analyse the performance of

the proposed model, which employs a continual learning approach, by comparing

it to the base model that does not incorporate continual learning.

4.1. Performance of the detection model across multiple language models

Prior to implementing continual learning, we first evaluated our proposed de-

tection model on each large language model from both datasets, without dividing

the datasets into tasks. Table 8 presents experimental results, highlighting the

growing difficulty in detecting AI-generated text as language models evolve. As

shown in the TuringBench dataset, earlier models such as GPT-1 and GPT-2-

small were easily detected, with accuracy rates of 99.35% and 96.80%, respec-

tively, due to identifiable patterns in their output, such as repetitive structures,

unnatural phrasing, and limited contextual understanding. These early mod-

els lacked the sophistication to generate convincingly human-like text, making

detection straightforward.

In contrast, in the DeepfakeTextDetect dataset, it is illustrated that more

advanced models such as GPT-3.5-turbo and LLaMA-65B exhibited compara-

tively lower detection accuracy at 93.73% and 88.57%, respectively. This decline

in detection accuracy reflects their improved ability to mimic human writing,

with more coherent, contextually appropriate responses, and better grammar,

making the output more natural and reducing detectable markers.

The trend observed across model families shows that the detection accuracy

decreases as models evolve and the sophistication of the model increases. If
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Table 8: Performance of the detection model across different language models on TuringBench

and DeepfakeTextDetect datasets. For the full detailed result tables, see Tables B.17 and B.18

of Appendix B.

TuringBench Dataset

Text Generator
Overall Performance AI-Generated Text Human-Written Text

Accuracy AUC Precision Recall F1-Score Precision Recall F1-Score

GPT-1 99.35% 99.36% 99% 99% 99% 99% 99% 99%

GPT-2 (small) 96.80% 96.81% 96% 98% 97% 98% 96% 97%

GPT-2 (large) 96.22% 96.18% 96% 97% 96% 97% 95% 96%

GPT-3 95.76% 95.71% 95% 97% 96% 97% 94% 96%

GROVER (base) 97.99% 97.99% 98% 98% 98% 98% 98% 98%

. . . . . . . . . . . . . . . . . . . . . . . . . . .

DeepfakeTextDetect Dataset

text-davinci-002 84.54% 85.25% 64% 87% 73% 95% 84% 89%

gpt-3.5-turbo 93.73% 94.23% 83% 95% 89% 98% 93% 96%

LLaMA-65B 88.57% 81.62% 72% 70% 71% 93% 93% 93%

GLM130B 83.17% 82.98% 82% 87% 84% 85% 78% 82%

FLAN-T5-base 91.47% 85.42% 74% 76% 75% 95% 95% 95%

. . . . . . . . . . . . . . . . . . . . . . . . . . .

detection methods remain static, their effectiveness diminishes over time. This

shift from easily detectable to more evasive models underscores the need for dy-

namic detection systems. The 10-15% decline in detection accuracy across gen-

erations highlights that static detectors quickly become obsolete. Furthermore,

performance variations across different model architectures, such as 98.38% for

OPT-13B versus 88.57% for LLaMA-65B, emphasise the need for adaptive detec-

tion systems capable of accommodating new large language models and evolving

training techniques.

4.2. Continual Learning: Classic VS Continual learning

To demonstrate the benefits of adopting continual learning, we trained the

"standard model" which, in our study, refers to a non-continual model trained on

both datasets without any mechanisms for continual learning (i.e., only LBCE

is used — see Equation 6). This model serves as a baseline to compare the

performance of our proposed framework. The standard model processes the

data statically, without any adaptation to new tasks, allowing us to evaluate
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how our continual learning framework addresses issues such as forgetting and

adaptation to new tasks. We then analysed the results and compared them

with those obtained by the proposed framework, which incorporates the EWC

procedure in training, as shown in Section 3.4.

Figure 4 shows that training on tasks without EWC causes a sharp initial

loss spike due to the difficulty of adapting to a new task. This results in higher

error rates and indicates a reset of acquired knowledge in our application case,

a phenomenon known as ‘catastrophic forgetting’ [51], where new information

overwrites existing knowledge.

(a) TuringBench dataset loss (b) DeepfakeTextDetect

Figure 4: Loss function trend for training without EWC.

Evaluating a multitask learning system requires assessing both current task

performance and knowledge retention from past tasks. Removing EWC under-

mines this, as illustrated in Figures 5 and 6.

A clear trend of accuracy degradation on earlier tasks is observed as the

model is trained on subsequent tasks. For example, Figures 5-(b) and 6-(b)

show that when the model is trained in task 2, there is a significant drop in

precision in task 1. This trend persists and becomes more evident as we progress

on the next tasks. To prevent this problem, EWC introduces a regularisation

term that limits changes in critical parameters, penalising deviations from their

optimal values noted in previous tasks (see LEWC in Algorithm 1). Our results

confirm this beneficial effect.
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(a) Training on task 1 (b) Training on task 2 (c) Training on task 3

(d) Training on task 4 (e) Training on task 5 (f) Training on task 6

Figure 5: Accuracy of the standard model on previously learned tasks on TuringBench.

Figure 7 presents the BCE loss (LBCE) and EWC loss (LEWC) of the model

during continual learning. Figure 7-(a) and 7-(c) demonstrate a continual drop

in LBCE loss for each task, showing the model’s effectiveness in reducing pre-

diction error across both datasets. The persistently low LBCE loss signifies suc-

cessful learning and stabilisation on individual tasks. Fluctuations in LEWC loss

during transitions to new tasks highlight the model’s effort to balance preserv-

ing prior knowledge, enforced by EWC regularisation, with learning new tasks

(Figure 7-(b) and 7-(d)). The rise in EWC loss indicates difficulty in retaining

accuracy on prior tasks. The spike size highlights parameter importance, as

EWC punishes significant changes crucial for previous task performance. This

interplay reflects the challenges in continual learning frameworks.

Figures 8 and 9 provide a detailed analysis of the accuracy of the model

with continual learning on consecutive tasks during training. Generally, this

configuration retains knowledge without significant performance degradation,

with only one visible ascent in accuracy while transferring knowledge from task

1 to task 2.
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(a) Training on task 1 (b) Training on task 2 (c) Training on task 3

(d) Training on task 4 (e) Training on task 5 (f) Training on task 6

(g) Training on task 7

Figure 6: Accuracy of the standard model on previously learned tasks on DeepfakeTextdetect

dataset

Figure 10 and 11 compares the accuracy of two model variants, with and

without EWC, across tasks. Each row shows a task’s performance as the model

advances from tasks 1 to n. Again, results support using the continuous learning

strategy.

Table 9 shows that continuous learning with EWC is preferable, demon-

strating superior overall performance (Ωall) and retention of knowledge (Ωbase),

although slightly inferior in terms of new task knowledge retantion Ωnew.
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(a) BCE loss on TuringBench dataset (b) EWC loss on TuringBench dataset

(c) BCE loss on DeepfakeTextdetect dataset (d) EWC loss on DeepfakeTextdetect dataset

Figure 7: Losses of the continual model across sequential tasks on TuringBench and

DeepfakeTextdetect datasets

Table 9: Performance comparison of the standard model (Without EWC) versus the continual

learning proposed model (With EWC) on TuringBench and DeepfakeTextDetect datasets

using Kemker’s continual learning metrics. The best value for each metric per dataset is

highlighted in bold.

Metrics
TuringBench DeepfakeTextDetect

Without EWC With EWC Without EWC With EWC

Ωbase 0.843 0.997 0.865 0.943

Ωnew 1.023 1.002 0.974 0.949

Ωall 0.955 0.984 0.869 0.930
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(a) Training on task 1 (b) Training on task 2 (c) Training on task 3

(d) Training on task 4 (e) Training on task 5 (f) Training on task 6

Figure 8: Accuracy of the continual model on previously learned tasks on TuringBench dataset

4.2.1. Results on unseen data

Figure 12 presents the performance on unseen task data. The model with

EWC consistently outperforms the standard model across all tasks on both

datasets. This superior performance indicates that the proposed model effec-

tively integrates and generalises knowledge from previous tasks, while the stan-

dard model shows a decline in accuracy, reflecting a poorer transfer of knowl-

edge. These results highlight that the proposed model’s knowledge preservation

mechanisms enhance its generalisation ability, supporting the hypothesis that

continual learning strategies can improve resistance to catastrophic forgetting

and enable more effective application of prior knowledge to new tasks.

Statistical analysis:. To conclude this analysis with statistical rigour, a two-

sample t-test was performed on the test results (accuracy) using a significance

level as indicated in 0.05. The results presented in Table 10 demonstrate a

statistically significant difference in accuracy between the two distributions,

confirming that the model that employs continual learning exceeds the baseline

model without it.
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(a) Training on task 1 (b) Training on task 2 (c) Training on task 3

(d) Training on task 4 (e) Training on task 5 (f) Training on task 6

(g) Training on task 7

Figure 9: Accuracy of the continual proposed model on previously learned tasks on

DeepfakeTextdetect dataset

Table 10: Statistical analysis on testing datasets for the two models with (reference) and

without EWC.

Dataset T-statistic P-value Significance

DeepfakeTextdetect -10.41 2.31 × 10−7 ✓

TuringBench -7.43 2.31 × 10−5 ✓

4.3. Comparisons with baselines and state-of-the-art models

We performed a thorough comparison of our proposed framework against the

best existing results for the TuringBench benchmark dataset reported in [72]

and several state-of-the-art models evaluated on DeepfakeTextDetect dataset
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Figure 10: Comparison between the model variants with and without EWC across all tasks

on the TuringBench dataset.

in [43], as outlined in Section 3.5. The analysis demonstrates the superiority

of our model, with consistent outperformance in key accuracy metrics on both

datasets, as shown in Table 11. This underscores the critical role of integrating

diverse feature sources from different components of our framework for effective

detection of AI-generated text.

Following are the comparison models used with the TuringBench dataset:

• Random Forest [12]. This ensemble of decision trees, utilising stylometric

and lexical characteristics like word frequency and punctuation density,

serves as a classical baseline for testing surface-level differences between

human and machine text. It was trained with 100 trees, a maximum depth

of 30, on TF-IDF features (1–3 grams) from the TuringBench training set.
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Figure 11: Comparison between the model variants with and without EWC across all tasks

on the DeepfakeTextDetect dataset.

(a) TuringBench dataset (b) DeepfakeTextDetect dataset

Figure 12: Comparison between the model variants with and without EWC on the

TuringBench and DeepfakeTextDetect test set.
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• Support Vector Machine (SVM) 3-grams [73]. This model uses character-

level 3-gram TF-IDF features to detect short-range repetitions in synthetic

text. It was implemented using scikit-learn’s LinearSVC with a hinge loss

of C = 1.0 and trained on normalised and tokenised texts.

• WriteprintsRFC [68]. This is a stylometric pipeline that uses Random

Forest classification to detect AI text by analysing lexical, syntactic, and

content features to find subtle style inconsistencies. Initially designed for

authorship attribution, it applies a 200-tree Random Forest trained on

balanced human/synthetic TuringBench data 1500.

• Syntax-CNN [33]. This convolutional neural network uses syntactic depen-

dency paths to learn grammatical patterns distinguishing AI from human

language. It features three convolutional layers (100, 150, 200 filters),

kernel sizes 3–5, dropout 0.5, and was trained for 5 epochs using Adam

optimiser (1 × 10−3).

• N-gram CNN [13]. This is a character-level CNN that learns filters over n-

gram windows to capture local lexical patterns. It was implemented with

an embedding dimension of 256, kernel sizes of 3–5, max-pooling, and a

dense softmax output. We used a learning rate of 10−3.

• BertAA [18]. This is a BERT-base transformer adapted for binary AI vs

human authorship attribution. We fine-tuned it for 5 epochs with a batch

size of 16, a 512-token context, and a learning rate 2 · 10−5.

• RoBERTa-Multinomial [47]. This is a multi-class RoBERTa-base classi-

fier that predicts whether a text is generated by a model or written by

a human author using deep contextual embeddings and multi-generator

signals. It was trained for 5 epochs on the 20-class TuringBench label set

with learning rate 10−5.

• OpenAI Detector [67]. Developed by OpenAI for AI-text identification,

this is a commonly used industry reference baseline. It was evaluated
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via its public API on TuringBench test subsets without possible further

fine-tuning.

For DeepfakeTextDetect dataset, the following are the comparison models

used:

• DetectGPT [53]. This is a zero-shot method that flags text likely to be

synthetic by using log-probability curvature under a language model, em-

ploying GPT-NeoX 20B for probability evaluation with 10 perturbations

per document.

• GLTR [25]. This model analyses token probabilities to spot high-probability

tokens typical of machine output. Features (token ranks top-10/100/1000)

are input to a logistic regression classifier with 10-fold cross-validation.

• FastText [34]. This is a fast and interpretable baseline neural classifier

using bag-of-words and sub-word n-gram embeddings. We implemented it

with embeddings of dimensions 100, lr = 0.1, ngrams = 2, and we used 5

epochs.

• Longformer [9]. This model is based on a transformer architecture with

sparse (global and local) attention, which efficiently handles long sequences

and captures document-level coherence for detection. We fine-tuned it for

5 epochs on 512- to 4096-token inputs and a learning rate of 2× 10−5.

The Longformer model stands out for its ability to efficiently handle long

input sequences, using a self-attention mechanism that scales linearly with the

sequence length, making it well suited for AI text detection, as demonstrated

by its high accuracy shown in the table 11. In contrast, FastText, a word-level

classification model using bi-grams as features, is known for its efficiency in text

classification tasks. It leverages sub-word information for more nuanced word

representation, delivering competitive performance. However, its performance

in AI-generated text detection lags, highlighting limitations in addressing the

complexity of this task.
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Furthermore, while RoBERTa-Multinomial and OpenAI Detector did not

surpass our proposed model, both demonstrated notable accuracy improve-

ments. Although not yet competitive with our approach, their detection method-

ologies offer valuable insights for future model enhancements.

Table 11: Comparison with state-of-the-art methods on TuringBench [72] and

DeepfakeTextDetect [43] datasets. The best number is highlighted in bold.

Datasets Methods Accuracy

TuringBench

Random Forest [12] 61.47%

SVM (3-grams) [73] 72.99%

WriteprintsRFC [68] 49.43%

OpenAI detector [67] 78.73%

Syntax-CNN [33] 66.13%

N-gram CNN [13] 69.14%

BertAA [18] 78.12%

RoBERTa-Multinomial [47] 81.73%

Proposed Framework 95.78%

DeepfakeTextDetect

GLTR [25] 59.25%

DetectGPT [53] 60.48%

FastText [34] 80.23%

Longformer [9] 92.02%

Proposed Framework 92.39%

4.4. Ablation study

To evaluate the effectiveness of the proposed fusion strategy, we conducted

ablation studies to assess the impact of each component on our framework’s per-

formance across the TuringBench and DeepfakeTextDetect datasets. Specific

components (e.g., BiLSTM, Attention mechanism, and EWC) were removed,

and the model retrained. The full model showed robust performance, with re-

moval of any component leading to significant performance drops as shown in

tables 12 and 13. Specifically, removing CNN highlighted its importance in

feature extraction, while removing BiLSTM and Attention reduced the model’s

ability to capture long-term dependencies and prioritise relevant features. The

removal of EWC resulted in the large drop, emphasising its role in preventing

catastrophic forgetting as shown in Section 4.2. These findings demonstrate the
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critical contribution of CNN, BiLSTM, Attentions mechanism, and EWC for

feature extraction, sequence learning, and mitigating forgetting.

Table 12: Ablation Study for the Proposed Model on the TuringBench Dataset.

Model Variant CNN BiLSTM Attention EWC Accuracy

W/o CNN × ✓ ✓ ✓ 92.04%

W/o BiLSTM ✓ × ✓ ✓ 91.45%

W/o Attention ✓ ✓ × ✓ 93.68%

W/o EWC ✓ ✓ ✓ × 89.90%

Full Model ✓ ✓ ✓ ✓ 95.78%

Table 13: Ablation Study for the Proposed Model on the DeepfakeTextDetect Dataset.

Model Variant CNN BiLSTM Attention EWC Accuracy

W/o CNN × ✓ ✓ ✓ 89.85%

W/o BiLSTM ✓ × ✓ ✓ 88.28%

W/o Attention ✓ ✓ × ✓ 90.76%

W/o EWC ✓ ✓ ✓ × 84.41%

Full Model ✓ ✓ ✓ ✓ 92.39%

5. Conclusion

This study presents a novel dynamic fusion framework that integrates multi-

scale feature fusion with continual learning via EWC to address the growing

challenge of detecting AI-generated text.

Experimental results on the two benchmark datasets, TuringBench and

DeepfakeTextDetect show that the proposed model consistently outperforms

state-of-the-art baselines. Notably, the continual learning strategy effectively

mitigates catastrophic forgetting, enabling the model to retain knowledge across

sequential tasks while adapting to new data distributions. The integration of

CNN, BiLSTM, and attention mechanisms further enhances the model’s ability

to capture both local and global textual features, contributing to its superior

classification accuracy.
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Beyond the scope of AI-generated text detection, the proposed framework

offers a scalable and generalisable solution for dynamic environments where

data evolves over time. Its potential applications extend to domains such as

machine translation, content verification, and adaptive information filtering,

aligning with the broader goals of the research community in AI to develop

intelligent systems capable of robust decision-making in complex, non-stationary

settings.

The main limitation of our dynamic fusion framework lies in the English-

centric dataset used to train it, which may not adequately represent the lin-

guistic diversity of AI-generated text in multilingual contexts, thus limiting its

applicability to non-English languages. Additionally, the integration of multiple

components, such as convolutional neural networks, bidirectional LSTM, local

and global attention mechanisms, and elastic weight consolidation, introduces

significant computational complexity, potentially restricting its deployment in

resource-constrained environments.

Future research will focus on enhancing our framework’s performance with

multilingual datasets to improve detection across diverse linguistic contexts

where misuse of AI-generated text causes problems (e.g., in education, etc.) This

will involve tailoring the model to language-specific patterns and evaluating it

on multilingual benchmarks. Additionally, the framework will be expanded to

accommodate multimodal GenAI content, including text and images, to address

emerging challenges in dynamic, multi-format information fusion environments.
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Appendix A. Text length analysis

Table A.14: Text Length Statistics for DeepfakeTextDetect and TuringBench Datasets

Dataset Sample Size
Mean Length % Samples 95% Percentile

(Tokens) ≤ 512 tokens Length (Tokens)

DeepfakeTextDetect 141, 000 264 93.8% 421

TuringBench 200, 000 231 95.4% 378

Table A.15: Ablation Study on Maximum Input Length

Model Max Tokens DeepfakeTextDetect TuringBench

DistilBERT (Ours) 512 94.1% 92.7%

Longformer 1,024 94.2% 92.8%
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Table A.16: Efficiency Comparison between DistilBERT and Longformer

Model Max Tokens
GPU Memory Latency Accuracy

Usage (per sample) Change

DistilBERT(our) 512 1.7 GB 1.2 ms -

Longformer 1,024 6.4 GB 3.9 ms +0.1 pp

Appendix B. Extended performance tables

Table B.17: Performance of the detection model across different language models in

TuringBench dataset.

Text Generator
Overall performance AI-generated text Human-written text

Accuracy AUC Precision Recall F1-Score Precision Recall F1-Score

GPT-1 99.35% 99.36% 99% 99% 99% 99% 99% 99%

GPT-2 (small) 96.80% 96.81% 96% 98% 97% 98% 96% 97%

GPT-2 (medium) 96.28% 96.29% 97% 96% 96% 96% 97% 96%

GPT-2 (large) 96.22% 96.18% 96% 97% 96% 97% 95% 96%

GPT-2 (xl) 95.72% 95.66% 95% 97% 96% 96% 95% 95%

GPT-2 (pytorch) 95.81% 95.76% 98% 93% 96% 94% 99% 96%

GPT-3 95.76% 95.71% 95% 97% 96% 97% 94% 96%

GROVER (base) 97.99% 97.99% 98% 98% 98% 98% 98% 98%

GROVER (large) 98.08% 97.99% 97% 100% 98% 99% 96% 98%

GROVER (mega) 97.97% 97.93% 97% 99% 98% 99% 97% 98%

CTRL 98.56% 98.53% 98% 99% 99% 99% 98% 98%

XLM 99.83% 99.83% 100% 100% 100% 100% 100% 100%

XLNet (base) 99.27% 99.28% 99% 99% 99% 99% 99% 99%

XLNet (large) 99.70% 99.70% 100% 100% 100% 100% 100% 100%

FAIR (WMT19) 91.28% 91.26% 92% 92% 92% 91% 91% 91%

FAIR (WMT20) 91.38% 91.45% 94% 89% 91% 89% 94% 91%

Transformer-XL 98.42% 98.41% 98% 99% 98% 99% 98% 98%

PLM (distill) 97.60% 97.60% 97% 98% 98% 98% 97% 98%

PLM (GPT-2) 96.42% 96.45% 95% 98% 96% 98% 95% 96%
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Table B.18: Performance of the detection model across different language models in

DeepfakeTextdetect dataset.

Text Generator
Overall performance AI-generated text Human-written text

Accuracy AUC Precision Recall F1-Score Precision Recall F1-Score

text-davinci-002 84.54% 85.25% 64% 87% 73% 95% 84% 89%

text-davinci-003 89.44% 90.31% 73% 92% 81% 97% 89% 93%

gpt-3.5-trubo 93.73% 94.23% 83% 95% 89% 98% 93% 96%

LLaMA-7B 88.24% 85.59% 66% 81% 73% 95% 90% 92%

LLaMA-13B 88.43% 86.29% 67% 83% 74% 95% 90% 93%

LLaMA-30B 86.71% 84.06% 62% 80% 70% 95% 88% 91%

LLaMA-65B 88.57% 81.62% 72% 70% 71% 93% 93% 93%

GLM130B 83.17% 82.98% 82% 87% 84% 85% 78% 82%

FLAN-T5-small 92.95% 86.48% 82% 76% 79% 95% 96% 96%

FLAN-T5-base 91.47% 85.42% 74% 76% 75% 95% 95% 95%

FLAN-T5-large 91.20% 84.60% 72% 75% 74% 95% 94% 95%

FLAN-T5-xl 92.47% 80.21% 89% 62% 73% 93% 99% 96%

FLAN-T5-xxl 94.91% 87.44% 93% 76% 84% 95% 99% 97%

GPT-J-6B 89.85% 90.63% 81% 93% 86% 96% 88% 92%

GPT-NeoX-20B 96.25% 95.33% 96% 93% 94% 97% 98% 97%

OPT-125M 94.25% 84.84% 70% 73% 71% 97% 97% 97%

OPT-350M 96.01% 92.26% 76% 88% 81% 99% 97% 98%

OPT-1.3B 92.06% 86.57% 58% 80% 67% 98% 93% 95%

OPT-2.7B 96.11% 89.68% 81% 82% 81% 98% 98% 98%

OPT-6.7B 92.53% 85.40% 61% 76% 68% 97% 94% 96%

OPT-13B 98.38% 93.54% 94% 88% 91% 99% 99% 99%

OPT-30B 96.73% 85.37% 95% 71% 81% 97% 100% 98%

OPT-iml-max-1.3B 92.38% 82.51% 62% 70% 66% 96% 95% 96%

OPT-iml-30B 95.56% 82.38% 88% 66% 75% 96% 99% 98%

BLOOM-7B 92.01% 91.47% 80% 90% 85% 97% 93% 95%

T0-3B 91.85% 91.25% 80% 90% 85% 96% 92% 94%

T0-11B 92.29% 90.74% 82% 88% 85% 96% 94% 95%
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