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Abstract

This review investigates the application of Explainable Artificial Intelligence (XAI) in
biomedical informatics, encompassing domains such as medical imaging, genomics, and
electronic health records. Through a systematic analysis of 43 peer-reviewed articles, we
examine current trends, as well as the strengths and limitations of methodologies currently
used in real-world healthcare settings. Our findings highlight a growing interest in XA,
particularly in medical imaging, yet reveal persistent challenges in clinical adoption, in-
cluding issues of trust, interpretability, and integration into decision-making workflows.
We identify critical gaps in existing approaches and underscore the need for more robust,
human-centred, and intrinsically interpretable models, with only 44% of the papers studied
proposing human-centred validations. Furthermore, we argue that fairness and account-
ability, which are key to the acceptance of Alin clinical practice, can be supported by the use
of post hoc tools for identifying potential biases but ultimately require the implementation
of complementary fairness-aware or causal approaches alongside evaluation frameworks
that prioritise clinical relevance and user trust. This review provides a foundation for
advancing XAl research on the development of more transparent, equitable, and clinically
meaningful Al systems for use in healthcare.

Keywords: SHAP; LIME; Al; Explainable Artificial Intelligence; XAI; medical imaging;
model interpretability; human-centred Al; biomedical informatics; post hoc explanations

1. Introduction

Advances in Artificial Intelligence (Al) are transforming biomedical practices, bioin-
formatics approaches, and healthcare more broadly. However, the advent of Al has been
accompanied by concerns from a significant portion of practitioners and discerning mem-
bers of the public/patients due to the black-box nature of these systems and their inherent
lack of transparency. This sparks unease, particularly in sectors like healthcare, where a
flawed decision-making process can lead to significant and potentially devastating conse-
quences [1].

The scientific community within the field of Al is addressing this by investigating
methodologies to enhance the interpretability of models and, consequently, the trust of
their users. Such solutions are commonly grouped under the umbrella name of Explainable
Artificial Intelligence (XAI), which is an established discipline that includes methods and
techniques that aim to make the outputs of Machine Learning (ML) models understandable
to humans [2].
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The need for XAl in clinical environments is driven by several factors that go beyond
the technical details of the model. Healthcare professionals are used to making decisions
that are informed by knowledge and supported by evidence from established medical tests.
Consequently, the lack of rationale for decisions generated by Al-based systems results in
diminished trust and increased reluctance among clinicians to employ these technologies,
particularly when patient safety is concerned and when the practitioners are operating
within a framework that currently lacks well-developed policies regarding risks and liability
for decisions delegated to a computer. Human errors in clinical settings that harm patients
cannot always be prevented, but the liability is easily traceable. However, without legal
frameworks in place, insurance companies may not be able to identify the source of liability
when Al systems make harmful decisions [3]. This highlights the importance of considering
Human-Centric Metrics (HCMs) when deploying Al models in such contexts.

In practice, legal systems interpret responsibility for Al-assisted decisions through
the lens of liability regimes, which may not always consider the metrics used to judge the
actual performance of the Al system [4]. Courts and public perspectives consider broader
ethical and normative dimensions of Al use, not just a performance metric. This complex
situation makes it even more difficult to accept the use of Al, even in scenarios where Al
has been proven to be relatively reliable and interpretability is the key factor [5].

In this light, safe and practical integration of Al into healthcare workflows presents
multifaceted complexities and pain points, necessitating that such integration be both
transparent and clinically pertinent to earn public trust. XAI methodologies offer promising
tools for facilitating this process; nonetheless, further development is needed to improve
their ability to deliver comprehensive explanations. Given that XAl is a relatively recent
discipline, efforts should be focused on making it more systematically organised and
well established. The advantages of employing XAI methodologies are evident in certain
contexts, as they can help to catch incorrect or biased decisions—occurrences of which are
known to be significant (see e.g., [6,7])—thereby mitigating the risk of errors, discrimination,
etc. To date, the majority of XAl approaches identify only specific features responsible for
the final decision, lacking explanations that align with medical reasoning to substantiate
decision-making. Based on these considerations, if it is to be used within healthcare settings,
Al should

1. offer reliable insights;

2. build trust and assist clinicians and stakeholders in comprehending the underlying
rationale for Al-generated decisions or identifying biased or erroneous decisions;

3. meet regulatory standards to ensure compliance and ethical implementation [8].

In this work, we examine existing methodologies and identify gaps in their applica-
tions while evaluating current trends across various biomedical domains, particularly in
medical imaging. By mapping the XAl research landscape, this study aims to elucidate how
explainability is employed to foster trust among clinicians. To identify pertinent literature,
searches were systematically conducted across major academic databases, including the
ACM Digital Library, IEEE Xplore, and PubMed, for work published between March 2023 and
Oct 2025. The following search keywords and Boolean combinations were used: (“explain-
able AI” OR “XAI” OR “interpretable ML” OR “Transparent AI”) AND (“medical imaging”,
“EHR”, “genomics”, “clinical NLP”, “drug discovery”) AND (“SHAP”, “LIME”, “attention
mechanisms”, “counterfactual explanations”, “decision support”). During screening, we
excluded the following categories of records: non-English publications, non-journal or
non-peer-reviewed sources (e.g., theses, book chapters, workshop abstracts), methodolog-
ical XAl papers without a biomedical application, papers outside the medical or clinical
domain, and duplicate records. Two reviewers independently screened all articles, and
disagreements were resolved by discussion.
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The process cumulated in the identification of a corpus of 86 pertinent articles (refer
to Figure 1 for a schematic of the entire process). Subsequently, after we had scrutinised
the articles in the main pool, our analysis concentrated on a carefully selected subset of
43 articles that were deemed particularly relevant and significant for our purpose. Two
reviewers performed the final step, discarding those articles containing imprecisions.

The remainder of this article is organised as follows.

®  Section 2 provides a short overview of the main types of XAI methods.

®  Section 3 reviews how these methods are applied in biomedical informatics.

*  In Section 5, we explore the key challenges XAl faces.

*  Finally, in Section 6, we discuss possible directions for future research and offer the
conclusion of our study.
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Figure 1. Literature-selection process for our XAI biomedical survey describing the steps of identifi-
cation, inclusion, and exclusion and the selection criteria used in the final review. A total of 43 papers
published between 2023 and 2025 were eventually selected.

2. Taxonomy of XAI Methods

In this paper, we adopt “XAI” as an overarching term that encompasses both post
hoc explanation techniques and intrinsically interpretable modelling approaches. The
term “interpretable ML” is used specifically to refer to models whose decision-making
process is inherently transparent (such as decision trees and rule-based systems). The
phrase “transparent Al” is avoided, although this term appears in some of the articles
we reviewed. Instead, we adopt “XAI” as the standard terminology throughout this
manuscript to maintain consistency.

Understanding the various categories of XAI methods is key to choosing the most
appropriate XAl tools based on model architecture, specific use cases, or the needs of end
users. This is particularly critical in the healthcare sector, where trust and transparency are
pivotal. XAl methods are generally classified according to four main criteria.
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*  Specificity (S).
Specificity discriminates between approaches that are Model-Specific (M-5), i.e., their
working mechanisms are specific to one model architecture, or Model-Agnostic (M-
A), i.e., their mechanisms can be applied to any Al model regardless of the specific
architecture [9].

*  Scope of Explanation (SE).
This can be Global (G), with an approach capable of explaining the overall behaviour
of the model; Local (L), with an approach that explains a single specific prediction
made by the model; or Both (B), with an approach that can address aspects of both
global and local interpretability [10].

e Model Interpretability (MI).
This can be Intrinsic (I), usually for simple models whose working mechanism is
defined in such a way that they can be explained by design, or Post Hoc (P), for models
whose complexity requires the application of approaches to analyse predictions only
after they have been trained to generate an explanation [11].

¢  Explanation Modalities (EM)
This criterion categorises the XAI methods based on the format/s of the explanations
they provide as output [9], which may include measures of or visualisation of how
specific features contributed to the decision, rule-based logic explanations, example-
based explanations, and text-based summaries.

Each criterion focuses on a specific aspect of the method or the type of explanation it
generates; the criteria can therefore be used in conjunction to describe an XAI approach in
detail (Figure 2).

U\ Model-Specific Intrinsic '_/..
g . g =]
< Specificity Interpretability | =
§ &
( ]
L XAl Methods Im .
3 Scope Explanation 2
g -
./. Local Numeric I ‘\?'{\
. 1

Figure 2. Taxonomy of XAI methods.

2.1. On Model-Specific and Model-Agnostic Methods

Model-Specific (M-S) explainability is achieved with methods that are optimised for
or closely linked with a specific model architecture, e.g., Decision Trees (DTs) and Neural
Networks (NNs).

The methods that are widely used for models having a tree structure are usually called
“path analysis” and aim at explaining each single step. In DT, this is made possible by
navigating the tree structure from top (root node) to bottom (leaf node) [12].

Similar strategies are infeasible for NNs, whose intricate architecture and operational
mechanisms necessitate the use of internal elements such as weights, activation functions,
and attention mechanisms to return explanations that are precise and easily comprehen-
sible [13]. In this case, M-S XAI applications are still possible but cannot be universally
applied across diverse architectures or models with varying parameters or operational
logic [14].

Visualisation methods are useful when dealing with NN, in particular in healthcare
applications. For example, attention maps are widely used in transformer and Recurrent
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Neural Network (RNN) models to show which parts of the input the model is focusing
on [15]. Other examples include saliency maps [16] and Grad-CAM [17], which are often
used for Convolutional Neural Networks (CNNs). They highlight important regions in an
image, helping to visualise which parts of the image influenced the model’s prediction.
Different versions of Grad-CAM exist, such as Grad-CAM++ [18], which handles
multiple instances of objects in an image, and LayerCAM [19], which generates more
detailed heatmaps, considering features across different layers. Examples of Grad-CAMs
explanations are provided in Figure 3, which shows their application to a thoracic x-ray

inspection task.

(a) Original (b) Grad-CAM (c) Grad-CAM++

(d) Original (e) Grad-CAM (f) Grad-CAM++

Figure 3. Comparison of Grad-CAM and Grad-CAM++ saliency maps on chest X-rays for car-
diomegaly (top row: panels (a—c)) and atelectasis (bottom row: panels (d—f)). The green frame in
(a,d) indicates the areas of interest. Red regions indicate areas of high feature importance, while blue
regions represent areas of low relevance. Grad-CAM++ provides finer localization and improved
boundary delineation compared to standard Grad-CAM, enhancing interpretability.

In the top panel (Cardiomegaly), both Grad-CAM and Grad-CAM++ consistently
highlight the enlarged cardiac silhouette, corroborating clinical markers of cardiac enlarge-
ment. The bottom panel (Atelectasis) shows the concentration of attention at the base and
periphery of the lung. Notably, Grad-CAM++ provides more precise boundary delineation,
reducing diffuse activation and improving interpretability. However, both methods require
clinical validation to confirm that highlighted regions correspond to actual pathological
findings rather than spurious correlations.

Differently, M-A techniques explain predictions by testing any model with different
inputs and observing the results [20]. As shown in Figure 4, the explanation algorithm
(e.g., SHAP, LIME) perturbs input samples, feeds them to the black-box model, collects and
compares predictions, and generates a human-readable explanation. The model remains
untouched, ensuring the approach can be applied to any predictive system regardless of
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its internal structure. Grad-CAM++ provides more precise localization, but both methods
require clinical validation to confirm alignment with actual pathology.

Black b
Input ackbox Prediction

. Perturbed Sampl Predictions
Explanation method crhed ompres —

----------

| Human readable output

Figure 4. Workflow of model-agnostic explanation methods.

These approaches are the most flexible and can be virtually applied to any framework,
as they are based on broad principles for interpreting input—output signals and thus are
highly scalable and adaptable. Hence, they are also simpler to use and applicable to entire
pipelines wherein some incompatibilities prevent M-S models from being applied to explain
a decision made through a cascade of Al-driven steps.

Two well-known examples of model-agnostic explanation methods are Local Inter-
pretable Model-agnostic Explanations (LIME) [21] and SHapley Additive exPlanations
(SHAP) [22]. LIME operates by making incremental alterations to the input data and
observing the resulting variations in the model’s predictions. This approach renders it
adaptable and applicable to nearly all ML models. Differently, SHAP employs concepts
from game theory to calculate the contribution of each feature to a prediction, which also
enables its applicability across a diverse array of model types regardless of their working
mechanisms (more details follow in Section 3). SHAP is known for its high computational
cost, as it requires evaluating all possible combinations of the so-called “feature coalitions”,
the number of which can increase significantly (exponentially) in the presence of high-
dimensional data and when dealing with “complex” models. To address this challenge,
various approximation techniques have been proposed to calculate the contributions of
individual features; these techniques can be divided into two main categories: replacement
and estimation [23].

Estimation techniques determine how subsets of features are selected and evaluated
during Shapley value computation (e.g., sampling or Kernel SHAP), while replacement
strategies define how the values of features not included in a selected subset are simulated
(e.g., substituting baseline values or samples from a distribution).

As in many other scientific domains, no universally preferred approach can be iden-
tified. Therefore, it is important to determine which method is most suitable for a given
scenario. Generally, M-A approaches are more applicable and may be the only choice in
the presence of certain complex models [24]. However, their general-purpose nature makes
them less accurate than M-S methods [25]. In conclusion, if an M-S method is available
for analysing a particular decision, it should be employed or at least tested before an M-A
approach is tried, as the latter may miss important internal dynamics of the model and
occasionally yield less accurate results [26].

2.2. Scope of Explanation

The level of detail offered when interpreting or explaining a model is also commonly
referred to as the “granularity” of the returned explanation in the XAI literature. XAI
techniques offer different options on this regard, including (a) Global Explainability (overall
model behaviour), which provides insights into the entire model’s behaviour across all
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inputs, and (b) Local Explainability (single prediction), which explains single predictions
rather than overall model behaviour.

One widely used approach across both local and global interpretability is feature
importance, which examines the impact of individual features on predictions. Feature
importance is a flexible concept that bridges both local and global explainability, depending
on whether it captures average behaviour across all predictions (global) or details the
impact of individual features on a single decision (local).

Various levels of granularity can be used to explain different aspects of model be-
haviour to adjust to the distinct objectives of different stakeholders, such as elucidating
Al-driven diagnoses and rationalising decisions.

Table 1 presents several prevalent and contemporary XAI methodologies, classified
according to their level of explanation granularity to differentiate between local and global
attribution methods.

Table 1. An overview of established XAI methods for feature attribution, showing different combina-
tions of specificity and scope. Abbreviations: S—Specificity, SE—Scope of Explanation, M-A—Model-
Agnostic, M-S—ModelSpecific, G—+Global, L—Local, EHR—Electronic Health Records.

Method

Name Ref 3 SE Generalities Advantages Disadvantages Common Application
Computationally  ex- Feature importance, EHR-
P MA LeG  Jhapley v Widely wedand well o e e 1k S vt
feature independence. . .
models, fairness/bias
DeepLIFT Accurate for NNs; cap-  Sensitive to reference ~ CNNs, deep model interpre-
DeepSHAP [27] M-S L&G (SHAP) Dback- turelayer-wiseinterac- baseline. Applicable tation, attributing importance,
propagation tions only to NNs. multimodal explainability
Dependent on baseline;
. Integrated path  Provides smooth, noise- may produce mislead- Heatmaps, explaining deep
Integrated Gradients 28] M-S L&G from baseline reduced attributions. ing attributions. Appli- ~ EHR, time series, genomics.
cable only to NNs.
Expected . - o
gradient-path Prod bl High computational Infgrmmlg ?tmbultlcog Stablht{
Expected Gradients [29] M-S L values relative roduces more stable 4" 46 1o sampling anc_expiaining mortal-
and robust attributions. o ity, biomedical systems, multi-
to the chosen from data distribution. dal model
baselines. modalmodets.
Decomposition Works well with se-  Attributionrulescanbe- . . . .
of activation uential processing in-  come complex architec- Clinical time-series and time
Contextual Decomposition [30] M-S L models and T P & P segments, attention-based ge-
. . side deep stacked atten-  tures. Applicable only .
attention contri- . . . nomics.
butions. tion mechanisms. to RNNs & attention.
L:jtlzf bation—the Often more faithful  Performance depends  EHR/tabular, feature attribu-
CXPlain [31] M-A L fn duced change than surrogate-based  on the quality of ex- tion, deep models, multimodal
in loss 8 methods. plainer training. models.
Human-readable, rule-  Hard to find anchorsin ~ Rule extraction, EHR predic-
Anchors [32]  M-A L Rule-based based explanations (if-  high-dimensional data  tions, clinical text, image expla-

then anchors).

nations.

2.3. Intrinsic and Post-Hoc Approaches

Models that are intrinsically interpretable because of their simplicity or structure
allow users to understand the results without necessarily requiring additional methods to
generate explanations. While these methods offer interpretability, they may lack predictive
power compared to more complex models [33].

DT exemplifies a highly interpretable decision-model structure [34]. They are easy
to visualise and understand, with a clear logic of decision and leaf nodes in a tree graph.
The decision process is straightforwardly traceable from the root to an outcome (leaf), and
feature importance is easily determined by closeness to the root node.
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Linear regression models are also simple to explain by inspection of the feature
coefficients, which directly show how much each input affects the prediction.

Similarly, rule-based systems are based on logic operators that intrinsically provide ex-
planations [35], removing any uncertainty with regard to the rationale behind the decision.

When model complexity does not allow for these considerations, post hoc approaches
can be used after training without altering the model’s architecture. These methods ap-
proximate the model’s behaviour around specific instances. They often rely on local
simplifications that do not capture the global or causal logic of the underlying model,
leading to misleading or incomplete explanations [36].

Moreover, post hoc explanations typically reveal correlational associations rather
than causal mechanisms and do not necessarily represent fairness or transparency with
regard to model output [37,38]. Evaluating fairness requires deeper audits, counterfactual
simulations [39], and subgroup analyses (i.e., [40]) beyond surface explanations.

2.4. Explanation Modalities (Visual, Textual, Symbolic)

Different methods return different outputs. Nonetheless, they can be processed in mul-
tiple ways for presentation to the audience. In healthcare domains such as radiology, visual
elements predominate; however, augmenting them with textual or alternative modalities
may also be beneficial.

Examples of visualisations of different modalities of explanations are illustrated in
Figure 5. The bar charts in Figure 5a show SHAP and LIME feature-importance results
for tabular or EHR-based models. In this example, both methods consistently rank key
clinical variables such as Grade and MBest, providing clinicians with clear insight into
the factors that most strongly influence Covid-19 survival and supporting personalized
treatment decisions.

Heatmaps generated by Grad-CAM (Figure 5b) highlight the image regions that
most influenced the model’s prediction. In chest X-rays, Grad-CAM can localise opacities
suggestive of pneumonia; in MRI scans, it can highlight tumour regions. This spatial
attribution aligns with radiologists’ reasoning and helps verify that the model attends to
clinically relevant areas rather than artefacts.

Rule-based explanations (Figure 5c) are valuable in genomics and pathology, where
decision paths can be expressed as interpretable conditions, supporting compliance and
formal reasoning in clinical workflows. Text-based summaries (Figure 5d) complement
visual outputs by explaining high-risk predictions in natural language, as by highlighting
breast cancer patients with elevated risk scores, thereby improving accessibility for non-
technical stakeholders and building trust in the predictions.

The textual, visual, and symbolic elements demonstrate how each modality offers
distinct affordances based on audience needs and model interpretability. Ideally, the outputs
of the XAI methods should be analysed and represented through multiple modalities to
generate further insight into the system.
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\ 1.1. Alcohol Metabolism (SNP: Alcohol, SHAP 2.44e-06): Alcohol consumption is linked to
increased estrogen levels, which can promote hormone receptor-positive breast cancers.
Recommendation: Limit alcohol intake to no more than one drink per week to reduce
estrogen-driven cancer risk.
1.2. DNA Repair and Tumor Suppression (SNPs: rs117912751_T, rs191111426_A,
rs72806951_G, rs72806949_T): Variants in these SNPs may affect genes involved in DNA

repair mechanisms, similar to BRCA mutations.

1.3. Inflammatory and Oxidative Stress Pathways (SNPs: rs187872526_T, rs34874723_C,

rs74487233_C, rs570718910_G): Chronic inflammation contributes to DNA damage and
cancer initiation. Recommendation: Adopt an anti-inflammatory diet rich in omega-3 fatty
acids, leafy greens, and antioxidants.

() (d)

Figure 5. An example showing different XAI modalities used in XAI through (a) a simple bar chart

showing explanations for predictions of life expectancy in lung cancer (b) visual Grad-CAM heatmaps
of a lung disease (c) symbolic logic trees, and (d) textual explanations generated by an LLM. (a) SHAP
& Lime Bar Chart [41]. (b) Grad-CAM Heatmap [42]. (c) Tree-Based Explanation [43]. (d) Text-Based
Explanation [44].

2.5. Modalities in Medical Imaging

Visual explanation methods play a critical role in Al used in medical imaging by
providing localised intuitive insights into the behaviour of the model.

Visualisation tools like Grad-CAM help explain deep learning models by showing
which parts of an image a CNN focuses on and are typically applied to models that have
already been trained [45,46].

Although visual descriptions provide graphical or spatial indications of the model’s
primary areas of emphasis, which can be advantageous in numerous contexts, there remain
shortcomings or unresolved issues that necessitate additional research efforts to align these
approaches more closely with clinical environments. For example, several XAI methods for
medical imaging have been found to disproportionately focus on pixels that significantly
influenced the decision. However, these pixels may not correspond to clinically relevant
image areas [47]. This suggests that, irrespective of the XAI method’s validity, the final
decision still requires human validation [48], which is sometime challenging if clinicians
have not been trained in interpreting such visualisation maps.
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To overcome this problem, other methods can also be used or added to include local
approximations like those resulting from the application of LIME and attribution of input
features such as SHAP. Textual explanations, given in natural language or symbolic text,
make it easier for clinicians to understand XAI method theorems. However, there is a
risk that these explanations may oversimplify the situation and misrepresent the model’s
logic [49].

The previously mentioned symbolic and logical interpretations based on decision sets,
symbolic reasoning, and logical rules are less prone to misinterpretation. This modality is
excellent for formal reasoning and compliance [50] but less effective when dealing with
high-dimensional or unstructured data [51].

2.6. Overview of the Main XAI Techniques

LIME explains individual predictions by generating synthetic perturbations around
an input instance—perturbing pixels for images, sampling from a distribution for tabular
data, or masking tokens for text—and querying the black-box model to obtain predictions
for the perturbed samples [21].

An interpretable surrogate model (e.g., a sparse linear model such as Lasso) is then fit-
ted to this weighted dataset. The sparsity constraint is essential, as it forces the explanation
to highlight only the most influential features. By analysing the coefficients of this locally
faithful surrogate, LIME identifies which input features most strongly influence the specific
prediction [21].

Due to its flexibility and applicability to diverse data types [52], LIME has become
popular in biomedical domains such as medical imaging and EHR analysis. However, its
explanations are sensitive to the perturbation distribution and kernel width, which are
often chosen heuristically. This can cause instability, where explanations vary across runs
due to sampling randomness. Moreover, LIME provides only a local approximation, which
may not faithfully reflect the model’s global behaviour or decision logic across the full
feature space [53].

SHAP explains model predictions by quantifying the contribution of each input
feature to the deviation in the model’s output from a specified baseline value, typically the
mean prediction over the dataset. The exact computation of Shapley values necessitates
evaluating the model on all possible subsets of features, which leads to an exponential
increase in computational complexity as the number of features increases. To address this
intractability, SHAP incorporates approximation methods (e.g., KernelSHAP, TreeSHAP)
that render the estimation of Shapley values computationally feasible [22].

SHAP supports both local (per-instance) and global (dataset-level) explanations and
is widely used in biomedical tasks such as risk prediction, biomarker analysis [54], and
multimodal integration [55]. Its theoretical grounding contributes to its popularity, though
the computational cost and assumptions about feature independence remain important
limitations [22].

Attention mechanisms, originally introduced for neural machine translation [56], are
now widely adopted in deep learning architectures for biomedical imaging (e.g., Vision
Transformers [57]), time-series modelling (e.g., EEG [58]), and multimodal fusion ([59]).
These mechanisms compute dynamic, context-aware weights over input elements.

Attention typically relies on learned Query (Q), Key (K), and Value (V) projections.
The attention weights are obtained by computing the scaled dot-product between Q and K,
then implementing Softmax normalisation. In practice, this produces spatial attention over
image regions, temporal attention over sequential data, or feature-level attention in tabular
biomedical records. These weights offer intrinsic interpretability by revealing the elements
the model focuses on during prediction [60].
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Attention-based explanations are often intuitive and align with clinical reasoning [61].
For example, they may highlight tumour regions in radiological scans [62] or critical seg-
ments in physiological signals [63]. However, attention reflects correlational importance
rather than causal influence. Attention distributions can be unstable or misleading, partic-
ularly in models with multi-head attention or models in which shortcut learning occurs,
making careful validation essential in clinical applications [64,65].

3. Applications in Biomedical Informatics

We conducted a comprehensive literature review that offers an extensive overview
of diverse applications, use cases, and emerging trends in XAI within the biomedical Al
domain. We summarise the findings from this survey in Tables 2 and 3, which reports the
key details derived from the analysis, as presented in the following sections.

3.1. Genomics and Omics Data

In the domain of genomics, SHAP has been applied to explain the discovery of
disease-relevant biomarkers, particularly for the prediction of Alzheimer’s disease [66] and
colorectal cancer [67]. These papers have leveraged SHAP values to rank genetic features
by importance and, in some cases, applied dimensionality-reduction techniques such as
principal component analysis (PCA) to project SHAP-based embeddings into interpretable
visual clusters [67]. Another example from [68] has facilitated the identification of disease
subgroups with distinct molecular profiles. However, it is worth reporting that such
approaches often lack validation from clinical stakeholders.

3.2. Electronic Health Records

In predictive healthcare applications, SHAP has been used to interpret tree-based mod-
els such as XGBoost [69], facilitating the identification of key clinical and demographic risk
factors. For example, SHAP has been applied to models predicting stroke risk based on Elec-
tronic Health Record (EHR) [70] and changes in HbAlc levels in diabetes management [69],
providing transparency into the contributions of specific patient characteristics.

Similarly, in cardiovascular applications such as generating prognoses for acute my-
ocardial infarction, SHAP has been employed to produce both global and local feature
attributions, as well as to support counterfactual reasoning [71].

3.3. Time Series and Clinical Monitoring

Models for time series rely on temporal patterns, making feature importance de-
pendent on the position within a sequence. This introduces additional complexity to
interpretability compared to static data. Most existing XAlI tools, such as SHAP and LIME,
were originally developed for tabular or image data and require adaptation before they can
be used in time-series applications. Popular approaches proposed for use in time series
include, among others, integrated gradients and DeepLIFT [72]. As the name suggests,
integrated gradients calculate feature-level contributions by integrating the gradients of a
model’s output with respect to its input features along a straight path from a baseline (typi-
cally zero or a neutral input) to the actual input. In contrast, DeepLIFT assigns importance
scores to input features by calculating the difference between their activation of each neuron
and a reference (or baseline) activation and (back)propagating these differences through
the network via modified chain rules. DeepLIFT demonstrated superior performance over
SHAP and LIME in explaining LSTM-based alert classification. In part, this is due to the
fact that it does not need gradient calculations and hence avoids the vanishing gradient
issue and provides better fidelity, consistency, and alignment with expert assessments.

Traditional SHAP methods assume regular time steps and static inputs, limiting their
applicability to irregular time series. Building on these developments, ref. [73] introduces a
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framework for explainable temporal inference in irregular multivariate time series, with
a focus on early prediction of multidrug resistance in ICUs. The framework incorporates
three complementary XAI components: (1) pre hoc feature selection using Causal Con-
ditional Mutual Information (CCMI), (2) intrinsic Hadamard Attention for variable-level
interpretability, and (3) post hoc IT-SHAP for fine-grained temporal attribution. CCMI fur-
ther improves transparency by selecting causally relevant features prior to model training,
filtering out redundant or irrelevant inputs. Hadamard Attention enhances interpretability
by applying element-wise weighting across both time steps and features, effectively captur-
ing temporal dependencies in irregular multivariate time series. IT-SHAP extends SHAP
to handle irregular timestamps, missing data, and variable-length sequences, enabling
time-resolved explanations for each variable at each time step.

SHAP-like approaches have also supported interpretability in privacy-sensitive ar-
chitectures through the use of federated and meta-learning in medical IoT monitoring
systems [42].

3.4. Emerging Approaches

Another emerging direction in XAl involves the integration of domain-specific or
symbolic knowledge into model training to enhance both accuracy and interpretability.
Neuro-Symbolic Al approaches [74], such as those incorporating semantic loss functions,
enable models to respect domain constraints during learning. For instance, recent work
in human-activity recognition demonstrates that enforcing symbolic logic through se-
mantic loss improves model reasoning by penalising predictions that violate contextual
constraints [75]. This approach provides a mechanism for embedding structured domain
knowledge directly into the training objective, thereby improving context awareness with-
out requiring symbolic reasoning at the time of inference.

Similarly, Physics-Informed Deep Learning (PIDL) [76] makes use of equations de-
scribing laws of physics or other known biological principles in the loss function or in
the activation functions of neural models. This allows models to adhere not only to
patterns observed in data but also to validated domain constraints. As a result, PIDL
enhances generalisability and ensures model outputs remain within plausible physiological
or physical bounds, which is particularly valuable in high-stakes fields like engineering
and medicine [15].

For example, in the context of MRI analysis, PIDL has been applied to incorporate
domain-specific knowledge into deep learning models. The approach generates intrinsic,
model-specific explanations, often through attention mechanisms, to highlight clinically
significant features such as tumour regions [15,76]. Although this improves interpretability
and model trustworthiness [77], the method depends on the quality and specificity of
the encoded physical constraints and has not yet been validated across diverse datasets.
Furthermore, its performance is highly dependent on access to high-quality annotated
data [78].

In addition, enhancing model interpretability at the architectural level can significantly
improve explainability. The study in [79] presents Mathematics-Inspired models as a new
class of ML architectures designed to tackle the black-box problem of deep neural networks.
These models promote design transparency by leveraging statistical and mathematical foun-
dations (such as PCA, Canonical Correlation Analysis, and Statistics-Guided Optimization),
which inherently support interpretability.

Collectively, domain-informed, Mathematics-Inspired and neuro-symbolic strategies
reflect a shift toward embedding meaningful priors into Al systems, enabling them to reason
within the constraints of clinical or physical logic. This not only improves prediction quality,
but also enhances user trust by ensuring explanations are grounded in domain knowledge.
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Another related line of work, exemplified by MiMICRI [80], explores the use of coun-
terfactual explanations tailored for medical imaging tasks such as cardiovascular diagnosis.
Unlike generic counterfactuals, MiMICRI modifies input features in a way that maintains
anatomical plausibility, e.g., adjusting ventricle-wall thickness or simulating changes in
blood flow, thereby ensuring the interpretability and realism of generated counterfac-
tual instances. However, this approach may face performance limitations, particularly in
generating real-time counterfactuals for high-resolution 3D medical imaging.

Visual explanation techniques have become central to the interpretation of deep
learning models in medical imaging. Methods such as Grad-CAM, Grad-CAM++, LIME,
LayerCAM, and Integrated Gradients are frequently used to generate saliency maps or
super-pixel visualisations, which help localise the model’s attention to pathology-relevant
regions in input images other than areas of predominant feature importance (a problem dis-
cussed in Section 2.5). These visual cues are particularly valuable in clinical settings, where
model interpretability can directly impact diagnostic confidence and decision-making.
These techniques have seen widespread use in imaging domains including COVID-19
diagnosis, gastrointestinal endoscopy, lung and breast cancer classification, and dental
imaging [45,81-84]. For instance, post hoc explanation methods such as Grad-CAM and
LIME are commonly applied after training to explain predictions in models for COVID-19
classification and myocardial infarction prognosis [71,85]. These visual explanations allow
for retrospective verification of model decisions and can help uncover reliance on spurious
features. Some efforts went beyond static saliency mapping by stress-testing the robustness
of visual explanations. For example, patch-perturbation experiments have been run to
evaluate whether models rely on true pathological features or irrelevant artefacts. In [42],
saliency maps generated before and after applying artificial image patches were compared;
significant shifts in focus indicated that the model may have learned spurious correlations
rather than medically meaningful features.

Similarly, large language models (LLMs) have been applied to generate personalised
healthcare recommendations. For instance, ref. [44] uses SHAP values to rank features by
importance; these are then provided as contextual input to the LLM.

A notable contribution to this area is the integration of multiple explanation techniques
in ensemble XAI frameworks. Some articles combine Grad-CAM, LIME, and SHAP to
generate both global and local explanations for diagnostic tasks [86]. One such example
applies this ensemble approach to COVID-19 respiratory imaging, producing clinically
relevant visualizations, although the outputs sometimes suffer from redundancy or internal
inconsistency [80,81].

In gastrointestinal diagnosis using capsule endoscopy, models have been interpreted
using Grad-CAM++, LayerCAM, LIME, and SHAP, but these articles often lack valida-
tion through user studies or clinician involvement [45,87]. In lung cancer classification,
dual-path CNNs have been augmented with Grad-CAM++ and Layer-wise Relevance
Propagation (LRP) to produce high-fidelity visual explanations that align with tumour
regions in CT scans, thereby enhancing clinical interpretability [66,82,88].

Additionally, attention-based mechanisms and gradient-based attribution methods
such as Integrated Gradients have been employed to provide more focused and inter-
pretable insights. These methods aim to highlight which specific features, such as brain
regions, drug histories, or imaging biomarkers, contribute to a particular model prediction.
For example, attention maps have been used to identify regions associated with the pro-
gression of neurodegenerative conditions such as hippocampal atrophy [89], while other
models employ integrated gradients and SHAP-like visualisations to explain why a model
predicts drug resistance in individual patients [90]. These approaches are particularly
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valuable for generating local, instance-specific explanations that can be readily interpreted
by clinicians.

3.5. Other Medical Imaging and Multimodal Applications

Visual and hybrid XAI methods are extensively used across medical imaging applica-
tions to support model transparency. While ensemble approaches and advanced techniques
like attention mechanisms and integrated gradients enhance interpretability, challenges
remain, particularly around explanation redundancy, computational efficiency, and the lack
of systematic user validation. These limitations underscore the need for human-centred
design and evaluation strategies in future XAI development for clinical applications.

An important trend in XAI research within clinical domains is the combination of
multiple explanation techniques to improve model interpretability. These ensemble ap-
proaches are particularly prominent in medical imaging applications, where deep learning
models are often complex and require layered interpretive strategies. For instance, some
articles employ Grad-CAM, LIME, and SHAP in tandem to generate global, post hoc
explanations for tasks such as respiratory COVID-19 diagnosis [80]. While this strategy
can improve interpretability by offering different perspectives on model behaviour, it may
also introduce redundant or conflicting outputs that complicate clinical interpretation [91].
Similarly, in gastrointestinal imaging using capsule endoscopy, an ensemble of Grad-CAM,
Grad-CAM++, LayerCAM, LIME, and SHAP has been used to explain deep learning deci-
sions. However, this work lacks clinician-involved validation, raising questions about the
real-world relevance of these explanations [87].

Lung cancer classification is another area where ensemble XAI has proven effective.
Dual-path convolutional neural networks have been integrated with Grad-CAM++ and
Layer-wise Relevance Propagation (LRP) to both improve diagnostic performance and
provide localized visual explanations aligned with tumour features in CT scans [66,88].
These combined methods enhance clinical usability, particularly when visual interpretations
are required for trust and decision-making.

Beyond ensemble methods, attention mechanisms and integrated gradients offer
another avenue for the use of interpretable Al. These techniques produce case-specific
localised explanations by highlighting the characteristics that most influence the prediction
made by a model, such as specific drugs or anatomical regions. For example, atten-
tion and gradient-based methods have been used to identify clinically relevant factors in
drug-resistance prediction [90], as well as to pinpoint neuroanatomical markers, such as
hippocampal atrophy, which is predictive of disease progression [89]. Such models not
only increase transparency but also align more closely with the reasoning processes used
by clinicians.

Additionally, SHAP has been incorporated into frameworks aimed at identifying
mislabelled training examples in imaging data, quantifying data values, and detecting
potential biases in model predictions [92].

Integrating Multimodal Information

Multimodal models integrating imaging data with structured clinical records have also
benefited from SHAP. In these contexts, SHAP has been used to determine whether models
attend to clinically meaningful features, improving the transparency and trustworthiness
of decision-making in high-stakes domains such as in CT, MRI scans, neuro-imaging, and
outcome prediction for intracerebral haemorrhage [90,93,94].

3.6. Discussion and Considerations from Further Applications

It is worth noting that a significant portion of the articles reviewed in the previous
sections focus on post hoc techniques to generate explanations but do not favour specificity.
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Furthermore, while technical performance metrics are commonly reported in the wast
majority of the studies, only a few include HCMs, which commonly include interpretabil-
ity [67,68,95-99], actionability [45,66,69,81,100], user trust [72,101-106], and appropriate
reliance [107].

These human-centric dimensions are crucial for bridging algorithmic output with
real-world decision-making. Interpretability concerns how clearly a model’s decisions can
be understood, especially by non-experts. Actionability extends this by assessing whether
users can effectively leverage these insights to make informed choices or conduct informed
interventions, bridging explanation and decision-making. User trust, meanwhile, reflects
the confidence individuals place in the system’s outputs and is influenced by factors such as
transparency, consistency, and alignment with user expectations and values. Appropriate
reliance occurs when a human trusts the Al when it provides correct information and
refuses to trust it when the information is incorrect. This concept highlights the alignment
between the actual performance of the Al and the human decision to rely on it. Together,
these metrics shift the focus from technical validation alone to real-world utility, making
XAI systems not only intelligible but also empowering and reliable [108,109].

It is also clear that SHAP has become one of the most widely used XAI techniques
in medical ML due to its ability to attribute prediction outcomes to individual input
features in a theoretically grounded manner. Across the current literature, SHAP has been
extensively applied to a range of tasks, including risk prediction [70], genomic analysis,
multimodal integration [110], feature contributions [99,111,112], and assessment of outcome
quality [100].
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Table 2. List of the 43 articles selected, along with the modalities studied, their domains of application, the names and links of the datasets used, and the access status.
Details of datasets and types of access are provided whenever this information could be found. 30 of these articles use at least one public (1 = 28) or access-controlled
(n = 3) dataset. Abbreviations: EHR—Electronic Health Records, ICU—Intensive Care Unit, CT—Computed Tomography, MRI—Magnetic Resonance Imaging,
NDA —Not Directly Applied (but claimed relevant to Biomedical domain), SNP—Single Nucleotide Polymorphism, Pri—Private, Pub—Public, Con— Access is
controlled through a restricted portal that may either require prior approval or funding, X—information is missing from the revised manuscript.

Ref. Modalities Domain Datasets Links Access
[113] Clinical Tabular EHR Cardiac MRI Phenotypes & Brain Volumetric MRI [114] Con
[15] MRI Medical Imaging Brain Tumor MRI Dataset [115] Pub
[81] X-tay Medical Imaging gﬁ;f;\_/l;;i;;g;;izcel]gggsegt Dataset & Interpretation Evaluation Dataset & NIH [116] Pri & Pri & Pub
[45] Endoscopy Medical Imaging Kvasir-Capsule Dataset [117] Pub
[118] Dermoscopic Images Medical Imaging Skin Cancer MNIST [119] Pub
[100] ICU Tabular EHR Al-Ain Hospital ICU Electronic Health Records (EHR) Dataset X Pri
[66] SNP Genomics ADNI Genetic GWAS Dataset (Alzheimer’s Disease Neuroimaging Initiative) [120] Pub
[82] CT Medical Imaging IQ-OTH/NCCD Lung Cancer CT Dataset [121] Pub
[89] MRI Medical Imaging Alzheimer MRI Dataset [122] Pub
[123] Pathology Slides Medical Imaging Warwick-QU & Cancer Dataset [124] & Unknown Pub & Unknown
[110] Oncology Multimodal Data GenoMed4All + Synthema MDS Training Cohort [125-127] Con
[71] Clinical Tabular EHR Korean Acute Myocardial Infarction Registry X Pri
[85] X-ray Medical Imaging Chest X-Ray Pneumonia Dataset & SARS-CoV-2 CT-scan dataset [128,129] Pub
[42] X-ray Medical Imaging COVID-19 Radiography Database [130,131] Pub
[93] CT Medical Imaging ICH for Non-Contrast Computed Tomography X Pri
[90] MRI Medical Imaging Simulated Bias in Artificial Medical Images (SimBA) [90] Pub
[87]  Institutional Review Board Clinical Text & Notes Institutional Review Board (IRB) Protocol Dataset X Pri
[132] X-ray Medical Imaging Tuberculosis (TB) Chest X-Ray Database [133] Pub
[80] MRI Medical Imaging UK Biobank Cardiac MRI Dataset [114] Con
[134] Microscopic PBS Medical Imaging C-NMC-19 & Taleqani Hospital Dataset & Multi-Cancer Dataset [135-137] Pub
[138] MRI Medical Imaging Internal Single-Center Brain Metastasis MRI Dataset X Pri
[68] SNP Genomics CREA-AA Ex Situ Germplasm Collection X Pri
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Table 2. Cont.

Ref. Modalities Domain Datasets Links Access
[69] Tabular Data EHR Finnish Real-World EHR Dataset of T2D patients X Pri
[70] Tabular Data EHR Kaggle Stroke Prediction Dataset & Kushtia Medical College Hospital X Pub
[67] Microbiome Data Genomics YachidaS_2019, Yu]_2015, Wirbel]_2019, ZellerG_2014, VogtmannE_2016 [139-143] Pub
[144] Simulation Data & Structural Features Multimodal Data  Simulated Molecular Structures and QM /MM Reaction Paths [145] Pub
[96] Imaging, Tabular Data Multimodal Data ~ Survey and Interviews X Pri
[146] EHR & Clinical Tabular Data Multimodal Data MIMIC-III [147] Pub
[75] Time Series & Tabular Data Multimodal Data DOMINO & ExtraSensory Dataset [148] Pri & Pri
[92] Tabular Data EHR 22 Real-World Tabular [92] Pub
[46] X-ray Medical Imaging ~ Knee ArthroScan, Lung X-Ray, FracAtlas [149-151] Pub
[73] ICU Time-series University Hospital of Fuenlabrada X Pri
[82] CT Medical Imaging  IQ-OTH//NCCD Lung Cancer Dataset [121] Pub
[44] SNP Genomics MalaCards & OMIM & DisGeNet & SympGAN [152-155] Pub
[107] Image NDA CUB-200-2011 [156] Pub
[72] Textual NDA ALERT Telegram Threat Dataset [157] Pub
[79] Imaging NDA Japanese Female Facial Expression Database [158] Pub
[159] Tabular Data NDA CIFAR-10 & CIFAR-100 & ImageNet-1K [160-162] Pub
[94] CT & MRI Medical Imaging  LIDC-IDRI & Duke Breast Cancer MRI Dataset [163,164] Pub
[86] Ultrasound Medical Imaging  Gallbladder Diseases Dataset [165] Pub
[99] EHR, Text and Tabular Clinical Data ~ Multimodal Data UCSF X Pri
[112] Tabular Data EHR Psychiatric Emergency Department Electronic Health Records X Pri
[111] MRI Medical Imaging  Brain Tumor MRI Dataset & Large MRI Training Dataset [115,166] Pub
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Table 3. Quantitative review of the 43 selected articles and their key characteristics. The table shows that there is no significant bias towards specificity or locality,

but most papers studied are post hoc, with more than half of them focusing on medical imaging. Abbreviations: S—Specificity, SE—Scope of Explanation, MI
—Model Interpretability, HCM—Human-Centric Metrics (n = 19), M-A—Model-Agnostic (n = 19 + 4), M-S—Model-Specific (n = 19 + 4), B— Both, G—Global
(n =20+ 4), L—Local (n = 18 + 4), P—Post hoc (n = 37 4 2), [I=Intrinsic (n = 3 + 2), EHR—Electronic Health Records, ICU—Intensive Care Unit, SNP—Single
Nucleotide Polymorphisms, X—~HCM is not used, v'—HCM is used.

Articles n =43 n=19

Ref. Area Stakeholders AI Method(s) Used S SE MI HCM
[113] Difficult to deploy in real-world settings Patients SHAP M-A G P X
[15] Low interpretability in DL models Practitioners PIDL M-S L I X
[81] Model interpretability Clinicians Grad-CAM, LIME, SHAP M-A G P v
[45] Black-box nature of DL models Gastroenterologists Grad-CAM, LIME, SHAP, GradCAM++, LayerCAM M-A L P v
[118] Data privacy, model interpretability Healthcare Providers Saliency Maps, Grad-CAM M-A G P X
[100] Resource allocation, model transparency Hospital Administrators SHAP, Different plots M-A G P v
[66] Biomarker Identification, Model Interpretability Neurologists SHAP M-A G P v
[82] Improving interpretability of CNN Radiologists, Oncologists CNNs, Grad-CAM, SHAP, Attention Mechanisms M-S L p X
[89] Efficient Al-based screening Neurologists, Radiologists, Researchers EfficientNetB0, Dual Attention Mechanisms MS G P X
[123] Enhancing diagnostic accuracy Radiologists, Oncologists Adaptive Aquila Optimizer, DL Models MS L P X
[110] Data scarcity in rare cancers Oncologists, Researchers MOSAIC Framework, SHAP, ML M-S G P X
[71] Interpretability, Trust Cardiologists Tree-based models, SHAP, DiCE M-A G P X
[85] Trust, Usability of Explanations Radiologists Grad-CAM, LIME M-A L P v
[42] Saliency map reliability Radiologists Grad-CAM MS L P X
[93] Model interpretability in critical care Neurologists, Radiologists SHAP , Guided Grad-CAM, CNNs MS G P X
[90] Systematic bias in Al models Model Developers, Policymakers Fairness Metrics, SHAP M-A G P X
[87] Uncertainty in Al predictions Researchers, Health Planners Transformers, Calibration Layers M-S G P v
[132] Interpretability of transformer-based models Radiologists, Pulmonologists Vision Transformer, Grad-CAM M-S L P X
[80] Realism and relevance of counterfactuals Cardiologists, Researchers MiMICRI Framework M-A L P X
[134]  Trade-off between transparency and model performance Haematologists, Pathologists CNN, Grad-CAM, CAM. IG, LIME MS L P X
[138] Interpretability of longitudinal monitoring tools Neurosurgeons, Oncologists Streamlit, Grad-CAM, SmoothGrad M-S L P X
[68] Model transparency in breeding programs Plant Geneticists, Breeders SHAP, Regression Models M-A G P v
[69] Improve individualized treatment strategies and Endocrinologists, Public Health Officials XGBoost, SHAP M-A G P v

interpretability of predictions
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Articles n =43 n=19
Ref. Area Stakeholders AI Method(s) Used S SE MI HCM
[70] Improve predlan{e aceuracy and m.terpretablhty for Neurologists, General Practitioners Ensemble Models, SHAP, LIME M-A G P v
clinical decision-making
[67] Improve mterp.ret.ablhty of m{crobmme-based disease Oncologists, Microbiome Researchers SHAP M-A G P 4
prediction, feature interpretation
[144] Understanding enzyme dynamics and resistance Structural Biologists, Pharmacologists SHAPE , XGBoost M-A G P 4
[96] Interprets medical reality and supports clinicians System Designers, Clinicians MAP Model , Transparent design X X X v/
[146] Enhance diagnostic and treatment recommendations Clinicians, Medical AI Developers Transformer M-S L P v
[75] Deploy-ability of NeSy HAR Researchers, Developers Semantic Loss Functions, GradCAM M-S G 1 v
[92] GBDT explainability, efficiency ML Practitioners TREX, BoostIn MS L P X
[46] Generalization across datasets Radiologists, clinicians EfficientNet-B0, ViT, Swin Transformer, CBAM, M-S L P X
Grad-CAM
[73] XAI methods for time-varying outputs ICU clinicians IT-SHAP, CCMI, Hadamard Attention M-A 4
[82] Interpretability in CNN-based models Radiologists, Oncologists Multi-Head Attention (MHA), Grad-CAM, SHAP B X
[44] Integration between risk predllchon and actionable Oncologists, GPs hybrid Transformer-CNN, SHAP, LLMs M-A B p X
recommendations

[107] Human-AI collaboration and Explainable A Designers, Researchers Deception of Reliance (DoR) metric M-A L P v
[72] Lack of labeled Telegram data Policymakers RoBERTa+, Integratedscgzclljlents, DeepLIFT, LIME, B B B v
[79] Transparency with design of DNs Researchers PCA, DCT, CCA M-S G X
[159] Computational cost of exact Shapley values Researchers SHAP B L

[94] Limitations of classical image forensics Researchers, Cybersecurity SHAP, Back-in-Time Diffusion M-S L

[86] Misdiagnosis, heterogeneity in lesion appearance Hepatobiliary Specialists CNN with multi-scale feitllﬁ%e)(tradlon + Grad-CAM, B L P X
[99] Social determinants Clinicians, Policymakers X M-S G v
[112] Early identification of suicide risk Psychiatry SHAP, BD plots M-S L X
[111] Feature interpretability Radiologists, Neurologists SHAP M-A G v
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3.7. Comparison of XAI Methods

Based on the refined categorisation of the reviewed articles, biomedical applications
were grouped into five main domains (see Figure 6).

Medical imaging was the most common focus, with 20 articles (~51%), underscoring
the dominance of radiology, ultrasound, and MRI-based explainability. The category EHR
and clinical tabular data comprised seven studies (=18%), confirming the ongoing impor-
tance of structured datasets for model development and interpretability. Genomics and
other omics were under-represented, with only four studies (~10%), despite a rising inter-
est in precision medicine. Time-series clinical data (e.g., ICU monitoring, EEG) appeared
in one study (~3%), and multimodal biomedical applications (imaging, text, and clinical
variables) were found in five articles (=13%). Overall, these figures show a strong bias
toward imaging-centred XAlI, with limited use in genomics and longitudinal monitoring,
highlighting the need for broader methodological work across biomedical domains.

SHAP is the most widely used explanation technique, followed by Grad-CAM, LIME,
and attention-based methods. Usage varies by domain: medical imaging mainly uses
saliency-based tools like Grad-CAM, while EHR and genomics articles rely almost entirely
on SHAP for feature-level interpretability.

® Medical Imaging (20)

e EHR (7)
Genomics (4)
Multimodal (6)
Time-series (1)

@ Clinical Text (1)

Figure 6. Distribution of modalities across the biomedical articles. We observe that the majority of
the papers focus on Medical Imaging, with more included under Multimodal articles. (Abbreviations:
EHR— Electronic Health Records).

4. Evaluation Metric and Clinical Assessment

A central challenge in biomedical XAl is the absence of standardised and clinically
grounded evaluation protocols. Many articles report explanations visually or descriptively,
but few assess how well these explanations align with expert reasoning or support real-
world clinical decision-making. Human-Centric Metrics (HCMs) are used unevenly across
biomedical domains. Medical Imaging has the lowest rate of HCM adoption (four articles),
relying mainly on technical saliency validation rather than human-centred evaluation. In
contrast, EHR (three articles) and Genomics (two articles) integrate HCMs more robustly,
likely because they support clinical decision-making and risk prediction, where user trust
and human-AI collaboration are more critical. Evaluating an XAI system requires both
technical metrics that assess explanation quality and task-based protocols that quantify
clinical utility.

4.1. Quantitative Evaluation

These metrics evaluate how well an explanation corresponds to established biomedical
knowledge. Common approaches include Intersection-over-Union (IoU) or Dice coeffi-
cients comparing saliency maps with radiologist-annotated regions [167], feature-ranking
agreement between SHAP /LIME attributions [168], and histopathology image analysis for
classification of rare tumours for imaging models [169].
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Such metrics assess whether explanations highlight clinically relevant structures or
concepts rather than spurious correlations. However, traditional evaluation of saliency or
heatmap-based XAI methods often relies on qualitative visual inspection or loose metrics
like the “pointing game” (checking whether the max pixel falls inside a region), and
these metrics fail to distinguish among different levels of importance (e.g., localisation vs.
discriminative features) [170]. Due to this limitation, different metrics have been proposed,
such as the customized five-band score, which stratifies pixel attribution into bands (e.g.,
discriminative features vs localisation) [171].

4.2. Faithfulness Metrics

Fidelity measures how accurately the explanation reflects the underlying model be-
haviour [172], with techniques such as Faithfulness Correlation, Faithfulness Estimate,
Infidelity, and Region Perturbation commonly used to assess it. High-fidelity explanations
should reliably and consistently lead to specific, predictable changes in the responses of
the model. Current fidelity metrics lack consensus and reliability, especially for complex,
non-linear models, while some achieve perfect fidelity but see performance degrade in the
presence of out-of-distribution (OOD) samples [172]. Multiple frameworks, such as [173],
are used to evaluate the faithfulness of Explainable AI (XAI) methods. F-Fidelity addresses
these problems by fine-tuning models with random masking and controlled stochastic
removal during evaluation to keep inputs in-distribution.

4.3. Robustness Metrics

An explanation should remain stable under small perturbations to the input or
model [174]. Metrics such as explanation variance, neighbourhood stability, and sur-
rogate model consistency assess whether different runs or small input changes produce
substantially different explanations. These are common issues particularly relevant to
LIME, SHAP variants, and noisy biomedical datasets. Ref. [175] proposed a metric that
evaluates XAl algorithms on multiple stability aspects, enabling objective comparison and
better selection for real-world applications.

4.4. Clinician-in-the-Loop Evaluation

Beyond technical metrics, clinical utility must be assessed through structured user
studies, as human factors research is essential for designing Al systems that fit clinical
environments and user needs [176]. Current research emphasises human-centred design
and regulatory compliance for XAI [177]. These human-centric assessments typically
examine four critical dimensions: (1) diagnostic accuracy, comparing clinician performance
with versus without Al explanations [178]; (2) confidence calibration, measuring alignment
between subjective confidence and objective performance when using explanations [179];
(3) decision-time analysis, assessing whether explanations reduce cognitive burden and
improve workflow efficiency [180]; and (4) appropriateness of reliance, evaluating clinicians’
ability to distinguish when to trust versus override Al recommendations [181]. Over-
reliance may lead to automation bias and diagnostic errors, while under-reliance wastes
the potential benefits of Al systems. Explanation design should incorporate uncertainty
visualisation and confidence calibration to support appropriate reliance and informed
clinical judgement.

5. Challenges

Despite the growing adoption of XAl in bioinformatics and healthcare systems, this
review of the literature has identified several unresolved challenges that must be overcome
in the coming years to facilitate the application of XAl in real-world clinical settings.
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The lack of involvement of domain experts is one major problem. Many articles report
techniques developed without clinical validation, and medical professionals are rarely
involved in evaluating the generated explanations; the accompanying risk involves coming
to erroneous conclusions or explaining clinically irrelevant aspects of the decision-making
process [182]. This disconnect from clinicians can also undermine trust, making progress
even harder.

A secondary concern arises from the observation that numerous scholarly publications
fail to account for the limitations intrinsic to their implemented XAI methodologies or
their underlying assumptions.The SHAP method exemplifies such concerns. It works
on an assumption of feature independence [26] that rarely holds in real-world clinical
datasets, where features are highly correlated in the vast majority of cases [183], and its
use is rarely validated through user-centric activities. Many SHAP-based studies do not
include clinician feedback or human-subject evaluations to assess the utility or clarity of the
explanations provided (as highlighted by the overview in Table 3). This gap is particularly
evident in genomics and imaging applications, where the clinical relevance of identified
features may not be immediately apparent without expert input [66,68,100]. As a result,
while SHAP facilitates algorithmic transparency, it does not guarantee interpretability from
a clinical perspective, as argued in [184].

Another important consideration is the importance of choosing the most appropriate
approximation method for the SHAP values. The study in [159] evaluated 25 different
Shapley value-approximation techniques, revealing that M-S methods outperform M-A
ones in terms of both accuracy and runtime. The study also found that mean imputation can
distort feature contributions, particularly in non-linear models. Among the evaluated tech-
niques, FastSHAP [185] emerged as a promising approach for deep learning applications.
It remains the most-recognised and most-employed XAI technique.

Despite progress in XAI, we still need more reliable, human-centred, and clinically
validated systems to ensure that explanations are not only technically sound but practi-
cally useful in healthcare. Diverse explanation strategies—such as highlighting key input
features—can aid understanding, but they often tell only part of the story. As demon-
strated by counterfactual models [39], alternative approaches can enrich trust, though
explanation methods themselves may mislead if they are not critically evaluated. To
avoid masking bias, XAl systems must be held to high standards of interpretability and
accountability—especially as regulatory frameworks like the EU AI Act [186] and NIST’s
Al Risk Framework [187] demand clarity and reliability in sensitive domains.

With this article, we report on omissions that we believe should not be overlooked
in XAl articles. To advance the discipline, future articles should report details that allow
replicability of the results and give insights into some aspects such as, e.g., computational
overhead, to allow comparisons and provide interesting insights into the proposed method.
In this regard, ref. [188] reported that several articles on XAl do not justify the sample
sizes used or explain how their findings apply to other datasets. These issues should be
addressed. We also observe in Table 2 that about 30% (13/43) of the papers studied made
use of private datasets, which may make replication even harder.

We also encourage ablation studies to remove redundant algorithmic components in
published frameworks. The presence of redundant components in ensemble methods is
becoming more common due to the current tendency to combine several XAl methods.
Sometimes, this can lead to the generation of conflicting explanations, which may confuse
rather than clarify model predictions [189].

These discrepancies between explanations arise from methodological differences (e.g.,
local feature attribution vs. counterfactuals), the complexity of high-dimensional non-linear
models, distribution shifts, unstable surrogate models, and conflicts between local and
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global interpretability. This also holds in visual tools like heatmaps, where conflicting
feedback may highlight misleading patterns in the map instead of actual signs of diseases.

Such conflicts can undermine trust, distort decision-making, and put regulatory com-
pliance at risk in high-stakes domains such as healthcare and finance. They are particularly
common in developed countries like the UK. When methods are not harmonised, models ex-
hibit large variability in feature importance; when explanation metrics are not standardised,
the result is inconsistent and potentially misleading explanations [190].

The use of different explanations to analyse the behaviour of a model would result in
a better understanding. The use of diverse explanation strategies—such as highlighting key
input features—can aid understanding, but these strategies often tell only part of the story.
As demonstrated by counterfactual models [39], alternative approaches can enrich trust,
though explanation methods themselves may mislead if they are not critically evaluated.
To avoid masking bias, XAl systems must be held to high standards of interpretability and
accountability—especially as regulatory frameworks like the EU AI Act [186] and NIST’s
Al Risk Framework [187] demand clarity and reliability in sensitive domains.

Finally, we have observed that approximately half of the papers selected in this study
focus on medical imaging. A reason for this may be that Al image interpretation is generally
done by complex back-box deep neural networks that are very difficult to interpret due to
their nature. This is very different for other domains like textual information, where LLMs
can easily provide plausible textual explanations that are also easily verifiable. We also
note that medical imaging on its own is facing specific issues that may explain this focus.
Indeed, interpreting medical images is time-consuming; this is especially true for CT or MRI
scans, as experts usually look at them slice by slice. There is also an insufficient number
of radiographers in some developed countries like the UK [191]; combined with reported
human-level capabilities [192], this situation makes Al very promising as a tool for the
domain. However, the adoption of Al in critical care can only be accepted if interpretability
and explainability can be ensured to keep humans in the loop. Hence, it is not surprising to
see a strong interest in the application of XAI to medical imaging.

6. Conclusions

Society is facing the conundrum of creating life-saving decision-making tools with
human-level capabilities that cannot be used, as they provide neither interpretability nor
explanability and thus face legal and ethical barriers. This review highlights the key role
that XAl can play in the fields of bioinformatics and healthcare. As Al systems become
increasingly integrated into clinical workflows and biomedical research, the demand for
transparency, interpretability, and trustworthiness has never been greater. XAI methods
are rapidly evolving, and this survey captures their growth by categorising them in a way
that helps both developers and end users select the most appropriate techniques for their
specific challenges.

We have shown how XAl is expanding its influence across a wide range of biomedical
applications, including medical imaging—a domain studied in the majority of the papers
we reviewed—genomics, EHR analysis, and clinical decision-support systems. In each of
these areas, XAl serves as a bridge between high-performing black-box models and the
need for real-world usability, accountability, and clinical relevance.

Despite identifying several promising research directions—such as causal explainabil-
ity, human-in-the-loop systems, and domain-specific interpretability—we also uncovered
persistent challenges. These include a lack of standardised evaluation metrics, limited
generalisability across datasets, and insulfficient clinical validation. Moreover, many articles
suffer from issues related to reproducibility and lack of impact-focused design (that is, they
do not align with clinically relevant needs).
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The fact that fewer than half of the reviews are concerned with HCMs is also a concern,
with only 19 papers out of 43 including human-centred validation. Indeed, XAI methods
aim at alleviating some of the concerns raised by professionals about the use of Al in
clinical settings, but not including these professionals in the validation process could be
counterproductive. We presume that including Patient Participation Groups or professional
evaluators can add significant complexity or costs to a research project, but future work
should be done to identify what factors are actually hindering HCM adoption.

We conclude by emphasising the urgent need for XAI systems that are not only
technically sound but also clinically meaningful and ethically grounded. We call for a more
rigorous, replicable, and impactful approach in future research, encouraging the community
to prioritise transparency, usability, and stakeholder engagement in the development of
next-generation XAI tools.
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