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The formation of primordial black holes or other dark matter relics from amplified density fluctuations in
the early Universe may also generate scalar-induced gravitational waves (GW), carrying vital information
about the primordial power spectrum and the early expansion history of our Universe. We present a
Bayesian approach aimed at reconstructing both the shape of the scalar power spectrum and the Universe’s
equation of state from GWobservations, using interpolating splines to flexibly capture features in the GW
data. The optimal number of spline nodes is chosen via Bayesian evidence, aiming at balancing complexity
of the model and the fidelity of the reconstruction. We test our method using both representative mock data
and recent pulsar timing array measurements, demonstrating that it can accurately reconstruct the curvature
power spectrum as well as the underlying equation of state, if different from radiation.
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I. INTRODUCTION

The power spectrum of curvature perturbations, PζðkÞ,
plays a crucial role in understanding the early Universe and
the formation of cosmic structure. While the cosmic
microwave background (CMB) and large-scale structure
of the Universe provide constraints on its features at large
cosmological scales (see, e.g., [1]), smaller scales remain
relatively unconstrained. One promising avenue to probe
this regime is through scalar-induced gravitational waves
(SIGWs), which arise as a second-order effect of primordial
density perturbations: see, e.g., [2–11] for original and key
papers, and [12] for a comprehensive, detailed review. Such
induced gravitational waves carry valuable information
about the small-scale features ofPζðkÞ and may be detected
by future gravitational wave observatories, such as the
Laser Interferometer Space Antenna (LISA) [13] and the
Einstein Telescope [14]. Enhanced scalar fluctuations,
leading to observable gravitational wave (GW) signals,
can be produced on models leading to primordial black
holes, see, e.g., [15] for a review. In addition to encoding

information about the primordial power spectrum, the GW
spectrum is also sensitive to the expansion history of the
Universe (see, e.g., [16–18]). This is good news since
deviations from a purely radiation-dominated phase at very
early times can leave distinct imprints on the shape and
amplitude of the GW spectrum, which can be inferred from
data. Such departures might arise from exotic physics or
alternative cosmological scenarios, and they can be para-
metrized in terms of an effective equation of state parameter
[12]. A detection of SIGWs, therefore, offers a unique
opportunity not only to reconstruct PζðkÞ, but also to infer
the background expansion dynamics.
The formation of SIGW is a process occurring at second

order in fluctuations, and it is difficult to analytically
disentangle properties of the primordial sources from
GW data alone. In this work, we develop an automated
and efficient method to do so, based on Bayesian inference
techniques. Our reconstruction framework allows also one
to simultaneously determine the equation of state parameter
alongside the power spectrum, aiming to uncover hints of
nonstandard early Universe evolution.
In our Bayesian approach to reconstruct the power

spectrum, we represent it in the form of an interpolating
spline with variable number of nodes, positions and
amplitudes, all to be determined from GW data. For a
model with fixed number of nodes, the posterior distribu-
tions of the spline position and amplitude parameters are
determined using nested sampling while the Bayesian
evidence criterion is used to compare the relative proba-
bilities of models with different numbers of nodes. To test
our method, we generate mock ΩGW for power spectra
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representative of early Universe scenarios leading to
enhanced scalar perturbations and three scenarios of post-
inflationary cosmological background evolution—radia-
tion domination, early matter domination transitioning to
radiation domination and a general equation of state w
different from matter or radiation. For the latter, we also test
the viability of our method in determining w, in addition to
the curvature power spectrum. The results that we present
here can be reproduced using our code available on GitHub.1

This paper is organized as follows. Section II reviews
theory aspects of SIGW. In Sec. III we describe our method,
starting from the calculation of ΩGW to generate our mock
data and then discuss in detail the inverse problem of
reconstructingPζ fromΩGW. Section IV presents the results
of our reconstruction for representative examples as well as
using recent pulsar timing array data. Section V presents our
conclusions, followed by technical Appendixes.

II. INDUCED GWS AND THE UNIVERSE’S
EXPANSION HISTORY

In this section we collect and outline the key equations
and conventions relevant for the computation of SIGWs in
different cosmological scenarios. We review three cases for
the post-inflationary evolution: the standard case of radi-
ation domination (RD) c2s ¼ w ¼ 1=3 (see the review [12]),
a sudden transition from an early matter-dominated (eMD)
phase to RD (see, e.g., [20]), and an adiabatic perfect fluid
domination with general (constant) equation of state c2s ¼
w [12]. These three cases will then be analysed respectively
in Secs. IVA, IV B, and IV C.
The physics of SIGWs relies on second-order effects in

cosmological perturbation theory. Primordial GWs are
amplified once scalar curvature perturbations originating
from quantum fluctuations during inflation act as sources
for tensor modes (GW) upon their horizon reentry. The
detectability of the resulting gravitational wave background
relies in part on the amplitude of these scalar perturbations:
a sufficiently enhanced scalar power spectrum at small
scales can lead to observable SIGWs in current or future
gravitational wave observatories.
On large cosmological scales, such as those probed by the

CMB with characteristic wave numbers k ∼ 0.001 Mpc−1,
observations constrain the amplitude of scalar perturbations
to be of order Pζ ∼ 10−9 [1]. This leads to an unobservable
small SIGW signal on CMB scales. At much smaller scales
(k ≫ 1 Mpc−1), however, there are no direct observational
bounds on Pζ, allowing for the possibility of significant
enhancement. In such scenarios, the induced gravitational
wave spectrum can attain amplitudes within the sensitivity
range of a variety of GW detectors. This opens a new
observational window into the small-scale structure of
the primordial Universe, complementary to CMB and

large-scale structure surveys, which are sensitive to larger
scales.
The energy density spectrum of SIGWs arises from a

convolution over two copies of the scalar power spectrum
Pζ and a transfer function T (also referred to as the kernel),
which encodes the evolution of the tensor modes in the
cosmological background. The dominant contribution is
given by a double integral over momenta, weighted by
these two elements.
In the standard thermal history, inflation is followed by

reheating, which initiates an RD era. Scalar perturbations
that exit the horizon during inflation reenter during RD and
source GWs at second order. However, SIGWs are not
merely sensitive to the inflationary perturbations, they also
offer a probe of the Universe’s postinflationary thermal
history, particularly the epoch between inflation and big
bang nucleosynthesis (BBN), which remains largely
unconstrained by conventional observations. This period
could include nonstandard cosmological phases, such as
early matter domination or kination, motivated by scenarios
in high-energy physics and string theory.2

The energy density spectrum of SIGWs takes the general
form [12]

ΩGWðη; kÞ ¼
1

12

�
k

HðηÞ
�

2

Phðη; kÞ; ð2:1Þ

where η is the conformal time, HðηÞ ¼ a0ðηÞ=aðηÞ the
conformal Hubble parameter, and the overline denotes
an average over oscillations. The induced tensor power
spectrum can be written as,

Phðη; kÞ ¼ 8

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

× I2ðu; v; k; ηÞ;PζðkuÞPζðkvÞ; ð2:2Þ

where Pζ is the curvature power spectrum, and

v≡ q
k
; u≡ jk − qj

k
: ð2:3Þ

The kernel I, defined by a convolution of the source with
a Green’s function, depends on the evolution of the scalar
perturbations and the background cosmology,

Iðu; v; k; ηÞ ¼
Z

η

ηi

dη̃Gkðη; η̃Þfðu; v; k; η̃Þ: ð2:4Þ

The exact form of this expression changes with the
equation of state of the Universe, motivating us to now
present the specific cases we analyze in what follows.

1[19].

2See [21] for a recent review on string cosmology, and [22,23]
for reviews on nonstandard postinflationary histories.
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(a) Radiation domination: This is the most well-studied
case in the literature, see, e.g., [12], and corresponds to
an equation of state with w ¼ 1=3. The expression for
the induced ΩGW results in

ΩGW;RD ¼
Z

∞

0

dv
Z

1þv

j1−vj
duT RDðu; v; csÞ

× PζðkuÞPζðkvÞ; ð2:5Þ

where cs is the propagation speed of scalar perturba-
tions and the function T RDðu; v; csÞ is given by

T RD ¼ y2

3c4s

�
4v2 − ð1 − u2 þ v2Þ2

4u2v2

�
2

×

�
π

2
4y2Θ½csðuþ vÞ − 1�

þ
�
1 −

1

2
y ln

1þ y
1 − y

�
2
�
; ð2:6Þ

where y is defined as,

y ¼ 1 −
1 − c2sðu − vÞ2

2c2suv
: ð2:7Þ

In our work we compute the GW density ΩGW for this
case using the numerical code SIGWAY [24].

(b) Early matter domination: We consider a scenario in
which a period of eMD precedes the onset of RD, with
a sudden transition between the two phases—referred
to here as reheating. A distinctive feature of this setup
is the sharp enhancement of the SIGW signal immedi-
ately after the transition [20]. This enhancement arises
because, during eMD, the scalar source term respon-
sible for GW production remains constant and does
not efficiently generate GWs. However, the onset of
radiation domination leads to efficient GW produc-
tion. This characteristic imprint in the GW spectrum
may fall within the sensitivity reach of upcoming
observatories such as LISA, providing a unique
observational window into the pre-BBN universe
and the reheating dynamics.
It is important to note that this enhancement is

sensitive to the details of the transition. The
assumption of a sudden transition corresponds to a
change in the background evolution occurring on a
timescale much shorter than the Hubble time at
reheating. In realistic scenarios, however, the transi-
tion is expected to be gradual. During such an
intermediate period, the evolution of perturbations is
continuous, and their behavior cannot be fully cap-
tured by either the pure eMD or RD approximations.
Several studies have explored this regime using
smoothed background interpolations [25–28], show-
ing that the resulting SIGW spectrum is modified in

both amplitude and shape compared to the sudden-
transition limit.
As discussed in [20], assuming a sudden transition,

however, remains a reasonable approximation in two
key regimes: for modes with k ≪ krh, which remain
superhorizon at reheating and thus have constant
curvature perturbations unaffected by the nature of
the transition; and for modes with k ≫ krh, which are
already subhorizon and oscillating well before re-
heating, making their evolution similarly insensitive
to how reheating proceeds. The approximation begins
to fail, however, for modes with k ∼ krh, which enter
the horizon around the time of reheating and are
therefore more sensitive to whether the transition
is sharp or gradual. That said, if the peak of the
primordial power spectrum corresponds to modes
that enter the horizon well before reheating, then the
dominant contribution to the induced gravitational
wave signal comes from earlier times. In this case,
reheating does not introduce a significant new source
of GWs, and only affects a narrow range of modes
near krh, which do not dominate the overall spectrum.
For instance, in models with a sharp infrared (IR)
cutoff at some scale kIR, where kIR ≫ krh, all relevant
modes contributing to GW production enter the
horizon before reheating. As long as the evolution
of induced GWs is also correctly connected across
the transition, then we can adopt this sudden tran-
sition scenario. This approach is demonstrated by
numerical results such as [20,24].
The kernel entering Eq. (2.2) can be decomposed

into

I2ðu; v; x; xrhÞ ≃ I2eMDðu; v; x; xrhÞ þ I2RDðu; v; x; xrhÞ;
ð2:8Þ

where as before, a subscript “rh” denotes the time of
reheating and x≡ kη. In sudden reheating scenarios,
we focus on gravitational waves induced during the
radiation-dominated era by scalar perturbations that
previously experienced an early matter-dominated
phase on subhorizon scales. While GWs can also
be generated during the eMD era [29,30], their
amplitude is typically much smaller than those
produced during the RD era, where conditions are
more favorable for GW amplification. This is par-
ticularly the case in sudden reheating scenarios [20].
Thus, we consider primarily the RD contribution, and
modes with k > krh, which experienced a nontrivial
evolution before the Universe transitioned to radia-
tion domination. The kernel is approximated in terms
of two dominant contributions given in terms of the
more convenient variables, s, t defined as

s≡ u − v; t≡ uþ v − 1: ð2:9Þ
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The first contribution is associated with modes
deep inside the horizon, where the integral is domi-
nated by the large scale t region (LS). In this limit, an
analytical approximation is obtained by fixing s ¼ 0
and integrating over t, leading to

I2RD;LSjs¼0
≃
9t4x8rhð4Ciðxrh2 Þ2 þ ðπ − 2Siðxrh

2
ÞÞ2Þ

81920000
:

ð2:10Þ

This approximation is valid for large-scale modes
with k ≪ kcut, where kcut is the scale corresponding to
the onset of eMD, or the scale where density
perturbations become nonlinear [20,25].
The second contribution accounts for the reso-

nancelike peak in the spectrum (res). In this case,
the integration is performed over s, while fixing
t ¼ ffiffiffi

3
p

− 1 throughout, except in the argument of
the cosine integral function Ci, where a logarithmic
singularity leads to an enhancement,

I2RD;res ≈ Y
9ð−5þ s2 þ 2tþ t2Þ4x8rh

81920000ð1 − sþ tÞ2ð1þ sþ tÞ2 CiðjyjÞ
2;

ð2:11Þ

where y≡ ðt − ffiffiffi
3

p þ 1Þxrh=ð2
ffiffiffi
3

p Þ and Y is a numeri-
cal factor that absorbs the uncertainties in the
integration limits. The total induced GW spectrum
after reheating can be approximated as the sum of
these two contributions,

ΩeMDRD
GW;rh ≃ΩðLSÞ

GW;rh þ ΩðresÞ
GW;rh: ð2:12Þ

In our work, by means of these analytical forms of
the kernel, we compute the GW density ΩGW using
the numerical code SIGWAY [24].

(c) General w: During a cosmological epoch character-
ized by a constant equation of state parameter w and a
constant scalar sound speed cs, the transition to
radiation domination introduces a new characteristic
scale. This scale is defined by the comoving wave
number krh, which corresponds to the mode that
reentered the horizon at the onset of radiation domi-
nation.
The GW spectrum under such conditions has been

studied in [16–18] (see the review [12] for a detailed
discussion). We are interested in particular in the
regime where all relevant modes reenter the horizon
well before reheating, i.e., k ≫ krh. The kernel aver-
aged over oscillations is given by,

I2ðu; v; xÞ ¼ x−2ðbþ1Þ42bΓ4½bþ 3=2�
�
2bþ 3

bþ 2

�
2 j1 − y2jb
2c4su2v2

×

��
P−bb ðyÞ þ bþ 2

bþ 1
P−bbþ2ðyÞ

�
2

Θ½csðuþ vÞ − 1�

þ 4

π2

�
Q−b

b ðyÞ þ bþ 2

bþ 1
Q−b

bþ2ðyÞ
�

2

Θ½csðuþ vÞ − 1�

þ 4

π2

�
Q−b

b ð−yÞ þ 2
bþ 2

bþ 1
Q−b

bþ2ð−yÞ
�

2

Θ½1 − csðuþ vÞ�
�
: ð2:13Þ

Here, Θ½x� denotes the Heaviside step function. The
functions P−bb ðyÞ and Q−b

b ðyÞ are Ferrers functions of
the first and second kind, valid for jyj < 1, while
Q−b

b ðyÞ is the associated Legendre function of the
second kind, used for jyj > 1, where y is defined as
in Eq. (2.7) This parameter is geometrically related to
the shape of the momentum triangle formed by the
interacting modes. Finally b is related to the equation
of state by,

b ¼ 1 − 3w
1þ 3w

: ð2:14Þ

The presence of the Heaviside functions in Eq. (2.13)
indicates momentum conservation.

For k ≫ krh, induced GWs are effectively free to
propagate close to the reheating epoch. Therefore, it is
appropriate to evaluate the GW energy density spec-
trum at the moment of reheating, η ¼ ηrh, as,

ΩGWðη ≫ ηrh; k ≫ krhÞ ¼
1

12

�
k

HðηÞ
�

2

Phðη; kÞ
				
η¼ηrh

:

ð2:15Þ

Remembering that x ¼ kη, setting

krh ¼ Hrh ¼
1þ b
ηrh

ð2:16Þ
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yields a scaling factor ðk=krhÞ−2b, accounting for
the different redshifting behavior of GWs before
radiation domination and ensuring continuity of the
solution at η ¼ ηrh.

Finally, the general expression for the GW
spectrum at reheating, valid for any shape of
the primordial spectrum as long as k ≫ krh, is
given by

ΩGW;rh ¼
�

k
krh

�
−2b Z ∞

0

dv
Z

1þv

j1−vj
duT ðu; v; b; csÞPζðkuÞPζðkvÞ ð2:17Þ

where the transfer function is defined as

T ðu; v; wÞ ¼ N ðb; csÞ
�
4v2 − ð1 − u2 þ v2Þ2

4u2v2

�
2

j1 − y2jb

×

��
P−bb ðyÞ þ bþ 2

bþ 1
P−bbþ2ðyÞ

�
2

Θ½csðuþ vÞ − 1�

þ 4

π2

�
Q−b

b ðyÞ þ bþ 2

bþ 1
Q−b

bþ2ðyÞ
�

2

Θ½csðuþ vÞ − 1�

þ 4

π2

�
Q−b

b ð−yÞ þ 2
bþ 2

bþ 1
Q−b

bþ2ð−yÞ
�

2

Θ½1 − csðuþ vÞ�
�
; ð2:18Þ

with the numerical coefficient given by

N ðb; csÞ≡ 42b

3c4s
Γ4

�
bþ 3

2

��
bþ 2

2bþ 3

�
2

ð1þ bÞ−2ð1þbÞ: ð2:19Þ

Following the early constant-w epoch, the gra-
vitational potential decays, and the GW spectrum
will eventually become constant. So far we denoted
the spectrum at this time by a subscript “rh” and
now relate it to the present-day amplitude, denoted
by a subscript “0,” through standard cosmological
evolution,

ΩGW;0 ¼ 0.39
�

gc
106.75

�
−1=3

Ωr;0ΩGW;rh; ð2:20Þ

where Ωr;0 is the current radiation energy density
parameter, and gc is the effective number of rela-
tivistic degrees of freedom at η ¼ ηrh.
In our analysis, we use a modified version of the

public code SIGWFast [31] to compute the spectrum
ΩGWðfÞ,3 given an input curvature power spectrum,
a constant equation of state w, and a transition (or
reheating) scale frh. The SIGWFast code follows the
same conventions that we adopt throughout
this work.4

III. THE RECONSTRUCTION METHOD

As reviewed in the previous section, the amplification of
primordial GWs by scalar nonlinearities is a complex
process. The resulting GW density ΩGW is typically
expressed in terms of convolution integrals depending on
the (square of) the curvature perturbation spectrum, as well
as on transfer functions of fluctuations through distinct
cosmological eras. As a consequence, it is not easy to
analytically disentangle the features of the scalar sources or
the cosmological expansion history from the resulting
frequency dependence of the GW density. In this section,
we introduce an efficient, automated method to do so,
based on Bayesian inference. The corresponding codes can
be found at the link in footnote 1.

A. Spline parametrization of the power spectrum

To reconstruct the primordial curvature spectrum PζðkÞ
starting from GW data, we model log10 PζðkÞ using
splines, i.e., a piecewise linear interpolation defined by a
set of nodes, log10fðki; AiÞgNi¼1, where ki denotes the wave
number positions of the nodes and log10 Ai ¼ log10 PζðkiÞ
are the corresponding amplitudes. The linear spline method
provides a simple and flexible representation of the power
spectrum, capturing intricate features that may hide in the

3Where we convert the wave number to frequency using
k=Mpc−1 ≃ 6.5 × 1014f=Hz.

4Up to a minor redefinition of the variables u, v in terms of s, d.
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data. This approach is particularly advantageous compared
to fixed functional forms (e.g., power-law or broken power-
law models), as it does not impose a specific shape on the
power spectrum a priori. We now develop arguments based
on Bayasian inference to select the number and position
of nodes.
The placement of the nodes is not predefined, but it is

treated as free parameter to be inferred from the data,
ensuring that the model remains adaptable. Only the first
and last node are held fixed, based on the range over which
the curvature power spectrum is interpolated. This range is
typically chosen to be slightly wider than the range
over which the ΩGW is observed.5 The free nodes are
ordered such that ki−1 < ki < kiþ1, using a bijective order-
ing transformation that maps a set of variables in [0, 1] to an
ordered set of variables in the range ½kmin; kmax� (see, e.g.,
[32,33]). Such transformation is characterized by a constant
Jacobian, thus if we initially place flat priors on the node
locations—as we do here—the ordering transform pre-
serves this flat shape of the prior. For the power spectrum
amplitudes at the node positions, we take uniform priors
log10 Ai ∈ ½−8;−1�, unless otherwise stated.
This free-form reconstruction approach allows the data

to determine the shape of the power spectrum by adjusting
both the positions and amplitudes of the spline nodes.
However, increasing model flexibility risks overfitting,
which can be mitigated by selecting the optimal number
of nodes using Bayesian evidence—naturally balancing
model complexity against goodness of fit. Building on this
idea, we develop a fully Bayesian framework tailored to
this problem. Similar strategies have been employed to
reconstruct the primordial curvature perturbations from
CMB anisotropies (see, e.g., [33,34] and references
therein).

B. Bayesian model selection via Bayesian evidence

Since the complexity of the model depends on the
number of spline nodes, we employ Bayesian model
selection to determine the optimal number of nodes,
denoted with N. In Bayesian inference, model comparison
is performed using the Bayesian evidence (also known as
the marginal likelihood), given by

ZðMÞ ¼
Z

Lðdjθ;MÞπðθjMÞdθ; ð3:1Þ

where Lðdjθ;MÞ is the likelihood of the data d given the
parameters θ and model M, and πðθjMÞ is the prior
distribution of the model parameters [35]. Thus, for each
spline model, the parameters θ over which we integrate are
the spline node locations log10 ki, and the corresponding
amplitudes log10 Ai of the scalar spectrum.

The Bayesian evidence automatically incorporates a
penalty for excessive model complexity, effectively imple-
menting Occam’s razor. In fact, a model with too many
spline nodes has a larger parameter space to integrate over,
diluting the integral and leading to a lower evidence unless
the additional complexity is justified by the data. By
comparing Z across different values of N, we select the
models that best balance flexibility and predictive power.
Typically, differences of Δ logZ ≳ 5 between two models
(1,2) suggests that model (1) is decisively favored over
model (2), with Δ logZð12Þ ¼ logZð1Þ − logZð2Þ, while
smaller differences (Δ logZ ≲ 1) are considered to be
inconclusive in terms of Jeffrey’s scale [35].
The posterior distribution for the spline parameters can

be highly complex, featuring multiple local maxima, as
well as strong parameter degeneracies. Traditional sampling
methods such as Markov chain Monte Carlo (MCMC)
struggle in such cases due to the difficulty of efficiently
exploring the high-dimensional space. Additionally, local
optimization methods are inadequate because they can
become trapped in local extrema. For the same reasons,
we opt not to use Akaike information criterion or other
frequentist criteria formodel comparison. To overcome these
challenges, we employ nested sampling [36], a particularly
well-suited approach for computingBayesian evidencewhile
also generating posterior samples as a byproduct.
Nested sampling generates an estimate of the integral in

Eq. (3.1) by reducing the integration space, focusing on the
equivalent one-dimensional integral

Z ¼
Z

LðXÞdX; ð3:2Þ

where X is a prior volume corresponding to the likelihood
L, defined as

XðL̄Þ ¼
Z
LðθÞ>L̄

πðθÞdθ: ð3:3Þ

Hence, L̄ can be thought of as the enclosing likelihood of
cumulative prior mass X which encompasses the region
where the likelihood is larger than a threshold L̄. The core
algorithm begins with a set of points drawn from the prior,
called live points. At each step of the algorithm, the live
point with the lowest likelihood is replaced by sampling
from the prior, subject to the constraint that the likelihood
at the new point must be larger than the current lowest
likelihood value, and a statistical estimate of the prior mass
X is calculated. At the end of this process, we are left with a
set of samples fL; Xg which can be used to estimate the
evidence as well as approximate the posterior distribution
of the parameters θ [37,38]. This method has several
advantages over MCMC: in addition to providing an
estimate of the evidence, it can efficiently handle multi-
modal posteriors, and a complex posterior geometry.

5In our analysis, we find taking kmin ¼ 10kmin;GW and kmax ¼
10kmax;GW to work well for most examples.
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We implement nested sampling using the publicly available
libraries PolyChord [39,40] and Nautilus [41].

C. Functional posteriors

After obtaining posterior samples for the node param-
eters, we visualize the reconstructed power spectrum using
functional posterior plotting. For a given model, instead
of plotting individual samples or posterior distributions
for the spline node locations and amplitudes—which can
be difficult to interpret—we use the distribution of the
sampled node locations and amplitudes to estimate the
probability distribution of Pζ and ΩGW at each wave
number (or frequency). As an example, the mean of the
power spectrum amplitude at a given value of k can be
written as

E½Pζ;kjM� ¼
Z

dθPζ;kðθ;MÞpðθjd;MÞ; ð3:4Þ

wherePζ;kðθ;MÞ denotes the power spectrum amplitude at
a wave number k for the node locations and amplitudes
under the spline model M, while pðθjd;MÞ is the
posterior distribution of the spline parameters under the
model M.
In the spirit of Bayesian inference, we further margin-

alize over all the models with a different number of nodes,
using the evidence ratios as the weights for the marginali-
zation. Following such a procedure, the above estimate of
the mean—taken over all the models with different number
of nodes n—can then be expressed as

E½Pζ;k� ¼
P

nE½Pζ;kjMn�ZnP
nZn

: ð3:5Þ

Similarly, for each frequency bin in momentum k (or
frequency f)-space, we can compute other summary
statistics such as the median and credible intervals for
Pζ and ΩGW from the posterior samples.

IV. RESULTS

We present results for selected representative cases,
showing the functional posterior distributions of Pζ and
ΩGW when marginalized over models with varying num-
bers of spline nodes. We also include a plot of the Bayes
factor logZ as a function of the number of nodes used in
the reconstruction of Pζ. Unless otherwise stated, for each
of theΩGW spectra considered we generate 1σ error bars for
the observed ΩGW values at 50 logarithmically spaced
frequencies in 5 × 10−5½Hz� < f < 10−2½Hz� with

ΔΩGWðfÞ ¼ ΩGW;obsðfÞ½0.1þ 0.05ðlog f=f�Þ2�: ð4:1Þ

As an example, we choose the pivot frequency f� ¼
10−3 Hz as representative for LISA, with low uncertainties

around the peak sensitivity f� and increasing ones toward
the two ends of LISA’s sensitivity range (see, e.g., [13]). We
then use the result to create a Gaussian likelihood for the
ΩGW as an input for the nested sampler, i.e.,

−2 lnL ¼
X
f

�
ΩGW;model −ΩGW;obs

ΔΩGW

�
2

: ð4:2Þ

In our analysis, we assume that such ΩGW spectrum is
reconstructed from detector data—e.g., using codes such as
SGWBinner [42,43] in the case of LISA (see also [44–46])—
thus providing datasets consisting of the observed values of
ΩGW and their associated uncertainties ΔΩGW, over certain
frequency ranges specific to the instruments.6

While the spectra and error bars are highly idealized, and
artificially generated with LISA as a representative experi-
ment to keep in mind, the methods we present do not rely
on this being the case. They are applicable for any general
form for ΩGW and any GW experiment. In particular, one
may consider more realistic realizations of the ΩGW data
simulated using the LISA noise model, without changing
our method.7 We should note though that the curvature
spectrum reconstruction can only be as good as the ΩGW
reconstruction from detector data.

A. Standard radiation domination

We start discussing our results in the framework of
standard cosmological expansion, in which radiation domi-
nation directly follows the inflationary epoch. In this case,
the transfer function is given by Eq. (2.6) and ΩGW;rh in
Eq. (2.5) is understood to be evaluated at the time when the
source terms have sufficiently decayed, after which the
induced tensor perturbations evolve as freely propagating
gravitational waves. We present reconstruction results for
the three distinct scalar spectrum templates shown in Fig. 1.
In each case, the scalar spectral shape is held fixed (upper
panel), and we attempt to reconstruct it from the induced
gravitational wave signal it gives rise to (lower panel). In
Appendix A we test our method against recent pulsar
timing array measurements.

1. Broken power law

We start considering a broken power law (BPL) template
shown in the left panel of Fig. 1 (see, e.g., [47–49]),

6This assumption helps us to focus our attention entirely on our
reconstruction method but is not a necessity. This reconstruction
method (or any other) can be easily incorporated into existing
codes in such a manner that eliminates the need for a separate
initial inference step to obtain ΩGW;ΔΩGW. However, the two-
step procedure has the advantage that the reconstruction method
need not be applied repeatedly to the full dataset, but only to the
ΩGW data, making it computationally more feasible.

7In Appendix C we also present results for noisy realizations of
the ΩGW data.
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PζðfÞ ¼ A
�
f
f�

�
nIR
�
1þ

�
f
f�

�
σ
�nUV−nIR

σ

; ð4:3Þ

where A is the amplitude, f� a reference frequency, nIR;UV
the spectral indexes in the infrared and ultraviolet part of
the spectrum, while σ is a parameter controlling the
smoothness of the transition.

To start with, we fix the parameter values of Eq. (4.3) as

A ¼ 10−2; f� ¼ 5 × 10−4 Hz; nIR ¼ 2;

nUV ¼ −1; σ ¼ 2; ð4:4Þ

to ensure that the peak of the induced GW spectrum lies in
the middle of the LISA band.

FIG. 2. Top: The reconstructed Pζ and ΩGW for the BPL model of Sec. IVA 1, with parameters as in Eq. (4.4) marginalized over the
models with different number of nodes. The different shaded regions correspond to 68%, 95% and 99.7% credible intervals for Pζ and
ΩGW. Bottom: The evidence logZ as a function of the number of nodes.

FIG. 1. Test spectra chosen for power spectrum reconstruction assuming radiation domination. First column: Pζ and ΩGW for the
broken power law profile of Sec. IVA 1. Second column: Pζ and ΩGW for the template with oscillatory features of Sec. IVA 2. Third
column: Pζ and ΩGW for the peaked profile of Sec. IVA 3. For each column in the second row, we also show the corresponding error
bars on ΩGW, as dictated by Eq. (4.1).
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Our results are shown in Fig. 2. The Bayesian evidence
here favors the N ¼ 4; 5 model the most and decreases as
we increase the number of nodes, suggesting that the shape
of the spectrum can be captured sufficiently well with four
and five nodes.8

We find that the scalar power spectrum Pζ can be
accurately reconstructed near the peak, while larger uncer-
tainties appear at the edges, reflecting the limitations of the
input data. In particular, the constraints on the power spec-
trum in the infrared (IR) are almost entirely prior dominated.
This is due to two key reasons: (i) IR modes far from the
peak contribute negligibly to the SIGW spectrum around the
peak, and (ii) the IR tail of the SIGW spectrum generated
during radiation domination exhibits a universal k3 behavior,
up to logarithmic corrections (see, e.g., [12,48,50–53]).
Nevertheless, it is known that in single field inflation Pζ

can not normally growth steeper than k4 in the infrared
[54,55] (but see, e.g., [56–59] for exceptions).
As a second case, we assume that only the UV or IR

portion of the spectrum is detected by the experiment. We
use the same parameters as the original BPL example,

except for f� ¼ 3 × 10−5; 5 × 10−2 Hz, for the UV and IR
cases respectively. The corresponding results are shown in
Fig. 3. In the IR, the universal k3 scaling of the ΩGW
spectrum far from the peak implies that Pζ cannot be
reliably reconstructed in the tails, where the constraints are
almost entirely prior dominated. In contrast, the UV tail of
theΩGW spectrum is sensitive to the UV tilt of the curvature
power spectrum, hence enabling its reconstruction.9 These
results can be understood analytically by noting that if nIR
and nUV denote the IR and UV tilts of the curvature power
spectrum, then the induced ΩGW spectrum exhibits the
following asymptotic behavior (see, e.g., [12]):

ΩGWðkÞ ∝

8>><
>>:



k
kp

�
3
; k ≪ kp;


k
kp

�
−Δ

; k ≫ kp;
with

Δ ¼
�
2nUV; 0 < nUV < 4;

4þ nUV; nUV > 4;
ð4:5Þ

where kp is the peak scale. It is clear from the above
equations that for such BPL profiles of the curvature power
spectrum, the IR tilt plays no role in the shape of the SIGW
spectrum whereas the UV tilt does. This is very much
reflected in the marginalized posteriors of the curvature
power spectrum for the all the examples seen previously.

FIG. 3. Reconstruction of the BPL power spectrum using if only the IR (top) and UV (bottom) part of the spectrum were observed by
the experiment. The different shaded regions correspond to 68%, 95% and 99.7% credible intervals for Pζ and ΩGW.

8Nested sampling produces a statistical estimate of logZ, thus
these numbers in Fig. 2 come with their associated uncertainties.
When running Nautilus to sample the posterior and compute the
evidence, we choose settings to ensure that the resulting un-
certainty is small Δ logZ < 0.1 (see [41] and also Nautilus FAQs)
Since this is much smaller compared to the range over which
logZ varies as a function of the number of nodes, we do not show
it in the plots.

9We noticed a similar behavior for additional radiation-
dominated examples we explored.

BAYESIAN RECONSTRUCTION OF PRIMORDIAL … PHYS. REV. D 112, 123538 (2025)

123538-9



2. A template with oscillatory features

As a second representative template for the curvature
power spectrum, we modify the BPL profile (4.3) including
oscillatory features (middle column, Fig. 1. See, e.g.,
[24,60–62] for physical motivations)

PζðfÞ ¼ A ·

�
f
f�

�
nIR

·

�
1þ

�
f
f�

�
σ
�nUV−nIR

σ

× ð1þ B cos ððln f=CÞ2ÞÞ: ð4:6Þ

The new parameters A, B, C control the oscillations. We fix
their values A ¼ 10−3; B ¼ 15; C ¼ 2.5 while the other
parameters of Eq. (4.6) have the same values as their BPL
counterparts in Eq. (4.4). The corresponding results are
represented in Fig. 4. The plot indicates that our Bayesian
method is able to recover the shape of the oscillations quite
well. Once again, the constraints in the tails are much
weaker, especially in the IR since the IR part of the Pζ

spectrum contributes very little to the SIGW spectrum for
peaked Pζ spectra.

3. A sharply peaked spectrum

We next try to reconstruct a curvature spectrum charac-
terized by a sharp feature, described by a modified log-
normal profile10 (right column, Fig. 1),

PζðfÞ ¼ A ·

�
Bþ exp

�
−
1

2

�
lnðf=f�Þ

C

�
2
��

: ð4:7Þ

We select the parameters as A ¼ 3 × 10−2; B ¼ 7 × 10−3;
f� ¼ 9 × 10−4 Hz; C ¼ 0.15, so to ensure that the corre-
sponding GW spectrum is enhanced in the LISA band.
The results for this example are plotted in Fig. 5. Notice
that the position and features of the peak of the curvature
spectrum are reconstructed extremely well since the
resonant peak and dips in the SIGW spectrum are highly
dependent on the location of the peak in the Pζ spectrum.

4. Nondetection

Finally, we present results for the case of a nondetection in
Fig. 6, where we only have upper limits on the ΩGW over a
given frequency range. For a given detector, the upper limits
onΩGW would be the strongest around the peak sensitivity of
the detector andweaker toward the ends,which is reflected in
our mock upper limits shown in Fig. 6. Since there is no
detection in this case, we fix the number of nodes to four for
simplicity although one can again obtain upper limits
marginalized over models with different number of spline
nodes as done in the previous examples. Our results
demonstrate that this reconstruction method can also be
applied to obtain upper limits on Pζ over a given frequency/
wave number range which can complement the limits on Pζ

obtained from primordial black holes (PBH) constraints.
Given the exponential sensitivity of the PBH abundance to
the perturbation amplitude [63], such limits can be very
powerful in constraining the fraction of dark matter in PBH.

FIG. 4. Top: The reconstructed Pζ andΩGW for the oscillatory model of Eq. (4.6), marginalized over the models with different number
of nodes. See Sec. IVA 2. The different shaded regions correspond to 68%, 95% and 99.7% credible intervals for Pζ and ΩGW. Bottom:
The evidence logZ as a function of the number of nodes.

10Log-normal scalar profiles have been much explored in the
recent literature. See, e.g., [24] for motivations and examples.
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B. Early matter domination-radiation transition

In the previous section we focused on scenarios where
primordial GWs are amplified during radiation domination
upon reentering the horizon. In this section and the next, we
introduce an additional layer of complexity by considering
cases where the Universe is not necessarily radiation
dominated at the time of GW formation. In particular,
we consider a cosmological scenario in which inflation is
followed by a period of matter domination that transitions
quickly to RD, as laid out in Sec. II. Such an eMD epoch is
characterized by an equation of state parameter w ¼ 0, and
we impose the relation c2s ¼ w for the fluid sound
speed [64].
Scenarios involving an eMD phase have gained increas-

ing attention in recent years due to their potential to

enhance the amplitude of induced GWs, bringing the
resulting GW signal within the sensitivity range of future
detectors such as LISA, offering a potential observational
probe of the thermal evolution of the Universe.
To calculate the induced GWs, we impose an abrupt

cutoff on the power spectrum of curvature perturbations at
kcut which may be interpreted as the scale corresponding to
the onset of eMD, or the scale where density perturbations
become nonlinear kcut ∼ 470=ηrh [20],

PζðkÞ ¼ 0 for k > kcut: ð4:8Þ

Our aim is to evaluate whether our Bayesian
reconstruction method remains accurate and well behaved
in the presence of the reheating transition described above.

FIG. 6. Upper limits for Pζ reconstructed using four nodes from the upper limit on ΩGW. The boundaries of the different shaded
regions correspond to 68%, 95% and 99.7% upper limits. See Sec. IVA 4.

FIG. 5. Top: The reconstructed Pζ and ΩGW for the peaked model of Eq. (4.1.3) marginalized over the models with different number
of nodes. See Sec. IVA 3. The different shaded regions correspond to 68%, 95% and 99.7% credible intervals for Pζ and ΩGW. Bottom:
The evidence logZ as a function of the number of nodes.
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To this end, we adopt the following benchmark parameters:

ηrh ¼ 2500 s; kcut ¼ 0.008 s−1: ð4:9Þ

To further test the reconstruction capabilities of our
method, we move beyond the standard assumption of a
scale-invariant spectrum and consider two representative
templates for Pζ: the broken power-law profile of
Sec. IVA 1, and the narrow peak profile of Sec. IVA 3
(see Fig. 1).
The results for the BPL model with an eMD-to-RD

transition are shown in Fig. 7. The reconstruction success-
fully recovers the shape and amplitude of the power
spectrum near the peak and around the cutoff. Larger
uncertainties appear at lower frequencies, which are largely
prior-dominated, and reflect the limited constraining power
of the stochastic GW background in the infrared regime. At
high frequencies, uncertainties arise from the shape of the
resonance contribution to the GW kernel, which is sharply
peaked around the transition, and results quite sensitive to
the choice of reheating time.
Considering the narrow-peaked spectrum of Fig. 8, the

reconstruction recovers the location and amplitude of
the peak with good accuracy, hence demonstrating its
sensitivity to sharply localized features in the power
spectrum. As with the BPL case of Sec. IV. A. 1, we find
uncertainties in the reconstruction of the infrared part,
where the induced GW spectrum becomes less constrai-
ning and the reconstruction becomes increasingly prior
dominated.

Proceeding with additional tests, we perform for
comparison a reconstruction assuming a pure radiation-
dominated background using GW data generated under
an early matter-dominated to radiation-dominated (eMD-
RD) scenario for the BPL model. As shown in Fig. 9, a
resonance peak arising from the sudden reheating tran-
sition acts as a distinguishing feature between the two
scenarios, with the Bayes factor decisively favoring the
eMD-RD model. This indicates that, in principle, GW
observations can be used to infer features of the tran-
sition. However, the enhancement in induced GWs is
sensitive to the dynamics of the reheating process. While
a sudden transition can lead to a pronounced enhance-
ment, more gradual reheating, such as in models with
constant decay rates [25] can suppress the signal,
potentially weakening the apparent model preference.
However, if the decay rate evolves in time, such that
the field decays much more rapidly than the Hubble
expansion rate at the time of transition, the induced GWs
can still be significantly enhanced [65]. Thus, whether a
bias in model reconstruction persists depends on the
specific details of the transition dynamics, and further
study is needed to assess the robustness of these con-
clusions across various reheating scenarios.
Additionally, it would be particularly interesting to

explore whether the time dependence of the gravitational
potential and its decay rate could be reconstructed from
the GW signal itself. If this is feasible, it could provide
insights into the underlying physics and thermal history,
potentially allowing us to pinpoint key features such as

FIG. 7. Top: Reconstructed Pζ and ΩGW for the BPL model, assuming early matter domination, marginalized over the models with
different number of nodes. See Sec. IV. B. The different shaded regions correspond to 68%, 95% and 99.7% credible intervals for Pζ and
ΩGW. Bottom: The evidence logZ as a function of the number of nodes.
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(a) the onset of the eMD era, (b) its duration, and (c)
the timescale of the transition to RD. Recent studies
have begun to map the impact of these factors on ΩGW

[20,25,65,66], and using the reconstruction methods

proposed in this work, it might even be possible to
directly infer this information from real signals, such as
those detectable by LISA, offering a direct observational
probe into the thermal history of the early Universe, and

FIG. 9. Top: The reconstructed Pζ and ΩGW for the BPL model assuming eMD domination, with a run assuming RD for the same
GWB data, and marginalized over the models with different number of nodes. The different shaded regions correspond to 68%, 95% and
99.7% credible intervals for Pζ and ΩGW. Bottom: The evidence logZ as a function of the number of nodes.

FIG. 8. Top: The reconstructed Pζ and ΩGW for the peaked model in eMD, marginalized over the models with different number of
nodes. Bottom: The evidence logZ as a function of the number of nodes.
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possibly also the QCD transition (see, e.g., [67,68]). We

leave these considerations for future study.

C. General equation of state

We now consider the more general case in which the
equation of state of the dominant fluid at the time of
horizon reentry of the scalar modes can in principle differ
from that of matter or radiation.
The transfer function T w is given by Eq. (2.18) [12].

Our aim in this case is to use GW data not only for
reconstructing the momentum shape of the primordial
power spectrum, but also the equation of state w (we fix
the sound speed such that w ¼ c2s , i.e., treating this
component as a perfect fluid). We make use of a modified
version of the public code SIGWFast [31] to obtain the
ΩGWðfÞ spectrum given an input curvature power spec-
trum, equation of state w and transition/reheating scale frh.

SIGWFast calculates ΩGWðfÞ under the assumptions stated
above (we take frh ¼ 10−5 Hz).11 We do not sample frh
since it appears as an overall scaling factor in ΩGWðfÞ, thus
it is completely degenerate with the power spectrum
amplitude. We leave an analysis of how frh could also
be inferred by breaking this degeneracy, e.g., by addi-
tional theory motivated priors for frh or by requiring that
the power spectrum does not overproduce PBH, to future
studies. We present the results for our fiducial model,
which has the peaked and BPL templates of Secs. IVA 3
and IVA 1 as underlying curvature power spectra, while
we choose w ¼ 2=3 as fiducial value for the equation of
state. We use the same priors on the node amplitude and
locations as in Sec. IV. Awhile for the equation of state we
take w∈ ½0; 1�.

FIG. 10. Reconstruction of the peaked spectrum using linear interpolation for SIGW generated during an epoch with w ¼ 2=3, see
Sec. IV C. The different shaded regions correspond to 68%, 95% and 99.7% credible intervals for Pζ and ΩGW. Reported limits
represent to 95% credible intervals for the parameter w.

11Note that the code can only compute ΩGWðfÞ for f > frh.

GHALEB, MALHOTRA, TASINATO, and ZAVALA PHYS. REV. D 112, 123538 (2025)

123538-14



In Fig. 10 we plot the results for the case of peaked
spectrum. We notice that the underlying curvature
power spectrum as well as the equation of state can be
recovered quite well. The reason of such good
reconstruction is that for sharply peaked spectra, the
position of the resonance peaks and dips in the SIGW
spectra is strongly sensitive to the equation of state w.
Thus, w is recovered not only without any significant bias
but also with tiny uncertainties.
In Fig. 11, we plot our results for our BPL model.

Contrary to the previous examples, for this particular
example we use Gaussian process (GP) interpolation to
represent the power spectrum.12

In addition to the positions of the nodes and their
amplitudes, GP interpolation requires the specification of
a kernel function K. We adopt a radial basis function as
the choice for the kernel,

Kðx; x0Þ ¼ exp

�
−
ðx − x0Þ2

2l2

�
; ð4:10Þ

where x and x0 denote the positions of the nodes,13 once
again in log10 k space and l corresponds to the GP length
scale, which controls the correlation length of the GP
predictions. Given positions of nodes X and amplitudes
Y, the prediction of the GP interpolation at a point x�
is [69]

fðx�jX; YÞ ¼ Kðx�; XÞ · ½KðX;XÞ þ σ2nI�−1 · Y: ð4:11Þ

The term σ2nI is a small number, added to the diagonal of
the GP kernel matrix KðX;XÞ to ensure numerical
stability. The GP prediction is a weighted mean of the
values at the node locations, with the weights controlled
by the GP length scale—longer length scales means that
nodes far from the point x� also contribute significantly
to the prediction, and vice versa. We keep the same priors
on the node locations and amplitudes as in the linear
interpolation examples. For the length scale, the prior
reads l∈ ½Δ log10 k=ð8 × nÞ;Δ log10 k� where Δ log10 k is
the width of the interval (in log10 k space) over which Pζ

is reconstructed and n is the number of nodes. This
length scale prior ensures smoothness of the interpolation
while not being overly restrictive. Following this pro-
cedure, we obtain that both the primordial power

spectrum as well as the equation of state are recovered fairly
well—see Fig. 11. However, we have larger uncertainties in
the inferred w as opposed to the sharply peaked case of
Fig. 10. This is due to the fact that due to the broad shape of
the peak in Pζ, the resonant peaks in ΩGW are absent. The
previous discussion of Sec. IV. A. 1 with respect to the
behavior of the IR and UV tails also applies here, with only
slight differences: Eq. (4.5) now changes to [12]

ΩGWðkÞ ∝

8>>>>><
>>>>>:



k
kp

�
3
; k ≪ krh;


k
kp

�
3−2jbj

; krh ≪ k ≪ kp;

k
kp

�
−Δ−2jbj

; k ≫ kp;

with

Δ ¼
�
2nUV; 0 < nUV þ b < 4;

4þ nUV; nUV þ b > 4;
ð4:12Þ

where kp is the peak scale.

V. CONCLUSIONS

SIGWs produced in the early Universe carry the imprints
of the underlying curvature power spectrum as well as the
cosmological background dynamics at the time of GW
production. Since the production of SIGW is a process
occurring at second order in fluctuations, it is not easy to
infer properties of the source from measurements of the
GW spectrum. In this work we have explored a Bayesian
approach to reconstruct the power spectrum of the primor-
dial curvature perturbation as well the equation of state
from observations of SIGW. Our method is based on using
interpolating splines to represent the scalar power spec-
trum, with the number of nodes of the interpolation as well
as their positions and amplitudes as parameters to be
inferred from the data.
We applied our method to specific mock ΩGW data,

generated to be representative of the different kinds of
shapes of the spectrum that can arise in well-motived early
Universe models. We showed that our method is able
to accurately reconstruct Pζ, especially if the peak of
the SIGW is observed. However, in cases where only the
infrared part of the SIGW spectrum is observed, the
reconstruction suffers due to the infrared universal scaling
of the spectrum of ΩGW for broad classes of Pζ shapes,
leading to mostly prior dominated constraints. As a specific
example, we applied our techniques to reconstruct the scalar
spectrum leading to a GW signal fitting recent PTA data. We
also tested the viability of our approach in inferring the
background equation of state (assuming a perfect fluid) at
the time of SIGW production, alongside the power spectrum
reconstruction. The shape of the SIGW spectrum depends
strongly on w, but there also exist complex degeneracies
between the effects of varying w and varying Pζ, which we
discussed.

12The reason being that, for the case of broad peaked spectra,
linear interpolation suffers from a degeneracy between the shape
of Pζ and w, owing to its greater flexibility, which can result in a
bias in the inferred w and Pζ . The choice of GP interpolation
restricts this degeneracy, by generating only smoothly varying
Pζ . We expect that if one were to also directly reconstruct the
inflationary potential itself instead of Pζ , such degeneracies
would not arise since the resulting Pζ would naturally be smooth.
We discuss this subject in more detail in Appendix B.

13Not to be confused with x ¼ kη in Sec. II.
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Our method can be extended and applied to more general
situations. It would be interesting to include the effects of
primordial curvature non-Gaussianities which can influence
the SIGW profile (see, e.g., [70–73]). Besides curvature
fluctuations, also isocurvature modes might play a role in
SIGW generation (see, e.g., [74–79]). Although we focused
on scalar sources, primordial tensor degrees of freedom can
induce GW as well [80]. Besides considering more general
primordial sources, it would also be interesting tomodelmore
accurately our priors regarding the infrared parts of the
curvature and GW spectra; to include accurate constraints
related to the corresponding primordial black hole formation;
and to analyze how imperfect knowledge of instrumental
noise might affect our results. Finally, suitable extensions of
ourmethod can allow not only to infer thePζ profile, but also
to reconstruct the inflationary scalar potential leading to
SIGW profiles. We hope to return soon to these topics in
separate publications.
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FIG. 11. Reconstruction of the BPL spectrum using GP interpolation for SIGW generated during an epoch with w ¼ 2=3, see
Sec. IV C. The different shaded regions correspond to 68%, 95% and 99.7% credible intervals for Pζ and ΩGW. Reported limits
represent to 95% credible intervals for the parameter w.
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APPENDIX A: SCALAR POWER SPECTRUM
RECONSTRUCTION WITH RECENT

PTA RESULTS

We test our method against real data from pulsar timing
arrays.14 We make use of the public package Ceffyl [99] to
interface our code with the NANOGrav 15 year data
[100,101]. The results of the reconstruction are plotted
in Fig. 12. We do not find any evidence for significant
deviations from a power-law Pζ or ΩGW with little to
choose amongst the different models, with the logZ ¼
−63.71;−63.66 − 63.60;−63.59;−64.57 for N ¼ 2;3;4;
5;6 respectively.

APPENDIX B: GENERAL EQUATION OF STATE
AND BROAD SPECTRA

In this Section we present results for the BPL
example with w ¼ 2=3, reconstructed using linear inter-
polation. We see that in addition to a peak in the
posterior distribution of w at the correct value, there is
an additional peak toward the w ¼ 1. The reason behind
this is that as w increases, the position of the peak in the
SIGW spectrum shifts toward higher frequencies, and as
w; cs → 1 the peak also starts to broaden. These effects
are then compensated by Pζ shapes with sharp

variations across the k range of the reconstruction
(visible around f ∼ 10−4 Hz in the left panel of
Fig. 13), which bear very little resemblance to the true
curvature power spectrum. This is a consequence of the
additional flexibility of the linear interpolation, as
opposed to the smooth Gaussian process interpolation
we employed for this example in Sec. IV. C. We expect
direct reconstruction of the inflationary potential to also
alleviate this issue, since in that case as well the
resulting power spectrum would be much smoother
compared to the linear interpolation one.
One might wonder why there is such a bias in the

inferred value of w, given the dependence of the shape of
the SIGW spectrum on w as seen from Eq. (4.12). In
particular, for the BPL shape of the primordial curvature
power spectrum, the IR part of the SIGW spectrum is
independent of the IR behavior of Pζ and is determined
entirely by w. However, the reason behind the bias is that
for this example, the chosen error bars on ΩGW imply that
the IR slope of the SIGW spectrum is not precisely
determined, which allows for different values of w other
than the true one, to be compatible with the data.
To test this, we generate ΩGW data with much lower

noise values, particularly in the tails. This is given by

ΔΩGWðfÞ ¼ ΩGW;obsðfÞ½0.05þ 0.01ðlog f=f�Þ2�: ðB1Þ

This is to be contrasted with Eq. (4.1), which represented
the magnitude of the error bars chosen for all other
examples (except for PTA) in this work. We show in
Fig. 14 the result of the w reconstruction for this low noise

FIG. 12. Spline based reconstruction of the curvature power spectrum from PTA (NANOGrav 15 year). Left: The power spectrum
posterior Right: The corresponding ΩGW spectrum along with violin plots of the free spectrum Hellings Downs reconstruction
from NG15.

14See, e.g., [82–93] for other studies. We note that the scalar
induced GW interpretation of the PTA results is likely ruled out
due to overproduction of PBH, at least in the case of Gaussian
statistics of ζ and assuming radiation domination. The inclusion
of non-Gaussianity or a nonstandard equation of state may
alleviate this, as studied in Refs. [91–98].
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example where we see that w is now inferred correctly
without any bias due to the IR slope of the SIGW spectrum
being measured much more precisely.15

APPENDIX C: NOISY REALIZATIONS
OF GW DATA

To test the robustness of our method, we also apply it
to noisy realizations of the mean spectra presented in
Sec. IV. A for which we generate random realizations
drawn from a Gaussian distribution defined by Eq. (4.2).

Our method can again recover the a curvature power
spectrum close to the actual one, as long as the noise
level close to the peak of the GW spectrum is low, i.e.,
the shape of the peak of the noisy realization is not
too different from the mean spectrum. As discussed
earlier, this is a consequence of the fact that the shape
of the induced GW spectrum depends most strongly on
the shape of the peak of the curvature power spectrum.
The latter itself gets tightly constrained by the low noise
levels around the peak of the GW spectrum.
The Bayesian evidence shows a clear trend for the BPL

model, irrespective of the individual realization, with
models with more than six nodes being favored less, as
shown in Fig. 15. For brevity, we only show the
reconstruction for one particular realization. We also plot
the fidelity of the reconstructed Pζ and ΩGW for this
realization, showing ΔPζ ≡ jP̂ζ − Ptrue

ζ j=Ptrue
ζ where P̂ζ

represents the median of the reconstruction and similarly
for ΩGW. We see that the relative error remains small,
reaching 10−1 or lower near the peak and only gets higher
far away from it, especially in the IR for Pζ.
For the peaked and oscillatory spectra we find that we

are still able to accurately recover the underlying curva-
ture power spectrum. However, increasing the number of
nodes does not immediately lead to a decrease of the
evidence independently of the random realization, owing
to the increased complexity of the models, similar to
what we observed with the mean-only realizations in
Sec. IV. A.

FIG. 14. Reconstruction using linear interpolation for the low
noise BPL example with w ¼ 2=3.

FIG. 13. Reconstruction of the BPL example using linear interpolation with five nodes, as discussed in Appendix B.

15The degeneracies persist for the oscillatory model of
Eq. (4.6) and are in fact much more severe, leading to bias in
the inferred w even with the lower noise level example considered
here.
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