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Abstract 

Reversing biodiversity loss and the sustainability crisis requires approaches that explicitly consider human–nature interdependencies. 
Social–ecological networks, which incorporate social and ecological actors and entities, as well as their interactions, provide such an 

approach. Social–ecological networks have been applied to a range of complex issues, including sustainable resource use, manage- 
ment of ecosystem services and disservices, and collective action. However, the application of social–ecological networks to invasion 

science remains limited so far, despite their clear potential for studying human contributions to introduction pathways of nonnative 
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species, invasion success, direct and indirect impacts, and their management. In the present article, we review past applications of 
social–ecological networks to biological invasions, provide guidance on how to construct and analyze such networks, with an illus- 
trative example, and outline future opportunities of social–ecological networks in invasion science. We aim to inform and inspire the 
applications of social–ecological networks to improve our ability to meet the diverse challenges facing invasion science. 

Keywords: impacts of nonnative species, invasive alien species, management of biological invasions, social–ecological networks, 
social–ecological system 
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nthropogenic impacts on biodiversity, such as species extinc- 
ions or functional degradation, also include those resulting from 

he intentional and unintentional transport of species to regions 
here they would not naturally occur; such species are termed 

onnative or alien . A subset of these species may become inva- 
ive if they spread beyond the places where they have been intro- 
uced and have negative or deleterious impacts on native biodi- 
ersity (Roy et al. 2023 ). Invasive species are recognized as driving 
orces of the ongoing global biodiversity loss (IPBES 2019 , Roy et 
l. 2023 , Turbelin et al. 2023 ). Their impacts on native species can 

e devastating, both directly (e.g., through predation, parasitism, 
r hybridization) and indirectly (e.g., by transmitting pathogens 
nd disrupting well-established predator–prey interactions) (Vilà
t al. 2011 , Blackburn et al. 2014 , Linders et al. 2019 , Kumschick et 
l. 2020 ). They may also cause ecosystem-scale changes—for ex- 
mple, through the alteration of community composition, trophic 
ascades, or ecosystem engineering (Pyšek et al. 2020 , Roy et al. 
023 , Bacher et al. 2024 ). In addition, invasive species lead to sub- 
tantial financial costs through damage and management, affect- 
ng many economic sectors (Diagne et al. 2020 , Novoa et al. 2021 ). 
hey affect human health and well-being (Mazza and Tricarico 
018 ), as they can spread diseases (Zhang et al. 2022 ), cause aller- 
ies (Bernard-Verdier et al. 2022 ), be venomous or toxic (Nentwig 
t al. 2017 ), and disrupt recreational activities and other social and 

ultural practices (Pyšek et al. 2020 , Bacher et al. 2024 ). However, 
ot all nonnative species are invasive, and both invasive and non- 

nvasive nonnative species can have positive or beneficial ecolog- 
cal or socioeconomic effects (Vimercati et al. 2020 ). For example, 
onnative species can fulfil the functional role of a (locally) ex- 
inct native species (Vizentin-Bugoni et al. 2019 ), provide ecosys- 
em services such as improving water quality (Neves et al. 2020 , 
eynolds and Aldridge 2021 ), or stabilize fisheries revenues (Van 

ijn et al. 2020 ). Due to myriad concurrent anthropogenic impacts, 
he prioritization and choice of conservation efforts demand a 
olistic understanding contingent on environmental and social 
ontexts, as well as different geographic scales (Corlett 2015 , Bel- 
ard et al. 2022 ). 

Several tools have been developed to assess the impacts of in- 
asive species with standardized and evidence-based approaches 
for an overview, see González-Moreno et al. 2019 , Vilà et al. 2019 , 
arneiro et al. 2025 ). For example, the International Union for 
onservation of Nature (IUCN) Environmental Impact Classifica- 

ion for Alien Taxa (EICAT) is a protocol for assessing deleteri- 
us ecological impacts of nonnative species on native biodiversity 
Blackburn et al. 2014 , IUCN 2020 ). Similarly, the EICAT + proto- 
ol guides assessments of beneficial ecological impacts (Vimer- 
ati et al. 2022 ), whereas the SEICAT and SEICAT + protocols 
re focused on deleterious and beneficial socioeconomic im- 
acts on human well-being respectively (the S is for socioeco- 
omic ; Bacher et al. 2018 , Vimercati et al. 2025, https://doi.org/10 
32942/X28M09 [preprint: not peer reviewed]). Other approaches 
o assess nonnative species impacts have been developed, in- 
luding the estimation of monetary costs (InvaCost; Diagne et 
l. 2020 ), the use of functional and numerical response pa- 
ameters in consumer–resource interactions (Dick et al. 2014 , 

Dickey et al. 2020 ), or the dispersal–origin–status–impact frame-
work, which integrates dispersal mechanisms, species origin, and
population status while addressing a range of impacts such
as ecological, economic, cultural, or health-related (Soto et al.
2024 ). Assessments of the future risks associated with biolog-
ical invasions include horizon-scanning techniques (Verbrugge
et al. 2010 , Srėbalienė et al. 2019 ). However, none of these ap-
proaches capture how different types of impacts are interrelated
(Leung et al. 2012 ). 

A broad understanding of the full range of nonnative species
impacts, synergies, and conflicts is important to make informed
management decisions (Vilà and Hulme 2017 , Stevenson et al.
2023 , Roura-Pascual et al. 2024 ). Deciding which of the many ex-
isting management options to apply (Robertson et al. 2020 , Roy et
al. 2023 ) requires weighing their social and ecological costs and
benefits in a given context. Invasive species and their impacts can
be negatively perceived by some stakeholders but positively by
others, and that perception may shift over time and space (Sim-
berloff et al. 2013 , Cottet et al. 2015 ). For example, fish species
such as rainbow trout ( Oncorhynchus mykiss ) or brown trout ( Salmo
trutta ) have been introduced to many ecosystems to increase the
recreational value for anglers and for aquaculture purposes, but
they have negatively affected native taxa that can, in turn, be
important to other fisheries (Jeschke et al. 2022 ). Likewise, nui-
sance caused by invasive aquatic macrophytes may be perceived
as more problematic by residents than by visitors (Thiemer et
al. 2023 ). Invasive trees can be aesthetically pleasing (Vaz et al.
2018 ) while simultaneously eliminating suitable habitat for na-
tive insects (Litt et al. 2024 ), birds (Grz ędzicka and Reif 2020 ),
or plants (Sádlo et al. 2017 ) or radically altering ecosystem ser-
vices (van Wilgen et al. 2022 , Romero-Blanco et al. 2023 ). Simi-
larly, an environmental nongovernmental organization might fa-
vor the eradication of an invasive plant, aiming to reduce its im-
pacts on native flora, whereas local farmers would rather plant it
to increase the soil quality (Benediktsson 2015 , Lojeski and Plante
2021 ). Incorporating active stakeholder engagement, such as par-
ticipatory workshops or citizen science initiatives, is vital for de-
veloping effective management strategies by fostering collabora-
tive knowledge production and integrating diverse perspectives
into decision-making (Novoa et al. 2018 , Shackleton et al. 2019 ,
Nuñez et al. 2022 ). As invasion management is an adaptive pro-
cess requiring a governance structure, legal framework, and typ-
ically public support, it is crucial to study biological invasions as
part of a social–ecological system (Richardson 2010, Frost et al.
2019 , Hui and Richardson 2019 , Groom et al. 2021 , Heger et al.
2021 ). 

Social–ecological systems are complex adaptive systems com-
prising humans and nature, as well as their relationships (IPBES
2019 ). They are dynamic and open (i.e., they change in reaction
to external drivers through time), as well as being context depen-
dent and producing emergent phenomena (i.e., characteristics
that exist because of the interplay of the system components;
Preiser et al. 2021 ). Social–ecological networks—networks map-
ping interactions between humans and nature (see the glossary in
supplement S1 )—are tools used to understand relations (i.e., in-
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eractions) between entities. They complement social–ecological 
ystems frameworks (e.g., common pool resource governance; 
strom 2009 ), which take a more qualitative approach, and sys- 

em dynamic models (e.g., Stella, iseesystems.com), which model 
ausal relationships between variables. Social–ecological net- 
orks can incorporate both qualitative and quantitative data in a 

tructured way. They can disentangle direct and indirect connec- 
ivity and interdependencies between human–nature interfaces 
nd can inform management initiatives at multiple scales (Bodin 

017 , Beever et al. 2019 , Kluger et al. 2019 , Sayles et al. 2019 , 
luger et al. 2020 , Felipe-Lucia et al. 2022 ). Social–ecological 
etworks have been applied in the context of biological invasions 

table 1 ) and, for example, have identified manage- 
ent actions required to ensure a functioning ecosystem 

e.g., Ortiz et al. 2015 ). 
However, there is a lack of guidance on how to apply social–

cological networks in a standardized manner to enhance our un- 
erstanding of biological invasions and to advance their wider ap- 
lication. In the present article, we explore how social–ecological 
etworks can clarify and synthesize the various impacts and re- 

ated processes associated with nonnative species. We introduce 
etworks and their applications, identify key aspects for con- 
tructing and analyzing social–ecological networks in an inva- 
ion context, illustrate the approach with an example utilizing 
/EICAT( + ) data, and discuss the most promising opportunities 
his approach presents to invasion science, while also mentioning 
ts limitations. We demonstrate that social–ecological networks 
rovide an exciting avenue for future work that allows for holistic 
nalysis of complex interdependencies surrounding the impacts 
nd management options of nonnative species, as well as hav- 
ng the potential to give new insights into key questions within 

he field of invasion science (Musseau et al. 2024 ). We hope to in- 
pire relational systems thinking and network approaches when 

tudying biological invasions, as well as supplying a resource to 
et started in this complex topic. 

 brief overview of (social–ecological) 
etworks 

ince Euler’s solution to the seven bridges of Königsberg problem 

Euler 1741 ), graph theory (see the glossary in supplement S1 ), 
hich forms the basis of structural network analysis, has evolved 

rom the mathematical study of pairwise relations to the study 
f complex interactions. Network science is a prolific field, with 

arious approaches developed across disciplines—pioneered, for 
xample, by Moreno with sociograms (Moreno and Jennings 1938 ) 
r Hannon for the structure of ecosystems (Hannon 1973 )—and 

ith increasing technical possibilities escalating into complexity 
cience at the turn of the century (Boccaletti et al. 2006 , Barabási 
013 ). In its simplest form, a network (also commonly termed a 
raph ) consists of nodes (alternatively termed vertices ; see the glos- 
ary) that are connected by links (also termed edges or ties ; see 
he glossary). Networks can be found everywhere; for example, 
ransportation networks, such as train stations (nodes) connected 

y tracks (links), or the animal nervous system in which neurons 
nodes) are connected through synapses (links). More abstract se- 

antic networks show theoretical concepts (nodes) and the rela- 
ions between them (links), whereas coauthorship networks show 

cientists (nodes) and their scientific collaborations (links). We 
an distinguish between networks that aim to analyze topologi- 
al structures, how they came to be or what effects these have, 
n the basis of graph theory, and those that represent causali- 

ties or ontologies. In this article, we will refer to the former as
interaction networks , where causal relationships are not explicitly
depicted (although they can be implicitly included, e.g., in the case
of food webs). 

Social network analysis evolved as a discipline in the early
twentieth century, to investigate the structure of relationships
among individuals. It is used to understand social structures and
hierarchies, information flows, influence and power dynamics,
and other aspects within social systems (McLevey et al. 2024 ).
It is an important methodology for understanding how and why
humans behave the way they do and, therefore, how phenom-
ena such as social norms, collective action, and self-organization
emerge in different contexts (Bodin 2017 , Teodoro et al. 2021 ).
Social network analysis has also been applied to other animal
species—for example, to study the composition and dynamics of
bird groups (Silk et al. 2014 ), the invasibility of fish assemblages
(Beyer et al. 2010 ), and cultural behavior of dolphins (Mann et al.
2012 ). 

In invasion science, ecological network analysis has been ap-
plied to assess the impacts of invasive species on biotic interac-
tions such as pollination (Vilà et al. 2009 ), community assembly
(Strong and Leroux 2014 , David et al. 2017 ) and for modeling the
spread of nonnative species across discrete habitats (Woodford et
al. 2013 , Ferrari et al. 2014 ). The strength and frequency of inter-
actions among network components have been shown to affect
the invasion success and impacts of nonnative species, and a net-
work’s stability (see the glossary in supplement S1 ) can give in-
sights into the invasibility of a system (Frost et al. 2019 , Groom
et al. 2021 , Hui and Richardson 2022 ). Stability is the ability of
the system to move toward or stay close to an equilibrium (see
the glossary), which is the system’s ability to recover from change
(Frost et al. 2019 , Biggs et al. 2021 , Hui and Richardson 2022 ). More
specifically, we can talk about demographic stability as in popula-
tion numbers and structural stability as in interactions between
system components, such as in a food web (Hui and Richardson
2022 ). If demographic stability ceases, the population will crash
and die out, whereas if trophic links in a food web are lost (such
as between producers and consumers), the entire system can fail
to function. 

Beyond these specific examples, networks have many differ-
ent topologies that can be defined via their nodes, links, layers
(see the glossary in supplement S1 ), and temporal scales (e.g.,
bipartite, directed, dynamic; see figure 1 a). There are also spe-
cific networks from different disciplines (e.g., food webs or so-
ciograms). Unipartite, bipartite, and multipartite networks (see
the glossary) refer to the number of node types within the net-
work. Directed (as opposed to undirected; see the glossary) net-
works have links coming from and going to specific nodes (e.g.,
food webs) and can include reciprocal links. Weighted networks
(see the glossary) assign a value to the link (e.g., the amount of
biomass being consumed or the number of times a pollinator vis-
its a plant), and nested networks (see the glossary) are, in essence,
networks within nodes of networks (e.g., food webs within con-
nected ponds; figure 1 a). These networks and topologies can be
combined as layers (a layer corresponds to one network) in mul-
tilevel or multilayer networks (see the glossary). For example, a
network can include layers of different species interactions (e.g.,
antagonistic, mutualistic) that are linked to each other by species
nodes (i.e., multiplex networks) and of human interactions, such
as communication between managers (within-layer links; fig-
ure 1 b) and how humans interact with the different species
(between-layer links; figure 1 b). 
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Figure 1. (a) Illustrations of different simplified network topologies: Bipartite: a network where links only exist between two different node types. 
Directed: networks where links have a direction (i.e., going from one node to another), including reciprocal relationships. Weighted: links have 
different strengths. Nested: networks within nodes of another network. Multilevel: multiple connected networks with a given node and link type per 
layer, with further links between the layers. Dynamic: networks with a temporal component (e.g., the structure of the network may change at different 
points across time). (b) Schematic representation of different components of social–ecological networks with example layers and nodes as well as 
within- and between-layer links. 
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Social–ecological networks can therefore use different com- 
inations of the concepts above but are, in essence, networks 
hat integrate actors or entities (nodes) from both the so- 
ial and ecological realms, interacting via social–social (SS), 
ocial–ecological (SE), and ecological–ecological (EE) links ( sensu 
odin and Tengö 2012 ; see figure 1 b for an example). Social–
cological networks have been used to better understand na- 
ure’s contributions to people (Dee et al. 2017 , Felipe-Lucia et 
l. 2022 ), to improve sustainable resource use (Ortiz and Levins 
017 , Zador et al. 2017 , Barnes et al. 2019 ), and to inform 

easures for climate-change adaptation (Salgueiro-Otero et al. 
022 ). 

We carried out a scoping literature review (for details, see
supplement S2 ) and found 30 studies applying social–ecological
networks to problems involving biological invasions. These stud-
ies applied a broad range of approaches to constructing and an-
alyzing networks, stemming from different fields and theories.
Eighteen studies (table 1 ) used networks with interactions be-
tween actors (nodes), including biophysical and social entities, on
the basis of graph theory. The remaining 12 studies (see suppleme
nt S2 , table 1 ) applied a range of tree graphs, causal influence di-
agrams (i.e., causal networks; see the glossary in supplement S1 ),
semantic networks, and decision-making diagrams, as well as five
studies using Bayesian networks (see the glossary). Given the vast
 

 

 

 

 

 

 

 

 

 

 

 

 D
ecem

ber 2025

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biaf174#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biaf174#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biaf174#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biaf174#supplementary-data


Rickowski et al. | 5

r
f
i

C
s
c
T
a
o
c
2

S
W
i
a
k
(
s
d
t
a
l
c
t
a
o
c
a
e
I
a

w
a
s
a
o
h
m
m
t
a
b
p
s

S
F
a
a
a
a
T
l
c
w
t
t
c

ange of possible approaches to social–ecological networks, in the 
ollowing sections, we will focus on those that seem most promis- 
ng for invasion science. 

onstructing and analyzing 

ocial–ecological networks in an invasion 

ontext 
he start of all social–ecological networks is a clearly defined 

im—a research question, hypothesis, or management goal. Based 

n this aim, the social–ecological system under study should be 
onceptualized and characterized in an iterative process (figure 
). 

tep 1 : Conceptualizing social–ecological networks 
hen conceptualizing, prior knowledge or sufficient time to 

nvestigate the social–ecological system is needed to identify 
nd define the system boundaries and components. Ideally, this 
nowledge is coproduced with stakeholders within the system 

Moallemi et al. 2023 ). The temporal and spatial limits of the 
tudy should be specified prior to data collection. Depending on 

ata availability, however, these limits may need to be adjusted 

hroughout the study. The different actors or entities and inter- 
ctions within the system must be defined in terms of nodes and 

inks (figure 1 b). If relationships are causal (such as impacts), a 
ausal influence diagram can be constructed. Noncausal rela- 
ionships and interactions, such as movement or communication, 
re frequently included in social–ecological networks as directed 

r undirected links (table 1 ). Alternatively, multilevel networks 
an help incorporate the many different interactions and actors, 
nd for analyses based on graph theory, each layer within social–
cological networks corresponds to one type of link (figure 1 b). 
dentifying and defining the relevant system components can be 
ided with guiding questions (figure 2 ) and linked back to the aim. 

With all their layers and components, social–ecological net- 
orks offer several ways to include nonnative species (figure 1 b): 
s nodes within the ecological network, as node attributes (see 
tep 2 for details on attributes) of an invaded habitat node, or 
s links—for example, if the research aims to model the spread 

f a nonnative species across a landscape comprising discrete 
abitat patches serving as nodes. Nonnative species can also be 
odeled as link attributes of an infected vector, which, when 

ade dynamic, models how nonnative species can move through 

he network of interactions (as in a contagion network). All the 
bove-described components can be contemplated conceptually, 
ut social–ecological networks should be simplified to an appro- 
riate level of complexity, considering the aim and available re- 
ources. 

tep 2 : Constructing social–ecological network s 

ollowing conceptualization, the underlying data for the nodes 
nd links must be gathered. Existing data from databases, impact 
ssessments, or grey and scientific literature can be used, as well 
s newly collected data. Interviews and surveys can provide valu- 
ble insights from stakeholders within the system under study. 
he data must then be organized in a network structure to al- 

ow for the subsequent analysis. Adjacency and incidence matri- 
es (see the glossary in supplement S1 ) are sometimes used, but 
e will focus on node and edge lists in the present article (see 

he glossary in supplement S1 ). Node lists contain all node IDs as 
he first column (each row being one node), and the subsequent 
olumns can contain different attributes of this node. Node at- 

tributes constitute any other relevant information or character-
istic pertaining to the node—for example, demographics for so-
cial nodes, population densities for species, or other quantitative
or qualitative variables. The corresponding edge list contains the
pair of nodes corresponding to each link in the first two columns
(each row represents one link), and the subsequent columns can
contain link attributes (i.e., any other relevant information one
wishes to include). For multilayer networks, each layer can be con-
sidered separately and characterized by its own node and edge list.
Alternatively, the layer identity can be recorded as a node or edge
attribute. 

Step 3 : Analyzing social–ecological networks 
Social–ecological interaction networks can be analyzed topologi-
cally by identifying different attributes and structures within the
network. Centrality measures (see the glossary in supplement S1 ),
such as degree (the number of direct connections a node has) or
closeness (how easily a node can reach all other nodes in the net-
work on the basis of the shortest path), reflect a node’s relative im-
portance in the network. Diameter, density, (average) path length
and transitivity are topological network metrics (see the glossary)
that can be used to understand and compare network attributes.
These metrics can be linked to different theories and frameworks
in the social and natural sciences (e.g., see above; Biggs et al. 2021 ,
Hui and Richardson 2022 , McLevey et al. 2024 ). Finding groups
in networks can be done by applying algorithms such as walk
trap, page rank, or random walk (cf. Farine and Whitehead 2015 ,
Hashemi and Darabi 2022 ), and dominator tree analysis can iden-
tify bottlenecks within directed networks (e.g., Kluger et al. 2019 ).
Motifs (see the glossary) are specific recurring patterns of inter-
connections (subgraphs), consisting of the specific configuration
of links among two, three or more nodes (Milo et al. 2002 ). They
can inform on actors’ abilities to manage shared resources (Bodin
and Tengö 2012 ) and on social–ecological fit (Epstein et al. 2015 ,
Guerrero et al. 2015 , Bodin et al. 2016 ). 

Motif analysis can be done by comparing the number of motifs
in social–ecological networks with a random network or, for ex-
ample, by using exponential random graph models where varying
levels of randomness can be controlled for and where node at-
tributes can be accounted for (see, e.g., McLevey et al. 2024 ). Such
models can also be used to analyze how the network structure
arose (using the network as the response variable), how the net-
work structure contributes to certain phenomena (using the net-
work as a predictor variable), or how links are likely to emerge
given the existing structure (like a simulation). Other types of
models used for network analysis include contagion or diffusion
models, where the spread of something (e.g., money, influence,
nonnative species) across a network is analyzed (e.g., Haak et al.
2017 ). Block modeling looks at the position of structures within
multirelational (or multilevel or multilayer) networks (e.g., Har-
rer and Schmidt 2013), whereas agent-based models (e.g., Baggio
et al. 2016 ) permit analysis of multiple interrelated processes and
can either be used to explain how a network was formed or create
network-based scenarios. 

A breadth of theories and frameworks from invasion science,
social–ecological systems research and other disciplines can be
applied in combination with the social–ecological network ap-
proach (Biggs et al. 2021 , Hui and Richardson 2022 ). In addi-
tion to insights already gained on how nonnative species affect
food webs, the concept of social–ecological fit (see the glossary
in supplement S1 ), stemming from social–ecological systems re-
search, seems particularly useful. It refers to analyzing whether
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Figure 2. A flowchart depicting the iterative steps involved in conceptualizing, constructing, and analyzing social–ecological networks (SENs) (from the 
top to the bottom), as well as guiding questions (center). 
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he ecological interdependencies are mirrored or complemented 

y the managing social structures (e.g., Alexander et al. 2017 ). For 
xample, if connected invaded habitats are managed by two dif- 
erent social actors, it is key that these actors at least communi- 
ate, if not cooperate in order to match the ecological interdepen- 
encies. If no interaction between the social actors occurs, man- 
gement efforts are unlikely to be effective, as reinvasions from 

he respective habitat patches may occur, or different manage- 
ent actions counteract each other. 
All network types, both causal and interaction networks, can 

e analyzed using path analysis, which explores how to get from 

oint A to B in a network and gives insight into connectivity and 

ndirect effects. Loop analysis (i.e., a specific type of path analysis; 
ee the glossary in supplement S1 ) is applicable to networks con- 
aining cycles, evaluating how one completes a loop from point A 

nd back via other nodes and links in the network. Causal loop 

nalysis can give insight into the stability of a system and the 
irect and indirect effects of external perturbations (stressors) 

Levins 1974 ). More specifically, does a change in one state vari- 
ble (node) increase, decrease, or have no effect on the other state 
ariables in the system? The benefit of loop analysis is the rela- 
ively low resolution of data required (whether the effect of the 
nteraction on the state variables is positive, negative, or neutral) 
nd the ability to consider the system as a whole. In the context 
f biological invasions, causal loop analysis can be performed to 
nderstand whether nonnative species contribute to positive or 
egative feedback loops, what happens if interactions change (i.e., 
o from positive to negative or neutral and vice versa) and with 

hich changes in state variables (nodes) and interactions (links) 
he system loses stability (Scotti et al. 2020 ). 

A multitude of software packages from different disciplines 
xist to analyze networks. Food webs can, for example, be ana- 
yzed as mass-balanced models using Ecopath with Ecosim (Chris- 
ensen and Pauly 1992 , Christensen and Walters 2004 ) or EcoNet 
Kazancı 2007 ); neural or genetic networks can be analyzed with 

oftware such as Cytoscape ( https://cytoscape.org ); and examples 
f software packages from the social sciences that help gather, or- 
anize, and analyze data are Gephi ( https://gephi.org ) and UCINET 

Borgatti et al. 2002 ) with integrated NetDraw (Borgatti 2002 ). Al- 
ernatively, R provides many packages to visualize and analyze 
ifferent network types—for example, enaR (Borett and Lau 2014 

, an ecosystem network analysis package, or igraph (Csárdi et al. 
025 ), which allows the assembly of a network item on the basis of 
ode and edge lists, as well as adjacency and incidence matrices, 
nd many tools to characterize, quantify, and visualize observed 

etwork structures and compute their metrics. The ggraph pack- 
ge (Pedersen 2017 ) offers additional visualization options, based 

n ggplot2 (Wickham 2016 ). Many more options for network anal- 
sis across multiple formats exist; see the curated list of Awesome 
etwork Analysis (Briatte et al. 2024 ). 

n illustrative example: The impacts of 
onnative species in Hawaii 
ur aim is to map the cumulative direct and indirect impacts of 
onnative vertebrate species in Hawaii and the underlying impact 
echanisms, based on S/EICAT( + ) assessments. 

onceptualizing social–ecological networks of 
onnative species impacts in Hawaii 
ike many other oceanic islands, a high proportion of Hawaii’s 
ative species are endemic. These species are mainly birds (98% 

are endemic), fishes, and invertebrates; Hawaii has no native ter-
restrial reptiles or amphibians and just three native terrestrial
or semiterrestrial mammals (Pratt et al. 2009 , MMC 2024 ). Of the
1456 native species that occur naturally in Hawaii, 32% are endan-
gered, and many others have already gone extinct (US Fish and
Wildlife Service 2024 ). Some Hawaiian people have a strong cul-
tural connection with the archipelago’s wildlife and landscapes;
this is reflected in Hawaiian art, music, traditional dress, and prac-
tices (Anderson-Fung and Maly 2002). For example, the feathers
of native birds are used in rituals as headdresses and also as cur-
rency, and some native birds such as the ‘alalā (Hawaiian crow
Corvus hawaiiensis ) feature in stories and legends and as spiritual
guides and protectors (Pratt et al. 2009 ). Indeed, the ‘alalā is con-
sidered to be a guardian of the soul on Hawaii; the souls of those
that die on Ka‘ū (Hawaii Island) travel to a Leaping Place, which
is a cliff, from where they are guided to their final resting place.
Their guide is the ‘alalā and yet this species is now extinct in the
wild (Rundell 2022 ). 

The decline of endemic species in Hawaii has several anthro-
pogenic causes, one of which is the introduction of nonnative
species. For example, nonnative trees are replacing native canopy
trees in all Hawaiian forests types (Potter et al. 2023 ), whereas in-
vasive grasses inhibit native forest restoration (Rehm et al. 2023 ).
Nonnative animals include several rat species ( Rattus spp.) and
the small Indian mongoose ( Urva auropunctata ), which prey on a
range of native species, including the threatened Hawaiian stilt
( Himantopus mexicanus knudseni ); the barn owl ( Tyto alba ), which
preys on native birds including the endangered Hawaiian pe-
trel ( Pterodroma sandwichensis ); and the Japanese white-eye ( Zos-
terops japonicus ), which competes with native bird species, possi-
bly threatening the Hawaii akepa ( Loxops coccineus ) with extinction,
and which is believed to spread avian malaria, which affects many
native bird species (Freed et al. 2008 , Kaushik et al. 2018 , Raine et
al. 2019 ). The impacts of nonnative species have resulted in losses
to ecosystem services provided by native species in Hawaii. For ex-
ample, the islands have lost many native frugivorous birds that
disperse the seeds of native plants—resulting in negative envi-
ronmental impacts such as reduced habitat quality, (nonnative
bird species have partially taken over this ecosystem function;
however, they disperse a higher number of nonnative than native
plant seeds; Vizentin-Bugoni et al. 2019 ) and cultural losses as-
sociated with the disappearance of these bird species. Many non-
native species are now established in Hawaii, including birds and
mammals, but also terrestrial reptiles and amphibians. Their im-
pacts on people and wildlife are widespread and diverse. 

We identified impacts (links) associated with specific groups of
native and nonnative species (nodes), creating a social–ecological
network for impacts on native birds that are caused by nonna-
tive vertebrate species, impacts affecting native species that are
caused by nonnative birds, and the wider positive and negative
socioeconomic impacts of these nonnative vertebrates on social
entities (nodes) in Hawaii (spatial limit), from 1970 until present
day (temporal limit). As the network of impacts is causal, layers
do not need to be defined, although they are implied by the social
and ecological nodes. 

Constructing social–ecological networks of nonnative 
species impacts in Hawaii 
The biodiversity and socioeconomic impacts of nonnative species
were identified by reviewing literature reported in the IUCN Global
Invasive Species Database ( www.iucngisd.org/gisd ) and two global
assessments of the environmental and socioeconomic impacts of
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Figure 3. Case study illustrating the construction of social–ecological networks with a focus on impacts of nonnative vertebrates in Hawaii on native 
species and people, based on S/EICAT( + ) assessments (see supplement S3 for details on the methodological approach). Nonnative vertebrates are 
indicated as red nodes: barn owl ( Tyto alba ), cattle egret ( Bubulcus ibis ), Japanese white-eye ( Zosterops japonicus ), red-billed leiothrix ( Leiothrix lutea ), 
red-vented bulbul ( Pycnonotus cafer ), red-whiskered bulbul ( Pycnonotus jocosus ), rose-ringed parakeet ( Psittacula krameri ), mallard ( Anas platyrynchos ), 
common myna ( Acridotheres tristis ), chukar ( Alectoris chukar ), feral cat ( Felis catus ), small Indian mongoose ( Urva auropunctata ), and the rat species brown 
rat ( Rattus norvegicus ), black rat ( Rattus rattus ), Polynesian rat ( Rattus exulans ); native species are indicated as yellow nodes: birds, selected invertebrates, 
plant communities, and people, including socioeconomics, are indicated as blue nodes. Network (a) depicts beneficial and deleterious social–ecological 
impacts (lighter shaded links indicate beneficial impacts), network (b) highlights in color the subset of impacts relating to the Hawaiian crow (“Alalā; 
Corvus hawaiiensis ), and network (c) depicts impact mechanisms. In these networks, the thickness of the links (width of connecting arrows) indicates 
the number of native species affected. Several native species were aggregated into nodes (reflected by larger node size) representing taxonomic or 
functional groups; these nodes contain the following native species: Forest and grassland birds: akikiki ( Oreomystis bairdi ), Hawai’i ‘akepa ( Loxops 
coccineus ), Hawai’i ‘elepaio ( Chasiempis sandwichensis ), Hawaiian short-eared owl (pueo; Asio flammeus sandwichensis ), palila ( Loxioides bailleui ), O’ahu 
‘elepaio ( Chasiempis ibidis ), Hawai’i creeper ( Manucerthia mana ), ‘akohekohe ( Palmeria dolei ), kākāwahie ( Paroreomyza flammea ), O’ahu ‘alauahio 
( Paroreomyza maculata ), Maui parrotbill ( Pseudonestor xanthophrys ), ‘ō‘ū ( Psittirostra psittacea ), Laysan finch ( Telespiza cantans ), Hawaiian crow (‘alalā; 
Corvus hawaiiensis ); sea birds: brown noddy ( Anous stolidus ), Bulwer’s petrel ( Bulweria bulwerii ), Hawaiian petrel (‘ua‘u; Pterodroma sandwichensis ), bonin 
petrel ( Pterodroma hypoleuca ), Newell’s shearwater (‘a‘o; Puffinus newelli ), wedge-tailed shearwater ( Ardenna pacifica ); wetland birds: Hawaiian common 
moorhen (‘alae ‘ula; Gallinula chloropus sandvicensis ), Hawaiian coot (‘alae ke‘oke’o; Fulica alai ), Hawaiian duck (koloa; Anas wyvilliana ), Hawaiian goose 
(nēnē; Branta sandvicensis ), Hawaiian stilt (ae’o; Himantopus mexicanus knudseni ); plant communities: ‘ala ‘ala wai nui ( Peperomia subpetiolata ), Hawai’i 
cheesewood ( Pittosporum hawaiiense ), hō’awa ( Pittosporum napaliense ), pilo kea lau li’i ( Platydesma rostrata ), hala pepe ( Pleomele fernaldii ), opuhe ( Urera 
kaalae ). 
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onnative birds (Evans et al. 2016 , 2020 ) following the S/EICAT( + ) 
rameworks (Blackburn et al. 2014 , Bacher et al. 2018 , IUCN 2020 , 
imercati et al. 2022 , https://doi.org/10.32942/X28M09 [preprint: 
ot peer reviewed]). Notice, therefore, that both deleterious and 

eneficial environmental impacts are included in the analysis. An 

dditional online search for cultural and socioeconomic impacts 
as carried out using Google and Google Scholar platforms from 

arch to May 2024. The indirect impacts were explored by identi- 
ying the socioeconomic relevance of impacted native species. 

The layers and nodes therefore consist of three types: native 
pecies, nonnative species, and social entities such as stakehold- 
rs and cultural practices. Native species were aggregated into 
orest and grassland birds, sea birds, and wetland birds, as well 
s plant communities. The nodes were assembled in a node list 
 supplement S3 , table 1 ), with columns containing the layer or 
ode type, the name of the node and the individual species within 

he groups. Nonaggregated nodes were given the value 1, and 

ggregated nodes the value of the respective number of species 
ithin that group. This was later used to scale the relative node 

izes. 
The links were the different beneficial and deleterious impacts 

nd underlying mechanisms of nonnative species as well as the 
ndirect impacts of these. An edge list ( supplement S3 , table 2 ) was 
reated, containing the list of interactions (i.e., the node causing 
he impact, the node being impacted) and information describ- 
ng it, including the type of impact, its mechanism, the number 
 of species impacted or causing the impact (i.e., the weight of 
he link), whether the impact and mechanisms were beneficial or 
eleterious to native species and valued aspects of Hawaiian cul- 
ure, and whether the impact was actually observed (on the ba- 
is of evidence included in previous S/EICAT( + ) assessments and 

ublished studies) or potential (on the basis of grey literature). 

nalyzing social–ecological networks of nonnative 
pecies impacts in Hawaii 
his case study illustrates how existing data can be organized 

nd visualized as relational data in a network; we focused in the 
resent article on analyses for network visualization. Details on 

he R packages used for network visualization can be found in 

upplement S3 . Three networks were plotted, with links showing 
ither the impacts of nonnative species (figure 3 a, 3 b is focused 

n a subset of impacts relating to the Hawaiian crow) or the un- 
erlying mechanisms (figure 3 c). 

The ‘alalā (Hawaiian crow) is a native forest bird species that 
preads the seeds of fruits—an important function for forest habi- 
at maintenance and promoting biodiversity, as well as being cul- 
urally important and valued by bird watchers and wildlife en- 
husiasts (figure 3 b). It is threatened by a range of nonnative 
pecies, including the small Indian mongoose ( Urva auropunctata ) 
nd feral cats ( Felis catus ; figure 3 b), because of predation (fig- 
re 3 c)—particularly of fledglings which remain near the ground 

or several days before being able to fly—as well as habitat loss 
nd other compounding factors. The disappearance of this cul- 
urally significant guardian of the soul on Hawaii can largely be 
ttributed to the impacts of nonnative species, posing subsequent 
osses to biodiversity, culture, and recreation, affecting nature and 

eople on Hawaii in different but connected ways. This is espe- 
ially relevant as efforts to reestablish wild populations are ongo- 
ng ( https://dlnr.hawaii.gov/alalaproject ). 

Mapping all recorded impacts (figure 3 a) shows, for example, 
he cumulative indirect impacts of the loss of native bird species 
n Hawaiian culture that were caused, at least in part, by nonna- 

tive species (thicker lines indicate more impacts; figure 3 a). Benefi-
cial impacts were visually displayed to be more transparent than
deleterious impacts, so that they could be distinguished by the
reader. Figure 3 a shows that the deleterious impacts of nonna-
tive species on native species indirectly negatively impacting cul-
ture and recreation. Although S/EICAT( + ) data do not consider (di-
rect or indirect) impacts from one nonnative species on another,
visualizing this data as a network shows exploitative and appar-
ent competition going on between different nonnative species (fig-
ure 3 c). Another aspect that becomes apparent when visualizing
the data in this manner is that only impacts on social entities are
considered. How social entities affect both native and nonnative
species is not captured by S/EICAT( + ) alone. If the causal links be-
tween social entities and ecological aspects of the system were to
be mapped, loop analysis could be applied to identify positive and
negative feedback loops (i.e., indirect impacts) that could aid or
hinder management of nonnative species. 

Opportunities for social–ecological 
networks in invasion science 

The social–ecological network methodology enables insights into
varying aspects of invasion science. In principle, social–ecological
networks can give insights into introduction pathways, invasion
success, the invasibility of a system, impacts, and the manage-
ment of nonnative species (i.e., the major themes of invasion sci-
ence; cf. Musseau et al. 2024 ), as these aspects are intrinsically
linked to one another. Which specific aspects social–ecological
networks address is based on how nodes and links are defined, and
what data are included. In the following, we present particularly
promising opportunities of social–ecological networks in invasion
science. 

Past, present, and future introduction pathways of nonnative
species can be modeled using spatial networks, with nodes rep-
resenting spatially discrete regions and links indicating human-
mediated dispersal (table 1 ). This has been done for trade net-
works to investigate pathways and therefore possible introduc-
tion risks, such as for the pet trade (Sinclair et al. 2021 ) or for pest
species associated with the cassava trade (Wyckhuys et al. 2018 ).
It has also been done to identify possible dispersal hubs of ma-
rine nonnative species on the basis of ship movements (Letschert
et al. 2021 ) or secondary introductions through—for example, an-
gler movement between lakes (the blue highlights in table 1 ). To
better understand the conditions that lead to successful introduc-
tions, networks of the cultural and economic contexts of invasions
can be constructed, such as by comparing nonnative flora similar-
ities across former empires in the context of colonialism (Lenzner
et al. 2022 ). Therefore, links between locations could account for
similarities, transport routes or many layers of relations in a mul-
tiplex network. Alternatively, node attributes of locations can re-
flect conditions of introduction in the above-described networks.
This can facilitate the identification of factors that determine suc-
cessful introductions of nonnative species, ultimately serving as
a suitable tool for risk assessment. 

Location-specific social–ecological networks can inform on the
invasion success of different species, as well as the invasibility
of the invaded social–ecological system. Nested networks allow
modeling a specific social–ecological network within each node of
a spatially connected network (as was described above). Building
on Haak et al. ( 2017 ), food webs nested within lakes and expand-
ing to larger spatial scales, movement between locations could be
combined with specific social–ecological networks for each loca-
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ion. For example, trophic interactions within a food web may give 
nsight into the biotic resistance of a system, whereas additional 
nteractions with humans (e.g., whether humans use the nonna- 
ive species, find it charismatic, or have any precautions against it) 
llow for a better understanding of the mechanisms surrounding 
nvasion success and invasibility. Combining transport networks 
which generate propagule pressure and therefore increase inva- 
ion success; cf. Jeschke and Starzer 2018 ) with information about 
ocal systems and their context along the invasion stages into one 
ohesive network will allow for more holistic insights into the in- 
asion process and what determines successful invasions. It can 

lso inform risk assessment and management. 
Mapping out and visualizing the interactions and effects of 

nvasive species shows the cumulative, direct, and indirect in- 
ader impacts and can be used as a communication tool to fos- 
er knowledge exchange, aid decision-making among stakehold- 
rs, and increase public awareness. Figure 3 depicts the social–
cological system surrounding nonnative species in Hawaii, high- 
ighting the interconnectedness of different system components. 
pecifically, it highlights that one direct impact may have many 
ndirect impacts and that when managing nonnative species, it is 
ot sufficient to simply, for example, focus only on negative im- 
acts caused by predation of a single nonnative species but to also 
onsider management implications in the wider network. Achiev- 
ng a shared understanding among stakeholders of the complexity 
nd interdependence of the systems we inhabit is crucial for mit- 
gating the impacts of nonnative species and other anthropogenic 
rivers of change. 

Networks can be used to simulate different future scenarios 
nd make predictions that can inform policy and management. 
he efficiency of invasive species management under different 
cenarios has been assessed using agent-based models (Yletyi- 
en et al. 2021 ), and how people will react to new environmen- 
al conditions has been modeled using scenario-based adaptation 

athways (Salgueiro-Otero et al. 2022 ). Many more possibilities for 
etwork-based scenarios exist, such as causal influence diagrams 
or analyzing the impact of different changing environmental fac- 
ors on Alaskan forests (Wolken et al. 2011 ) and predicting the im- 
acts of people’s perception on “nuisance” plant management us- 

ng Bayesian belief networks (Thiemer et al. 2023 ). Interaction net- 
orks can be made dynamic with longitudinal data (i.e., different 
etworks for different time points), thereby synthesizing historic 
evelopment and supporting predictions of how the network may 
hange in the future. This can also be done by specifically adding 
nd removing nodes and links. For example, a nonnative species 
an be added as an additional node with its potential (i.e., biolog- 
cally plausible) interactions (links) (cf. Penk et al. 2017 , Fumero- 
ndreu et al. 2024 ) or impacted species can be removed to simu- 

ate extinctions and examine the resulting structural changes (i.e., 
etwork metrics). Alternatively, loop analysis can be used to sim- 
late the knock-on changes within a network when interactions 

links) and state variables (nodes) change. 
Identifying the differences and similarities across different in- 

aded social–ecological systems can give important insights into 
ffective management along the invasion process. Network met- 
ics enable the comparison of vastly different systems, assum- 
ng the network is similarly conceptualized and constructed us- 
ng the same type of system components (nodes and links). This 
an be done to investigate why a nonnative species is or is not 
ble to establish in different systems, what governance structures 
ead to better management, and why management of a nonna- 
ive species in one region is more effective than in another (Sand- 
tröm and Rova 2010 , Alexander et al. 2015 , Alexander et al. 2017 ). 

Other comparative methods include weighted topological overlap,
which directly compares the structure of two networks, or cluster-
ing coefficients such as modularity and density (see the glossary
in supplement S1 ), which are just some of the network metrics
that can give insight into how tightly connected a network is (Gysi
and Nowick 2020 ). The frequency of specific motifs can also be
compared across networks; however, theory on what these motifs
mean in an invasion context must be developed. Building on bi-
otic resistance and theory on environmental governance, we can
assess which social–ecological network structures prevent or fa-
cilitate invasions, as well as which structures contribute to suc-
cessful impact mitigation. 

Social–ecological networks can also provide recommendations
on how to positively transform invaded social–ecological systems.
By inducing regenerative dynamics, disturbed systems can be
transformed to reach a more desirable state. Regenerative dynam-
ics are a type of positive feedback where a small change triggers
a reinforcing cycle, leading to a spiral of improvement, as has
been observed in some rewilding experiments (Fischer et al. 2024 ).
These positive feedback loops, or virtuous cycles, can be identified
using loop analysis (Scotti et al. 2020 ), as can the corresponding
negative feedback loops, or vicious cycles. By recognizing impor-
tant feedback loops in the system and running scenarios for im-
provement, we can identify leverage points for positive transfor-
mation. 

Although social–ecological networks offer numerous benefits,
the approach also presents several challenges and needs for
further development in areas with relevance to invasion sci-
ence. Specifically, social–ecological networks require a consider-
able amount of data; data extraction and subsequent analysis can
be time consuming. On the other hand, the advantage of networks
is that they can be continuously expanded. This makes them dy-
namic and can improve their accuracy over time and space. If the
focal research question is sufficiently specific, social–ecological
networks can be of tractable complexity, enabling more sophisti-
cated analyses of, for instance, well-defined subsystems. The data
hunger of social–ecological networks is becoming less problem-
atic in the current age of big data. Large language models and
other AI tools might provide additional support in this context,
either by streamlining data collection from different sources or
by inferring interactions, on the basis of traits and other relevant
information (e.g., Fricke et al. 2022 ). It is also important to realize
that social–ecological networks can serve as powerful synthesis
tools for integrating different data and information sources and
extracting key insights relevant to researchers across disciplines
and diverse stakeholder groups, facilitating inter- and transdisci-
plinary exchange. Social–ecological networks explicitly facilitate
the incorporation of different perspectives and can be used as
tools for turning data and information into knowledge (cf. Jeschke
et al. 2019 ). 

Conclusions 

Given all the potential nodes and links that can be included in
a network, from species to governing bodies, energy to causa-
tion, and a vast range of analysis methods already developed
in different fields, the social–ecological network methodology al-
lows for a more comprehensive understanding of biological in-
vasions. Social–ecological networks that incorporate nonnative
species can inform risk assessment, risk management, and model
future scenarios. They can be used as a synthesis tool, as well as
to communicate and engage with stakeholders to raise awareness
and improve management. It is time to more fully explore the
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any opportunities of social–ecological network analyses for bio- 
ogical invasions, as these pose great potential in tackling the com- 
lex interactions and impacts of nonnative species. The ability of 
etworks to, in principle, incorporate all relevant system compo- 
ents, throughout different spatial and temporal scales, enables a 
olistic analysis of social and ecological interdependencies within 

eal-world invaded systems, subject to multiple drivers of change. 
There is no single right way to construct and analyze social–

cological networks, but crucial decisions must be made on which 

ystem components to include and how to define network bound- 
ries. Assumptions that one inevitably makes about the focal sys- 
em should be based on prior knowledge of the system, ideally 
rawing on insights of actors that are part of the system, and 

y conducting participatory research. Social–ecological networks 
orce us to explicitly consider the interactions within and across 
hat were previously considered fundamentally different com- 
onents of the human–nature relationships associated with non- 
ative species. By connecting different disciplines, engaging with 

iverse stakeholders, and synthesizing knowledge across realms, 
ocial–ecological networks will support our efforts to better un- 
erstand biological invasions and their impacts, as well as how to 

mprove their management. 
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