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Abstract

Reversing biodiversity loss and the sustainability crisis requires approaches that explicitly consider human-nature interdependencies.
Social-ecological networks, which incorporate social and ecological actors and entities, as well as their interactions, provide such an
approach. Social-ecological networks have been applied to a range of complex issues, including sustainable resource use, manage-
ment of ecosystem services and disservices, and collective action. However, the application of social-ecological networks to invasion
science remains limited so far, despite their clear potential for studying human contributions to introduction pathways of nonnative
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species, invasion success, direct and indirect impacts, and their management. In the present article, we review past applications of
social-ecological networks to biological invasions, provide guidance on how to construct and analyze such networks, with an illus-
trative example, and outline future opportunities of social-ecological networks in invasion science. We aim to inform and inspire the
applications of social-ecological networks to improve our ability to meet the diverse challenges facing invasion science.

Keywords: impacts of nonnative species, invasive alien species, management of biological invasions, social-ecological networks,

social-ecological system

Anthropogenic impacts on biodiversity, such as species extinc-
tions or functional degradation, also include those resulting from
the intentional and unintentional transport of species to regions
where they would not naturally occur; such species are termed
nonnative or alien. A subset of these species may become inva-
sive if they spread beyond the places where they have been intro-
duced and have negative or deleterious impacts on native biodi-
versity (Roy et al. 2023). Invasive species are recognized as driving
forces of the ongoing global biodiversity loss (IPBES 2019, Roy et
al. 2023, Turbelin et al. 2023). Their impacts on native species can
be devastating, both directly (e.g., through predation, parasitism,
or hybridization) and indirectly (e.g., by transmitting pathogens
and disrupting well-established predator—prey interactions) (Vila
etal. 2011, Blackburn et al. 2014, Linders et al. 2019, Kumschick et
al. 2020). They may also cause ecosystem-scale changes—for ex-
ample, through the alteration of community composition, trophic
cascades, or ecosystem engineering (PySek et al. 2020, Roy et al.
2023, Bacher et al. 2024). In addition, invasive species lead to sub-
stantial financial costs through damage and management, affect-
ing many economic sectors (Diagne et al. 2020, Novoa et al. 2021).
They affect human health and well-being (Mazza and Tricarico
2018), as they can spread diseases (Zhang et al. 2022), cause aller-
gies (Bernard-Verdier et al. 2022), be venomous or toxic (Nentwig
etal. 2017), and disrupt recreational activities and other social and
cultural practices (Pysek et al. 2020, Bacher et al. 2024). However,
not all nonnative species are invasive, and both invasive and non-
invasive nonnative species can have positive or beneficial ecolog-
ical or socioeconomic effects (Vimercati et al. 2020). For example,
nonnative species can fulfil the functional role of a (locally) ex-
tinct native species (Vizentin-Bugoni et al. 2019), provide ecosys-
tem services such as improving water quality (Neves et al. 2020,
Reynolds and Aldridge 2021), or stabilize fisheries revenues (Van
Rijn et al. 2020). Due to myriad concurrent anthropogenic impacts,
the prioritization and choice of conservation efforts demand a
holistic understanding contingent on environmental and social
contexts, as well as different geographic scales (Corlett 2015, Bel-
lard et al. 2022).

Several tools have been developed to assess the impacts of in-
vasive species with standardized and evidence-based approaches
(for an overview, see Gonzalez-Moreno et al. 2019, Vila et al. 2019,
Carneiro et al. 2025). For example, the International Union for
Conservation of Nature (IUCN) Environmental Impact Classifica-
tion for Alien Taxa (EICAT) is a protocol for assessing deleteri-
ous ecological impacts of nonnative species on native biodiversity
(Blackburn et al. 2014, IUCN 2020). Similarly, the EICAT+ proto-
col guides assessments of beneficial ecological impacts (Vimer-
cati et al. 2022), whereas the SEICAT and SEICAT+ protocols
are focused on deleterious and beneficial socioeconomic im-
pacts on human well-being respectively (the S is for socioeco-
nomic; Bacher et al. 2018, Vimercati et al. 2025, https://doi.org/10
.32942/X28MO09 [preprint: not peer reviewed]). Other approaches
to assess nonnative species impacts have been developed, in-
cluding the estimation of monetary costs (InvaCost; Diagne et
al. 2020), the use of functional and numerical response pa-
rameters in consumer-resource interactions (Dick et al. 2014,

Dickey et al. 2020), or the dispersal-origin-status-impact frame-
work, which integrates dispersal mechanisms, species origin, and
population status while addressing a range of impacts such
as ecological, economic, cultural, or health-related (Soto et al.
2024). Assessments of the future risks associated with biolog-
ical invasions include horizon-scanning techniques (Verbrugge
et al. 2010, Srébaliené et al. 2019). However, none of these ap-
proaches capture how different types of impacts are interrelated
(Leung et al. 2012).

A broad understanding of the full range of nonnative species
impacts, synergies, and conflicts is important to make informed
management decisions (Vila and Hulme 2017, Stevenson et al.
2023, Roura-Pascual et al. 2024). Deciding which of the many ex-
isting management options to apply (Robertson et al. 2020, Roy et
al. 2023) requires weighing their social and ecological costs and
benefits in a given context. Invasive species and their impacts can
be negatively perceived by some stakeholders but positively by
others, and that perception may shift over time and space (Sim-
berloff et al. 2013, Cottet et al. 2015). For example, fish species
such as rainbow trout (Oncorhynchus mykiss) or brown trout (Salmo
trutta) have been introduced to many ecosystems to increase the
recreational value for anglers and for aquaculture purposes, but
they have negatively affected native taxa that can, in turn, be
important to other fisheries (Jeschke et al. 2022). Likewise, nui-
sance caused by invasive aquatic macrophytes may be perceived
as more problematic by residents than by visitors (Thiemer et
al. 2023). Invasive trees can be aesthetically pleasing (Vaz et al.
2018) while simultaneously eliminating suitable habitat for na-
tive insects (Litt et al. 2024), birds (Grzedzicka and Reif 2020),
or plants (Sadlo et al. 2017) or radically altering ecosystem ser-
vices (van Wilgen et al. 2022, Romero-Blanco et al. 2023). Simi-
larly, an environmental nongovernmental organization might fa-
vor the eradication of an invasive plant, aiming to reduce its im-
pacts on native flora, whereas local farmers would rather plant it
to increase the soil quality (Benediktsson 2015, Lojeski and Plante
2021). Incorporating active stakeholder engagement, such as par-
ticipatory workshops or citizen science initiatives, is vital for de-
veloping effective management strategies by fostering collabora-
tive knowledge production and integrating diverse perspectives
into decision-making (Novoa et al. 2018, Shackleton et al. 2019,
Nurlez et al. 2022). As invasion management is an adaptive pro-
cess requiring a governance structure, legal framework, and typ-
ically public support, it is crucial to study biological invasions as
part of a social-ecological system (Richardson 2010, Frost et al.
2019, Hui and Richardson 2019, Groom et al. 2021, Heger et al.
2021).

Social-ecological systems are complex adaptive systems com-
prising humans and nature, as well as their relationships (IPBES
2019). They are dynamic and open (i.e., they change in reaction
to external drivers through time), as well as being context depen-
dent and producing emergent phenomena (i.e., characteristics
that exist because of the interplay of the system components;
Preiser et al. 2021). Social-ecological networks—networks map-
pinginteractions between humans and nature (see the glossary in
supplement S1)—are tools used to understand relations (i.e., in-
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teractions) between entities. They complement social-ecological
systems frameworks (e.g.,, common pool resource governance;
Ostrom 2009), which take a more qualitative approach, and sys-
tem dynamic models (e.g., Stella, iseesystems.com), which model
causal relationships between variables. Social-ecological net-
works can incorporate both qualitative and quantitative data in a
structured way. They can disentangle direct and indirect connec-
tivity and interdependencies between human-nature interfaces
and can inform management initiatives at multiple scales (Bodin
2017, Beever et al. 2019, Kluger et al. 2019, Sayles et al. 2019,
Kluger et al. 2020, Felipe-Lucia et al. 2022). Social-ecological
networks have been applied in the context of biological invasions
(table 1) and, for example, have identified manage-
ment actions required to ensure a functioning ecosystem
(e.g., Ortiz et al. 2015).

However, there is a lack of guidance on how to apply social-
ecological networks in a standardized manner to enhance our un-
derstanding of biological invasions and to advance their wider ap-
plication. In the present article, we explore how social-ecological
networks can clarify and synthesize the various impacts and re-
lated processes associated with nonnative species. We introduce
networks and their applications, identify key aspects for con-
structing and analyzing social-ecological networks in an inva-
sion context, illustrate the approach with an example utilizing
S/EICAT(+) data, and discuss the most promising opportunities
this approach presents to invasion science, while also mentioning
its limitations. We demonstrate that social-ecological networks
provide an exciting avenue for future work that allows for holistic
analysis of complex interdependencies surrounding the impacts
and management options of nonnative species, as well as hav-
ing the potential to give new insights into key questions within
the field of invasion science (Musseau et al. 2024). We hope to in-
spire relational systems thinking and network approaches when
studying biological invasions, as well as supplying a resource to
get started in this complex topic.

A brief overview of (social-ecological)
networks

Since Euler’s solution to the seven bridges of Kénigsberg problem
(Euler 1741), graph theory (see the glossary in supplement S1),
which forms the basis of structural network analysis, has evolved
from the mathematical study of pairwise relations to the study
of complex interactions. Network science is a prolific field, with
various approaches developed across disciplines—pioneered, for
example, by Moreno with sociograms (Moreno and Jennings 1938)
or Hannon for the structure of ecosystems (Hannon 1973)—and
with increasing technical possibilities escalating into complexity
science at the turn of the century (Boccaletti et al. 2006, Barabasi
2013). In its simplest form, a network (also commonly termed a
graph) consists of nodes (alternatively termed vertices; see the glos-
sary) that are connected by links (also termed edges or ties; see
the glossary). Networks can be found everywhere; for example,
transportation networks, such as train stations (nodes) connected
by tracks (links), or the animal nervous system in which neurons
(nodes) are connected through synapses (links). More abstract se-
mantic networks show theoretical concepts (nodes) and the rela-
tions between them (links), whereas coauthorship networks show
scientists (nodes) and their scientific collaborations (links). We
can distinguish between networks that aim to analyze topologi-
cal structures, how they came to be or what effects these have,
on the basis of graph theory, and those that represent causali-
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ties or ontologies. In this article, we will refer to the former as
interaction networks, where causal relationships are not explicitly
depicted (although they can be implicitly included, e.g., in the case
of food webs).

Social network analysis evolved as a discipline in the early
twentieth century, to investigate the structure of relationships
among individuals. It is used to understand social structures and
hierarchies, information flows, influence and power dynamics,
and other aspects within social systems (McLevey et al. 2024).
It is an important methodology for understanding how and why
humans behave the way they do and, therefore, how phenom-
ena such as social norms, collective action, and self-organization
emerge in different contexts (Bodin 2017, Teodoro et al. 2021).
Social network analysis has also been applied to other animal
species—for example, to study the composition and dynamics of
bird groups (Silk et al. 2014), the invasibility of fish assemblages
(Beyer et al. 2010), and cultural behavior of dolphins (Mann et al.
2012).

In invasion science, ecological network analysis has been ap-
plied to assess the impacts of invasive species on biotic interac-
tions such as pollination (Vila et al. 2009), community assembly
(Strong and Leroux 2014, David et al. 2017) and for modeling the
spread of nonnative species across discrete habitats (Woodford et
al. 2013, Ferrari et al. 2014). The strength and frequency of inter-
actions among network components have been shown to affect
the invasion success and impacts of nonnative species, and a net-
work’s stability (see the glossary in supplement S1) can give in-
sights into the invasibility of a system (Frost et al. 2019, Groom
et al. 2021, Hui and Richardson 2022). Stability is the ability of
the system to move toward or stay close to an equilibrium (see
the glossary), which is the system’s ability to recover from change
(Frost et al. 2019, Biggs et al. 2021, Hui and Richardson 2022). More
specifically, we can talk about demographic stability as in popula-
tion numbers and structural stability as in interactions between
system components, such as in a food web (Hui and Richardson
2022). If demographic stability ceases, the population will crash
and die out, whereas if trophic links in a food web are lost (such
as between producers and consumers), the entire system can fail
to function.

Beyond these specific examples, networks have many differ-
ent topologies that can be defined via their nodes, links, layers
(see the glossary in supplement S1), and temporal scales (e.g.,
bipartite, directed, dynamic; see figure 1a). There are also spe-
cific networks from different disciplines (e.g., food webs or so-
clograms). Unipartite, bipartite, and multipartite networks (see
the glossary) refer to the number of node types within the net-
work. Directed (as opposed to undirected; see the glossary) net-
works have links coming from and going to specific nodes (e.g.,
food webs) and can include reciprocal links. Weighted networks
(see the glossary) assign a value to the link (e.g., the amount of
biomass being consumed or the number of times a pollinator vis-
its a plant), and nested networks (see the glossary) are, in essence,
networks within nodes of networks (e.g., food webs within con-
nected ponds; figure 1a). These networks and topologies can be
combined as layers (a layer corresponds to one network) in mul-
tilevel or multilayer networks (see the glossary). For example, a
network can include layers of different species interactions (e.g.,
antagonistic, mutualistic) that are linked to each other by species
nodes (i.e., multiplex networks) and of human interactions, such
as communication between managers (within-layer links; fig-
ure 1b) and how humans interact with the different species
(between-layer links; figure 1b).
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A) Network topologies
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Figure 1. (a) lllustrations of different simplified network topologies: Bipartite: a network where links only exist between two different node types.
Directed: networks where links have a direction (i.e., going from one node to another), including reciprocal relationships. Weighted: links have
different strengths. Nested: networks within nodes of another network. Multilevel: multiple connected networks with a given node and link type per
layer, with further links between the layers. Dynamic: networks with a temporal component (e.g., the structure of the network may change at different
points across time). (b) Schematic representation of different components of social-ecological networks with example layers and nodes as well as

within- and between-layer links.

Social-ecological networks can therefore use different com-
binations of the concepts above but are, in essence, networks
that integrate actors or entities (nodes) from both the so-
cial and ecological realms, interacting via social-social (SS),
social-ecological (SE), and ecological-ecological (EE) links (sensu
Bodin and Tengd 2012; see figure 1b for an example). Social-
ecological networks have been used to better understand na-
ture’s contributions to people (Dee et al. 2017, Felipe-Lucia et
al. 2022), to improve sustainable resource use (Ortiz and Levins
2017, Zador et al. 2017, Barnes et al. 2019), and to inform
measures for climate-change adaptation (Salgueiro-Otero et al.
2022).

We carried out a scoping literature review (for details, see
supplement S2) and found 30 studies applying social-ecological
networks to problems involving biological invasions. These stud-
ies applied a broad range of approaches to constructing and an-
alyzing networks, stemming from different fields and theories.
Eighteen studies (table 1) used networks with interactions be-
tween actors (nodes), including biophysical and social entities, on
the basis of graph theory. The remaining 12 studies (see suppleme
nt S2, table 1) applied a range of tree graphs, causal influence di-
agrams (i.e., causal networks; see the glossary in supplement S1),
semantic networks, and decision-making diagrams, as well as five
studies using Bayesian networks (see the glossary). Given the vast
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range of possible approaches to social-ecological networks, in the
following sections, we will focus on those that seem most promis-
ing for invasion science.

Constructing and analyzing

social-ecological networks in an invasion
context

The start of all social-ecological networks is a clearly defined
aim—a research question, hypothesis, or management goal. Based
on this aim, the social-ecological system under study should be
conceptualized and characterized in an iterative process (figure
2).

Step 1 : Conceptualizing social-ecological networks

When conceptualizing, prior knowledge or sufficient time to
investigate the social-ecological system is needed to identify
and define the system boundaries and components. Ideally, this
knowledge is coproduced with stakeholders within the system
(Moallemi et al. 2023). The temporal and spatial limits of the
study should be specified prior to data collection. Depending on
data availability, however, these limits may need to be adjusted
throughout the study. The different actors or entities and inter-
actions within the system must be defined in terms of nodes and
links (figure 1b). If relationships are causal (such as impacts), a
causal influence diagram can be constructed. Noncausal rela-
tionships and interactions, such as movement or communication,
are frequently included in social-ecological networks as directed
or undirected links (table 1). Alternatively, multilevel networks
can help incorporate the many different interactions and actors,
and for analyses based on graph theory, each layer within social-
ecological networks corresponds to one type of link (figure 1b).
Identifying and defining the relevant system components can be
aided with guiding questions (figure 2) and linked back to the aim.

With all their layers and components, social-ecological net-
works offer several ways to include nonnative species (figure 1b):
as nodes within the ecological network, as node attributes (see
step 2 for details on attributes) of an invaded habitat node, or
as links—for example, if the research aims to model the spread
of a nonnative species across a landscape comprising discrete
habitat patches serving as nodes. Nonnative species can also be
modeled as link attributes of an infected vector, which, when
made dynamic, models how nonnative species can move through
the network of interactions (as in a contagion network). All the
above-described components can be contemplated conceptually,
but social-ecological networks should be simplified to an appro-
priate level of complexity, considering the aim and available re-
sources.

Step 2 : Constructing social-ecological networks

Following conceptualization, the underlying data for the nodes
and links must be gathered. Existing data from databases, impact
assessments, or grey and scientific literature can be used, as well
as newly collected data. Interviews and surveys can provide valu-
able insights from stakeholders within the system under study.
The data must then be organized in a network structure to al-
low for the subsequent analysis. Adjacency and incidence matri-
ces (see the glossary in supplement S1) are sometimes used, but
we will focus on node and edge lists in the present article (see
the glossary in supplement S1). Node lists contain all node IDs as
the first column (each row being one node), and the subsequent
columns can contain different attributes of this node. Node at-
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tributes constitute any other relevant information or character-
istic pertaining to the node—for example, demographics for so-
cial nodes, population densities for species, or other quantitative
or qualitative variables. The corresponding edge list contains the
pair of nodes corresponding to each link in the first two columns
(each row represents one link), and the subsequent columns can
contain link attributes (i.e., any other relevant information one
wishes to include). For multilayer networks, each layer can be con-
sidered separately and characterized by its own node and edge list.
Alternatively, the layer identity can be recorded as a node or edge
attribute.

Step 3 : Analyzing social-ecological networks

Social-ecological interaction networks can be analyzed topologi-
cally by identifying different attributes and structures within the
network. Centrality measures (see the glossary in supplement S1),
such as degree (the number of direct connections a node has) or
closeness (how easily a node can reach all other nodes in the net-
work on the basis of the shortest path), reflect a node’s relative im-
portance in the network. Diameter, density, (average) path length
and transitivity are topological network metrics (see the glossary)
that can be used to understand and compare network attributes.
These metrics can be linked to different theories and frameworks
in the social and natural sciences (e.g., see above; Biggs et al. 2021,
Hui and Richardson 2022, McLevey et al. 2024). Finding groups
in networks can be done by applying algorithms such as walk
trap, page rank, or random walk (cf. Farine and Whitehead 2015,
Hashemi and Darabi 2022), and dominator tree analysis can iden-
tify bottlenecks within directed networks (e.g., Kluger et al. 2019).
Motifs (see the glossary) are specific recurring patterns of inter-
connections (subgraphs), consisting of the specific configuration
of links among two, three or more nodes (Milo et al. 2002). They
can inform on actors’ abilities to manage shared resources (Bodin
and Tengd 2012) and on social-ecological fit (Epstein et al. 2015,
Guerrero et al. 2015, Bodin et al. 2016).

Motif analysis can be done by comparing the number of motifs
in social-ecological networks with a random network or, for ex-
ample, by using exponential random graph models where varying
levels of randomness can be controlled for and where node at-
tributes can be accounted for (see, e.g., McLevey et al. 2024). Such
models can also be used to analyze how the network structure
arose (using the network as the response variable), how the net-
work structure contributes to certain phenomena (using the net-
work as a predictor variable), or how links are likely to emerge
given the existing structure (like a simulation). Other types of
models used for network analysis include contagion or diffusion
models, where the spread of something (e.g., money, influence,
nonnative species) across a network is analyzed (e.g., Haak et al.
2017). Block modeling looks at the position of structures within
multirelational (or multilevel or multilayer) networks (e.g., Har-
rer and Schmidt 2013), whereas agent-based models (e.g., Baggio
et al. 2016) permit analysis of multiple interrelated processes and
can either be used to explain how a network was formed or create
network-based scenarios.

A breadth of theories and frameworks from invasion science,
social-ecological systems research and other disciplines can be
applied in combination with the social-ecological network ap-
proach (Biggs et al. 2021, Hui and Richardson 2022). In addi-
tion to insights already gained on how nonnative species affect
food webs, the concept of social-ecological fit (see the glossary
in supplement S1), stemming from social-ecological systems re-
search, seems particularly useful. It refers to analyzing whether
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top to the bottom), as well as guiding questions (center).
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the ecological interdependencies are mirrored or complemented
by the managing social structures (e.g., Alexander et al. 2017). For
example, if connected invaded habitats are managed by two dif-
ferent social actors, it is key that these actors at least communi-
cate, if not cooperate in order to match the ecological interdepen-
dencies. If no interaction between the social actors occurs, man-
agement efforts are unlikely to be effective, as reinvasions from
the respective habitat patches may occur, or different manage-
ment actions counteract each other.

All network types, both causal and interaction networks, can
be analyzed using path analysis, which explores how to get from
point A to B in a network and gives insight into connectivity and
indirect effects. Loop analysis (i.e., a specific type of path analysis;
see the glossary in supplement S1) is applicable to networks con-
taining cycles, evaluating how one completes a loop from point A
and back via other nodes and links in the network. Causal loop
analysis can give insight into the stability of a system and the
direct and indirect effects of external perturbations (stressors)
(Levins 1974). More specifically, does a change in one state vari-
able (node) increase, decrease, or have no effect on the other state
variables in the system? The benefit of loop analysis is the rela-
tively low resolution of data required (whether the effect of the
interaction on the state variables is positive, negative, or neutral)
and the ability to consider the system as a whole. In the context
of biological invasions, causal loop analysis can be performed to
understand whether nonnative species contribute to positive or
negative feedback loops, what happens if interactions change (i.e.,
go from positive to negative or neutral and vice versa) and with
which changes in state variables (nodes) and interactions (links)
the system loses stability (Scotti et al. 2020).

A multitude of software packages from different disciplines
exist to analyze networks. Food webs can, for example, be ana-
lyzed as mass-balanced models using Ecopath with Ecosim (Chris-
tensen and Pauly 1992, Christensen and Walters 2004) or EcoNet
(Kazanci 2007); neural or genetic networks can be analyzed with
software such as Cytoscape (https://cytoscape.org); and examples
of software packages from the social sciences that help gather, or-
ganize, and analyze data are Gephi (https://gephi.org) and UCINET
(Borgatti et al. 2002) with integrated NetDraw (Borgatti 2002). Al-
ternatively, R provides many packages to visualize and analyze
different network types—for example, enaR (Borett and Lau 2014
), an ecosystem network analysis package, or igraph (Csérdi et al.
2025), which allows the assembly of a network item on the basis of
node and edge lists, as well as adjacency and incidence matrices,
and many tools to characterize, quantify, and visualize observed
network structures and compute their metrics. The ggraph pack-
age (Pedersen 2017) offers additional visualization options, based
on ggplot2 (Wickham 2016). Many more options for network anal-
ysis across multiple formats exist; see the curated list of Awesome
Network Analysis (Briatte et al. 2024).

An illustrative example: The impacts of
nonnative species in Hawaii
Our aim is to map the cumulative direct and indirect impacts of

nonnative vertebrate species in Hawaii and the underlying impact
mechanisms, based on S/EICAT(+) assessments.

Conceptualizing social-ecological networks of
nonnative species lmpacts in Hawati

Like many other oceanic islands, a high proportion of Hawaii’s
native species are endemic. These species are mainly birds (98%
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are endemic), fishes, and invertebrates; Hawaii has no native ter-
restrial reptiles or amphibians and just three native terrestrial
or semiterrestrial mammals (Pratt et al. 2009, MMC 2024). Of the
1456 native species that occur naturally in Hawaii, 32% are endan-
gered, and many others have already gone extinct (US Fish and
Wildlife Service 2024). Some Hawaiian people have a strong cul-
tural connection with the archipelago’s wildlife and landscapes;
thisis reflected in Hawaiian art, music, traditional dress, and prac-
tices (Anderson-Fung and Maly 2002). For example, the feathers
of native birds are used in rituals as headdresses and also as cur-
rency, and some native birds such as the ‘alala (Hawaiian crow
Corvus hawaiiensis) feature in stories and legends and as spiritual
guides and protectors (Pratt et al. 2009). Indeed, the ‘alala is con-
sidered to be a guardian of the soul on Hawaii; the souls of those
that die on Ka'd (Hawaii Island) travel to a Leaping Place, which
is a cliff, from where they are guided to their final resting place.
Their guide is the ‘alala and yet this species is now extinct in the
wild (Rundell 2022).

The decline of endemic species in Hawaii has several anthro-
pogenic causes, one of which is the introduction of nonnative
species. For example, nonnative trees are replacing native canopy
trees in all Hawaiian forests types (Potter et al. 2023), whereas in-
vasive grasses inhibit native forest restoration (Rehm et al. 2023).
Nonnative animals include several rat species (Rattus spp.) and
the small Indian mongoose (Urva auropunctata), which prey on a
range of native species, including the threatened Hawaiian stilt
(Himantopus mexicanus knudseni); the barn owl (Tyto alba), which
preys on native birds including the endangered Hawailan pe-
trel (Pterodroma sandwichensis); and the Japanese white-eye (Zos-
terops japonicus), which competes with native bird species, possi-
bly threatening the Hawaii akepa (Loxops coccineus) with extinction,
and which is believed to spread avian malaria, which affects many
native bird species (Freed et al. 2008, Kaushik et al. 2018, Raine et
al. 2019). The impacts of nonnative species have resulted in losses
to ecosystem services provided by native species in Hawaii. For ex-
ample, the islands have lost many native frugivorous birds that
disperse the seeds of native plants—resulting in negative envi-
ronmental impacts such as reduced habitat quality, (nonnative
bird species have partially taken over this ecosystem function;
however, they disperse a higher number of nonnative than native
plant seeds; Vizentin-Bugoni et al. 2019) and cultural losses as-
sociated with the disappearance of these bird species. Many non-
native species are now established in Hawaii, including birds and
mammals, but also terrestrial reptiles and amphibians. Their im-
pacts on people and wildlife are widespread and diverse.

We identified impacts (links) associated with specific groups of
native and nonnative species (nodes), creating a social-ecological
network for impacts on native birds that are caused by nonna-
tive vertebrate species, impacts affecting native species that are
caused by nonnative birds, and the wider positive and negative
socioeconomic impacts of these nonnative vertebrates on social
entities (nodes) in Hawaii (spatial limit), from 1970 until present
day (temporal limit). As the network of impacts is causal, layers
do not need to be defined, although they are implied by the social
and ecological nodes.

Constructing social-ecological networks of nonnative
species impacts in Hawaii

The biodiversity and socioeconomic impacts of nonnative species
were identified by reviewing literature reported in the IUCN Global
Invasive Species Database (www.iucngisd.org/gisd) and two global
assessments of the environmental and socioeconomic impacts of
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Figure 3. Case study illustrating the construction of social-ecological networks with a focus on impacts of nonnative vertebrates in Hawaii on native
species and people, based on S/EICAT(+) assessments (see supplement S3 for details on the methodological approach). Nonnative vertebrates are
indicated as red nodes: barn owl (Tyto alba), cattle egret (Bubulcus ibis), Japanese white-eye (Zosterops japonicus), red-billed leiothrix (Leiothrix lutea),
red-vented bulbul (Pycnonotus cafer), red-whiskered bulbul (Pycnonotus jocosus), rose-ringed parakeet (Psittacula krameri), mallard (Anas platyrynchos),
common myna (Acridotheres tristis), chukar (Alectoris chukar), feral cat (Felis catus), small Indian mongoose (Urva auropunctata), and the rat species brown
rat (Rattus norvegicus), black rat (Rattus rattus), Polynesian rat (Rattus exulans); native species are indicated as yellow nodes: birds, selected invertebrates,
plant communities, and people, including socioeconomics, are indicated as blue nodes. Network (a) depicts beneficial and deleterious social-ecological
impacts (lighter shaded links indicate beneficial impacts), network (b) highlights in color the subset of impacts relating to the Hawaiian crow (“Alala;
Corvus hawaiiensis), and network (c) depicts impact mechanisms. In these networks, the thickness of the links (width of connecting arrows) indicates
the number of native species affected. Several native species were aggregated into nodes (reflected by larger node size) representing taxonomic or
functional groups; these nodes contain the following native species: Forest and grassland birds: akikiki (Oreomystis bairdi), Hawai'i ‘akepa (Loxops
coccineus), Hawai'i ‘elepaio (Chasiempis sandwichensis), Hawaiian short-eared owl (pueo; Asio flammeus sandwichensis), palila (Loxioides bailleui), O’ahu
‘elepaio (Chasiempis ibidis), Hawai'i creeper (Manucerthia mana), ‘akohekohe (Palmeria dolei), kakawahie (Paroreomyza flammea), O'ahu ‘alauahio
(Paroreomyza maculata), Maui parrotbill (Pseudonestor xanthophrys), ‘0'G (Psittirostra psittacea), Laysan finch (Telespiza cantans), Hawaiian crow (‘alala;
Corvus hawaiiensis); sea birds: brown noddy (Anous stolidus) Bulwer’s petrel (Bulweria bulwerii), Hawaiian petrel (‘ua‘u; Pterodroma sandwichensis), bonin
petrel (Pterodroma hypoleuca), Newell’s shearwater (‘a‘o; Puffinus newelli), wedge-tailed shearwater (Ardenna pacifica); wetland birds: Hawaiian common
moorhen (‘alae ‘ula; Gallinula chloropus sandvicensis), Hawaiian coot (‘alae ke‘oke’o; Fulica alai), Hawaiian duck (koloa; Anas wyvilliana), Hawaiian goose
(néne; Branta sandvicensis), Hawaiian stilt (ae’o; Himantopus mexicanus knudseni); plant communities: ‘ala ‘ala wai nui (Peperomia subpetiolata), Hawai'i
cheesewood (Pittosporum hawaiiense), ho’awa (Pittosporum napaliense), pilo kea lau 1i'i (Platydesma rostrata), hala pepe (Pleomele fernaldii), opuhe (Urera
kaalae).
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nonnative birds (Evans et al. 2016, 2020) following the S/EICAT(+)
frameworks (Blackburn et al. 2014, Bacher et al. 2018, IUCN 2020,
Vimercati et al. 2022, https://doi.org/10.32942/X28MO09 [preprint:
not peer reviewed]). Notice, therefore, that both deleterious and
beneficial environmental impacts are included in the analysis. An
additional online search for cultural and socioeconomic impacts
was carried out using Google and Google Scholar platforms from
March to May 2024. The indirect impacts were explored by identi-
fying the socioeconomic relevance of impacted native species.

The layers and nodes therefore consist of three types: native
species, nonnative species, and social entities such as stakehold-
ers and cultural practices. Native species were aggregated into
forest and grassland birds, sea birds, and wetland birds, as well
as plant communities. The nodes were assembled in a node list
(supplement S3, table 1), with columns containing the layer or
node type, the name of the node and the individual species within
the groups. Nonaggregated nodes were given the value 1, and
aggregated nodes the value of the respective number of species
within that group. This was later used to scale the relative node
sizes.

The links were the different beneficial and deleterious impacts
and underlying mechanisms of nonnative species as well as the
indirect impacts of these. An edge list (supplement S3, table 2) was
created, containing the list of interactions (i.e., the node causing
the impact, the node being impacted) and information describ-
ing it, including the type of impact, its mechanism, the number
n of species impacted or causing the impact (i.e., the weight of
the link), whether the impact and mechanisms were beneficial or
deleterious to native species and valued aspects of Hawaiian cul-
ture, and whether the impact was actually observed (on the ba-
sis of evidence included in previous S/EICAT(+) assessments and
published studies) or potential (on the basis of grey literature).

Analyzing social-ecological networks of nonnative
species impacts in Hawaii

This case study illustrates how existing data can be organized
and visualized as relational data in a network; we focused in the
present article on analyses for network visualization. Details on
the R packages used for network visualization can be found in
supplement S3. Three networks were plotted, with links showing
either the impacts of nonnative species (figure 3a, 3b is focused
on a subset of impacts relating to the Hawaiian crow) or the un-
derlying mechanisms (figure 3c).

The ‘alala (Hawaiian crow) is a native forest bird species that
spreads the seeds of fruits—an important function for forest habi-
tat maintenance and promoting biodiversity, as well as being cul-
turally important and valued by bird watchers and wildlife en-
thusiasts (figure 3b). It is threatened by a range of nonnative
species, including the small Indian mongoose (Urva auropunctata)
and feral cats (Felis catus; figure 3b), because of predation (fig-
ure 3c)—particularly of fledglings which remain near the ground
for several days before being able to fly—as well as habitat loss
and other compounding factors. The disappearance of this cul-
turally significant guardian of the soul on Hawaii can largely be
attributed to the impacts of nonnative species, posing subsequent
losses to biodiversity, culture, and recreation, affecting nature and
people on Hawaii in different but connected ways. This is espe-
cially relevant as efforts to reestablish wild populations are ongo-
ing (https://dlnr.hawaii.gov/alalaproject).

Mapping all recorded impacts (figure 3a) shows, for example,
the cumulative indirect impacts of the loss of native bird species
on Hawailan culture that were caused, at least in part, by nonna-
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tive species (thicker lines indicate more impacts; figure 3a). Benefi-
cial impacts were visually displayed to be more transparent than
deleterious impacts, so that they could be distinguished by the
reader. Figure 3a shows that the deleterious impacts of nonna-
tive species on native species indirectly negatively impacting cul-
ture and recreation. Although S/EICAT(+) data do not consider (di-
rect or indirect) impacts from one nonnative species on another,
visualizing this data as a network shows exploitative and appar-
ent competition going on between different nonnative species (fig-
ure 3c). Another aspect that becomes apparent when visualizing
the data in this manner is that only impacts on social entities are
considered. How social entities affect both native and nonnative
species is not captured by S/EICAT(+) alone. If the causal links be-
tween social entities and ecological aspects of the system were to
be mapped, loop analysis could be applied to identify positive and
negative feedback loops (i.e., indirect impacts) that could aid or
hinder management of nonnative species.

Opportunities for social-ecological
networks in invasion science

The social-ecological network methodology enables insights into
varying aspects of invasion science. In principle, social-ecological
networks can give insights into introduction pathways, invasion
success, the invasibility of a system, impacts, and the manage-
ment of nonnative species (i.e., the major themes of invasion sci-
ence; cf. Musseau et al. 2024), as these aspects are intrinsically
linked to one another. Which specific aspects social-ecological
networks address is based on how nodes and links are defined, and
what data are included. In the following, we present particularly
promising opportunities of social-ecological networks in invasion
science.

Past, present, and future introduction pathways of nonnative
species can be modeled using spatial networks, with nodes rep-
resenting spatially discrete regions and links indicating human-
mediated dispersal (table 1). This has been done for trade net-
works to investigate pathways and therefore possible introduc-
tion risks, such as for the pet trade (Sinclair et al. 2021) or for pest
species associated with the cassava trade (Wyckhuys et al. 2018).
It has also been done to identify possible dispersal hubs of ma-
rine nonnative species on the basis of ship movements (Letschert
et al. 2021) or secondary introductions through—for example, an-
gler movement between lakes (the blue highlights in table 1). To
better understand the conditions that lead to successful introduc-
tions, networks of the cultural and economic contexts of invasions
can be constructed, such as by comparing nonnative flora similar-
ities across former empires in the context of colonialism (Lenzner
et al. 2022). Therefore, links between locations could account for
similarities, transport routes or many layers of relations in a mul-
tiplex network. Alternatively, node attributes of locations can re-
flect conditions of introduction in the above-described networks.
This can facilitate the identification of factors that determine suc-
cessful introductions of nonnative species, ultimately serving as
a suitable tool for risk assessment.

Location-specific social-ecological networks can inform on the
invasion success of different species, as well as the invasibility
of the invaded social-ecological system. Nested networks allow
modeling a specific social-ecological network within each node of
a spatially connected network (as was described above). Building
on Haak et al. (2017), food webs nested within lakes and expand-
ing to larger spatial scales, movement between locations could be
combined with specific social-ecological networks for each loca-
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tion. For example, trophic interactions within a food web may give
insight into the biotic resistance of a system, whereas additional
interactions with humans (e.g., whether humans use the nonna-
tive species, find it charismatic, or have any precautions against it)
allow for a better understanding of the mechanisms surrounding
invasion success and invasibility. Combining transport networks
(which generate propagule pressure and therefore increase inva-
sion success; cf. Jeschke and Starzer 2018) with information about
local systems and their context along the invasion stages into one
cohesive network will allow for more holistic insights into the in-
vasion process and what determines successful invasions. It can
also inform risk assessment and management.

Mapping out and visualizing the interactions and effects of
invasive species shows the cumulative, direct, and indirect in-
vader impacts and can be used as a communication tool to fos-
ter knowledge exchange, aid decision-making among stakehold-
ers, and increase public awareness. Figure 3 depicts the social-
ecological system surrounding nonnative species in Hawaii, high-
lighting the interconnectedness of different system components.
Specifically, it highlights that one direct impact may have many
indirect impacts and that when managing nonnative species, it is
not sufficient to simply, for example, focus only on negative im-
pacts caused by predation of a single nonnative species but to also
consider management implications in the wider network. Achiev-
inga shared understanding among stakeholders of the complexity
and interdependence of the systems we inhabit is crucial for mit-
igating the impacts of nonnative species and other anthropogenic
drivers of change.

Networks can be used to simulate different future scenarios
and make predictions that can inform policy and management.
The efficiency of invasive species management under different
scenarios has been assessed using agent-based models (Yletyi-
nen et al. 2021), and how people will react to new environmen-
tal conditions has been modeled using scenario-based adaptation
pathways (Salgueiro-Otero et al. 2022). Many more possibilities for
network-based scenarios exist, such as causal influence diagrams
for analyzing the impact of different changing environmental fac-
tors on Alaskan forests (Wolken et al. 2011) and predicting the im-
pacts of people’s perception on “nuisance” plant management us-
ing Bayesian belief networks (Thiemer et al. 2023). Interaction net-
works can be made dynamic with longitudinal data (i.e., different
networks for different time points), thereby synthesizing historic
development and supporting predictions of how the network may
change in the future. This can also be done by specifically adding
and removing nodes and links. For example, a nonnative species
can be added as an additional node with its potential (i.e., biolog-
ically plausible) interactions (links) (cf. Penk et al. 2017, Fumero-
Andreu et al. 2024) or impacted species can be removed to simu-
late extinctions and examine the resulting structural changes (i.e.,
network metrics). Alternatively, loop analysis can be used to sim-
ulate the knock-on changes within a network when interactions
(links) and state variables (nodes) change.

Identifying the differences and similarities across different in-
vaded social-ecological systems can give important insights into
effective management along the invasion process. Network met-
rics enable the comparison of vastly different systems, assum-
ing the network is similarly conceptualized and constructed us-
ing the same type of system components (nodes and links). This
can be done to investigate why a nonnative species is or is not
able to establish in different systems, what governance structures
lead to better management, and why management of a nonna-
tive species in one region is more effective than in another (Sand-
strom and Rova 2010, Alexander et al. 2015, Alexander et al. 2017).
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Other comparative methods include weighted topological overlap,
which directly compares the structure of two networks, or cluster-
ing coefficients such as modularity and density (see the glossary
in supplement S1), which are just some of the network metrics
that can give insight into how tightly connected a network is (Gysi
and Nowick 2020). The frequency of specific motifs can also be
compared across networks; however, theory on what these motifs
mean in an invasion context must be developed. Building on bi-
otic resistance and theory on environmental governance, we can
assess which social-ecological network structures prevent or fa-
cilitate invasions, as well as which structures contribute to suc-
cessful impact mitigation.

Social-ecological networks can also provide recommendations
on how to positively transform invaded social-ecological systems.
By inducing regenerative dynamics, disturbed systems can be
transformed to reach a more desirable state. Regenerative dynam-
ics are a type of positive feedback where a small change triggers
a reinforcing cycle, leading to a spiral of improvement, as has
been observed in some rewilding experiments (Fischer et al. 2024).
These positive feedback loops, or virtuous cycles, can be identified
using loop analysis (Scotti et al. 2020), as can the corresponding
negative feedback loops, or vicious cycles. By recognizing impor-
tant feedback loops in the system and running scenarios for im-
provement, we can identify leverage points for positive transfor-
mation.

Although social-ecological networks offer numerous benefits,
the approach also presents several challenges and needs for
further development in areas with relevance to invasion sci-
ence. Specifically, social-ecological networks require a consider-
able amount of data; data extraction and subsequent analysis can
be time consuming. On the other hand, the advantage of networks
is that they can be continuously expanded. This makes them dy-
namic and can improve their accuracy over time and space. If the
focal research question is sufficiently specific, social-ecological
networks can be of tractable complexity, enabling more sophisti-
cated analyses of, for instance, well-defined subsystems. The data
hunger of social-ecological networks is becoming less problem-
atic in the current age of big data. Large language models and
other Al tools might provide additional support in this context,
either by streamlining data collection from different sources or
by inferring interactions, on the basis of traits and other relevant
information (e.g., Fricke et al. 2022). It is also important to realize
that social-ecological networks can serve as powerful synthesis
tools for integrating different data and information sources and
extracting key insights relevant to researchers across disciplines
and diverse stakeholder groups, facilitating inter- and transdisci-
plinary exchange. Social-ecological networks explicitly facilitate
the incorporation of different perspectives and can be used as
tools for turning data and information into knowledge (cf. Jeschke
et al. 2019).

Conclusions

Given all the potential nodes and links that can be included in
a network, from species to governing bodies, energy to causa-
tion, and a vast range of analysis methods already developed
in different flelds, the social-ecological network methodology al-
lows for a more comprehensive understanding of biological in-
vasions. Social-ecological networks that incorporate nonnative
species can inform risk assessment, risk management, and model
future scenarios. They can be used as a synthesis tool, as well as
to communicate and engage with stakeholders to raise awareness
and improve management. It is time to more fully explore the
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many opportunities of social-ecological network analyses for bio-
logical invasions, as these pose great potential in tackling the com-
plex interactions and impacts of nonnative species. The ability of
networks to, in principle, incorporate all relevant system compo-
nents, throughout different spatial and temporal scales, enables a
holistic analysis of social and ecological interdependencies within
real-world invaded systems, subject to multiple drivers of change.

There is no single right way to construct and analyze social-
ecological networks, but crucial decisions must be made on which
system components to include and how to define network bound-
aries. Assumptions that one inevitably makes about the focal sys-
tem should be based on prior knowledge of the system, ideally
drawing on insights of actors that are part of the system, and
by conducting participatory research. Social-ecological networks
force us to explicitly consider the interactions within and across
what were previously considered fundamentally different com-
ponents of the human-nature relationships associated with non-
native species. By connecting different disciplines, engaging with
diverse stakeholders, and synthesizing knowledge across realms,
social-ecological networks will support our efforts to better un-
derstand biological invasions and their impacts, as well as how to
improve their management.

Supplemental material

Supplemental data are available at BIOSCI online.
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