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Light dilaton near critical points in top-down holography
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We study a class of UV-complete, strongly coupled, confining three-dimensional field theories, that
exhibit a novel stabilization mechanism for the mass of the lightest scalar composite state, relying on the
existence of a critical point. The theories admit a holographic dual description in terms of regular
backgrounds in 11-dimensional supergravity, which retains its rigorous microscopic interpretation in field
theory. The phase diagram includes a line of first-order phase transitions ending at the critical point, where
the transition becomes of second order. We calculate the mass spectrum of bound states of the field theory,
by considering fluctuations around the background solutions, and find that, near the critical point, a
hierarchy of scales develops, such that one state becomes parametrically light. We identify this state as the
dilaton, the pseudo-Nambu-Goldstone boson associated with the spontaneous breaking of approximate
scale invariance, demonstrating the emergence of this composite state in an ab initio calculation that has a
field theory origin. A stabilization mechanism of this type might be exploited to address hierarchy problems

in particle and astroparticle physics.

DOI: 10.1103/1wqc-vk7q

I. INTRODUCTION

One promising approach to the electroweak hierarchy
problem of the Standard Model is the idea that the Higgs
boson [1,2] might be a composite particle—the dilaton—
emerging at low energies, in a new, strongly coupled,
confining sector of a more complete theory. In this scenario,
the small mass of the Higgs boson, as well as the hierarchy
between electroweak and new physics scales, originates
from the spontaneous breaking of approximate scale invari-
ance [3]. The striking, experimentally testable implications
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of this framework [4] motivate phenomenological and
effective field theory studies [5—18]. A stabilization mecha-
nism would ensure that explicit symmetry breaking terms are
parametrically small, providing a natural suppression of the
dilaton mass, in respect to the strong-coupling scale.

At a microscopic level, the features of such a scenario are
less understood [19-22]. Partly, this is due to the challenge
of investigating strongly coupled confining physics. A
dilaton is expected to appear in the spectrum of bound
states if the confining dynamics is influenced by the
proximity, in parameter space, to a weak (second-order)
phase transition. Yet, a complete, calculable implementa-
tion of these ideas is still missing in four-dimensional
gauge theories. In this paper, we take a critical step in this
direction, by demonstrating these phenomena in a class of
confining theories in lower dimensions.

To do so, we rely on gauge-gravity dualities [23-26],
which offer an unprecedented opportunity to perform
definite computations, linking strongly coupled field theory
to weakly coupled gravity in higher dimensions. The physics
of confinement in the dual gravity theory is captured by
background geometries in which a portion of space shrinks

Published by the American Physical Society
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smoothly [27-33]. The free energy of different field-theory
configurations is calculable holographically, providing a
means to analyze the phase structure. Similarly, the spectrum
of bound states is extracted from the fluctuations of the
gravity background, treated with the gauge-invariant for-
malism developed in Refs. [34—41]. Explorations of possible
backgrounds, looking for evidence of a light dilaton, are
found in Refs. [42-65].

The relation between the nature of phase transitions and
the mass of the lightest state in holography has been studied
in models chosen on the basis of simplicity arguments
(bottom-up holography) [66,67] as well as consistent
truncations of fundamental quantum gravity theories (top
down) [68-70]. It has been observed that, in proximity to
first-order transitions, the mass of the lightest scalar state
in the spectrum is numerically suppressed, although this
typically happens in a branch of metastable states. Yet, in
the confining bottom-up model of Ref. [71] (Model B), a
line of first-order phase transitions terminates at a critical
point. In its close proximity, the mass of the lightest scalar
particle can be dialed to be parametrically small in stable
states of the theory.

Inspired by this result, but within the context of top-
down holography, we present the first example of confining
field theories in which a light dilaton emerges from the
dynamics, in the proximity of a critical point at the end of a
line of first-order phase transitions. At variance with the
model in Ref. [71], the backgrounds of interest admit a
rigorous field-theory dual interpretation, hence filling an
important gap in the literature and solving a lon- standing
problem in field theory. The solutions, constructed within
11-dimensional supergravity, are regular, based on the
circle compactification of those reported in Ref. [72],
and can be thought of as the double-Wick rotated versions
of the solutions constructed in Ref. [73]. We refer to these
publications for details and provide only the information
necessary to make our presentation self-contained.

II. THE HOLOGRAPHIC MODEL

The truncation detailed in Refs. [62,72,73] consists of six
scalars, ® = {®,U,V,a;,by,by}, coupled to gravity in
four dimensions. We further compactify it on a circle, S,
where # denotes its circumference (for details, see Sup-
plemental Material [74]). The resulting three-dimensional,
classical theory consists of gravity coupled to a sigma
model with seven scalars, ®* = {®', y}, and a U(1) gauge
field, A,s. The action is

2 R 1
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The metric, gy, with spacetime indices M = 0, 1, 2, has
signature mostly “+,” determinant g, and Ricci scalar R.

The field-strength tensor is Fyy = dy Ay — OnAy, and
scalar field indices are lowered with the sigma-model
metric, G, defined as
G, dD*dP’ = %dd)z +2dU? + 6dV? + 4dUAV + dy?
+2e74V=2db? + 4e74U2db%
+ 16e2U-4V+3d 43, (2)
Finally, the potential is V = €2V, (®') with'
Vy = 8(b, + by)2e 4U-8V-® _ =2U-6V _ po=4U-4V
+%‘3_8V +16[2a; + Qi(b; — bx) — g |2 OV=8V+3
+ 8(2a1 — 0ib; + qc)ze—zU—lzv% + Q%€—2U—8V+%
+2Q2eOUVHE 4 3070U-12V=3{4q, (b, + by)
+ Qiby(by = 2by) +2q.(bx — b)) (3)

The parameters Q; and ¢, appear in the fluxes of the
uplifted solutions, which are dual to three-dimensional
U(N) x U(N + M)_, quiver gauge theories with Chern-
Simons interactions at level k. With the shorthand notation
M =M — k/2, we have (see Ref. [72])

3ntlg, - £g
= 2095 . = sy, 4
1 O > (4)

qc
with 7 and g, the string length and coupling, respectively.
Combining these expressions with the "t Hooft coupling of
the microscopic theory, A= #;'g,N, the gauge theory
depends on a scale, A, which we use to set the scale of
dimensionful quantities, and a parameter, «,

k2 M3
==, o= .
67NM 256|k|x

(5)

The system of nonlinear equations derived from this
action admit a rich space of (nonsupersymmetric) back-
ground solutions lifting to regular geometries in 11 dimen-
sions—see Refs. [72,73]. These solutions encapsulate the
renormalization group flow of a family of dual field
theories. The action and space of solutions are rigidly
determined, both by the string theory construction and by
the properties of the dual field theories. The solutions can
be labeled by two additional parameters: the circumference,
Z, of the circle, S}, and b, € (0, 1), which is related to the
asymptotic value of the scalar b;—see Eq. (12) in
Supplemental Material [74]—and encodes the relative
difference in the (inverse squared) gauge coupling of the
two groups in the quiver. In the following, we describe the
different phases in the space of these two parameters and

1Compared to Refs. [62,72,73], we set Q. =0, following
Ref. [75].

126020-2



LIGHT DILATON NEAR CRITICAL POINTS IN TOP-DOWN ...

PHYS. REV. D 112, 126020 (2025)

highlight the key features of the phase transitions that
separate them.

II1. PHASE DIAGRAM AND PHASE TRANSITIONS

Each choice of the dimensionless pair (£A, by) identifies
a solution that is regular when uplifted to 11-dimensional
supergravity and in which the size of the circle S} is nonzero
everywhere. The dual is a three-dimensional nonconfining
state of the field theory, as the quark-antiquark potential is
screened [72]. In a region of (ZA, by) space there are also
alternative solutions for which S} shrinks smoothly to zero
size, providing the dual to a confining state. With choices of
(ZA, by) for which both solutions exist, the one with the
lowest free energy is preferred.

The calculation of the free energy, via holographic
renormalization [76-78] (see Supplemental Material [74]
for the relevant formulas), leads to the identification of three
types of phase transitions. In the range by € (bS¥, by»')~
(0.6815,0.6847), the free energy is a multivalued function
of /A—see Fig. 1 (left). A first-order phase transition
connects different confining solutions. A discontinuity
appears in the response function, (7,,), the expectation
value of the component of the energy-momentum tensor
along S.—see the right panel of Fig. 1. A line of such first-
order transitions exists, represented by the dashed black line
in Fig. 2. As b approaches b§’, the transition weakens and
eventually disappears into a smooth crossover—see
Fig. 3 (left).

Phase transitions between confining and nonconfining
states (with zero free energy) also exist, for all values of
by € (0, 1)—see Figs. 4 and 5. If by < b, the phase
transition is such that the free energy of the confining phase
touches tangent to the horizontal axes (represented by the
hollow orange disk in the top panel of Fig. 1), as in second
order phase transitions. However, its true nature is difficult
to determine, since close to this particular line, the
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FIG. 1. Free energy density, F#3 (left panel), and response
function, (T»,)#? (right panel), as functions of the circumference,
A, of the compact dimension for confining solutions with the
representative choice b, = 0.6836. The solid black disks indicate
the location of a first-order phase transition between two different
confining solutions. Beyond the hollow orange disk nonconfining
solutions are energetically favored.
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FIG. 2. Phase diagram of the system. Dotted blue and solid
orange curves separate confined and nonconfined phases, the
former identifying first-order phase transitions. Details of the
region near the triple point, b;,”p'e ~0.6847 (black disk), are
shown in the inset panel. A line of first-order phase transitions
(dashed black) between different confined states joins bj ** to the
critical point at bgp ~(.6815 (white disk).

geometries become increasingly curved. In contrast, for

by > by the curve crosses the axes and the phase
transition is of first order. All these cases are summarized
in the phase diagram in Fig. 2.

The region of parameter space in proximity to the orange
line in Fig. 2 is the only one in which the classical
supergravity approximation breaks down. In the rest of
the parameter space, quantum gravity and stringy correc-
tions can be safely neglected, as all curvature invariant
are finite, and suppressed in the appropriate large-N limit
(see Ref. [73] for details).

IV. MASS SPECTRA OF FLUCTUATIONS

The left panels of Fig. 3 show that the confining solutions
are uniquely labeled by the pair (bg, (T5)3a™!). We
compute the spectrum of small fluctuations of the sigma
model coupled to gravity around the confining solutions, by
exploiting the gauge-invariant approach of Refs. [34—41].
The linearized fluctuation equations for the metric, scalar,
and vector fields reduce to coupled equations for seven
gauge-invariant scalar fluctuations, a“, and one vector
fluctuation, b.

The spectrum of (squared) masses for the fluctuations is
obtained by solving the linearized equations, subject to the
requirement that their leading-order modes vanish, both
asymptotically, in the ultraviolet (UV) regime of the field
theory, and at the end of space, corresponding to the
infrared (IR).

We numerically determine these masses, m=~, using a
pseudospectral method [79]. We approximate the solutions
as a series of the first K Chebyshev polynomials of the
first kind, and evaluate the equations and boundary

2
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conditions on the Gauss-Lobatto grid. This approximates
the differential equation as a matrix eigenvalue problem.
The eigenvalues, m?, are extracted using Mathematica’s
eigenvalue solver. To check convergence of the numerics,
we compute the eigenvalues for different values of K,
keeping only those that agree between the computations.
More details on our numerical procedure are given in
Supplemental Material [74].

V. RESULTS

Our main result is the appearance of a parametrically
light scalar, which we identify as a dilaton, in the region of
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FIG. 3. Left panels: component of the stress tensor in the
compact direction, (Tzz)f3a‘], as a function of its size, ¢, for
representative values of b,. For values of b such that there is a
first-order phase transition we define 7, as the value of £ at the
phase transition. When there is no transition, we instead define ¢,
as the value of # for which (T5,)#3a! is the steepest. The range
of parameters plotted is chosen to cluster around the line of first-
order phase transitions denoted by black dashed lines in Fig. 1.
Right column: mass spectrum of scalar fluctuations, m, in units of
the lightest vector mass, m,, in the backgrounds of the left panels.

parameter space close to the critical point at the end of a
line of first-order phase transitions. This can be seen in
Fig. 3, in which we show the spectrum obtained for four
different values of by~ b§P. When a first-order phase
transition is present, the spectrum contains a tachyon along
the (locally) unstable branch, as seen in the first and second
rows of panels. In contrast, when the critical point is
reached (third row), the tachyon disappears, and an exactly
massless state is realized. The mass of this state becomes
positive and rises as b, decreases below bSF, when the
transition becomes a smooth crossover, as in the last row.
Our results thus confirm the statement made in Ref. [71]
that a light dilaton is expected near a second-order phase
transition, and we explicitly find it in a top-down holo-
graphic setup with regular geometry.

Having demonstrated that the presence of a critical point
suppresses the mass of the lightest scalar state, compared to
the other scales and masses, we turn attention to its nature.
To this purpose, we repeat the calculation of the spectrum
of fluctuations of the confining backgrounds, by introduc-
ing a drastic approximation: we ignore the mixing of
fluctuations of the sigma-model fields with the trace of
the metric, adopting the probe approximation as defined in
Ref. [41]. As the trace of the metric couples to the trace of
the stress-energy tensor of the dual field theory (the
dilatation operator), when the probe approximation fails
to capture the lightest scalar state, this signals its (approxi-
mate) dilaton nature. We report the results in Fig. 6, for
by = b§F, as a function of (T )3a™!.

The probe approximation works well overall, but fails
qualitatively in two important respects. First, it misses one
tower of bound states, replacing it by a continuum, which
we removed from the numerical results with appropriate
choices of boundary conditions. Second, it fails to capture
the lightest scalar state, in the region of (b, (T»,)¢%a™")
close to criticality, thus demonstrating that this state is an
approximate dilaton.

The richness provided by the top-down holographic
framework adds additional structure to the spectrum of
the theory, compared to the bottom-up model from
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FIG. 4. Response function, <T22>f3a‘1 (left), and scalar spec-
trum (right) for a value of by < b§¥ chosen well below the critical
point. Large values of A approach the boundary between
confining and nonconfining configurations.
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FIG. 5. Response functions, (T»,)¢%a~' (left), and scalar

spectrum (right) for values of by > b, so that a first-order
phase transition appears. The top row shows a representative case
well above the critical point, where the first-order phase transition
is between confining and nonconfining solutions. In the bottom

triple

row by~ b, ", slightly below the triple point.
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FIG. 6. Mass spectrum of scalar fluctuations computed for
by = 0.6815, as in the third row of Fig. 3 (solid blue), and in the
probe approximation (dashed orange), which neglects the effect
of the trace of the three-dimensional metric. The probe approxi-
mation fails to capture the light mode that appears close to
criticality, the dilaton.

Ref. [71]. Besides the appearance of a light dilaton near the
critical point, the most striking feature is the appearance of
a second, additional light state, for b € (0, bglple), when the
order parameter, (75,), is small—see Figs. 3 and 4. As is
apparent from Fig. 6, the probe approximation describes
well one of these light states, which is hence not related to
the dilaton. This region of parameter space corresponds to

approaching the solid orange line separating confining and
nonconfining backgrounds in Fig. 2. Unfortunately, when
(T5,) — 0, the geometry becomes strongly curved, and
eventually singular, preventing us from drawing firm
conclusions about this separated, interesting region.

In contrast, for b, > btonple, the masses of the states are
never suppressed along the stable branch—see Fig. 5 (top).
For completeness, we show in Fig. 5 (bottom) the spectrum
near the special case of the triple point, by = b, at which
the end of the metastable branch touches the first-order phase
transition corresponding to the dashed, black line in Fig. 2.

VI. OUTLOOK

We exhibited a top-down holographic description of
three-dimensional strongly coupled theories in which the
mass of a light dilaton state is naturally suppressed by the
existence of a nearby critical point in parameter space,
putting the results of Ref. [71] on firm field-theory footing
(see also the recent Ref. [80], and the lattice study in
Ref. [81]). The emergence of a parametrically light dilaton
in a confining theory, accompanied by a hierarchy of
dynamically generated scales, has been advocated as a
way to address hierarchy problems, in the electroweak
theory as well as in extensions of the standard model, hence
our results have a range of potential applications.

It would be interesting to implement this mechanism in
four or higher number of dimensions. If examples exist
with the additional feature that other approximate sym-
metries are also spontaneously broken, one could further
link our findings with dilaton effective field theory (dEFT),
in which the dilaton couples to light composite pseudo-
Nambu-Goldstone bosons (PNGBs) [82-95]. It would also
be interesting to investigate possible applications in lower-
dimensional field theory, as suggested in Ref. [80], par-
ticularly in the context of conformal perturbation theory—
see, e.g., Refs. [96-99]. Applications of dEFT range from
the analysis of special lattice theories [100], to new dark
matter proposals [101] to composite Higgs models in which
also the Higgs boson is a PNGB [102-104], as suggested in
Refs. [105,106], by elaborating on Refs. [107-109]—see
the reviews [110-114] and the tables in Refs. [115-117].

The essential finding of the paper is related to the
existence of lines of first-order transitions, with end points,
and hence a possible strategy for this search would involve
applying existing solution-generating techniques, as those
discussed in Ref. [118], to produce new families of
supergravity solutions labeled by more than one parameter.
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