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Abstract
Hyperparameter tuning is one of the essential steps to guarantee the convergence of machine
learning models. We argue that intuition about the optimal choice of hyperparameters for
stochastic gradient descent can be obtained by studying a neural network’s phase diagram, in
which each phase is characterised by distinctive dynamics of the singular values of weight matrices.
Taking inspiration from disordered systems, we start from the observation that the loss landscape
of a multilayer neural network with mean squared error can be interpreted as a disordered sys-
tem in feature space, where the learnt features are mapped to soft spin degrees of freedom, the ini-
tial variance of the weight matrices is interpreted as the strength of the disorder, and temperature
is given by the ratio of the learning rate and the batch size. As the model is trained, three phases
can be identified, in which the dynamics of weight matrices is qualitatively different. Employing
a Langevin equation for stochastic gradient descent, previously derived using Dyson Brownian
motion, we demonstrate that the three dynamical regimes can be classified effectively, providing
practical guidance for the choice of hyperparameters of the optimiser.

1. Introduction

With the discovery of large machine learning (ML) models and their capability of generalisation [1],
significant activity has developed in adopting ML methods in the physical sciences [2], including in
quantum physics [3] and (lattice) quantum chromodynamics [4–6]. From the perspective of a physi-
cist, ML systems are intriguing to study in their own right in the context of statistical physics of com-
plex systems [7]. Indeed, a deeper understanding of ML architectures as systems with many fluctuating
degrees of freedom, evolving ‘out of equilibrium’ during the training phase, may shed light on how and
why certain systems are highly successful.

A description of learning rooted in statistical physics dates back to (at least) the Hopfield model [8–
11], which effectively captures the information storage aspect of the neural network [12], demystifying
the scalability and generalisability of large models [13–15]. However, it does not necessarily include prac-
tical training settings, which play a crucial role in the performance of a model. In general, it turns out
that deep neural networks during training can be thought of as disordered systems in a non-equilibrium
setting with non-Gaussian random couplings, for which analytical solutions are not easily accessible.
Some recent work has suggested that these systems can be studied by considering an ensemble of models
at a fixed training time [16, 17], where the non-Gaussianity can be mitigated by a perturbative approach,
or in the limit of infinite width [18–22], where the relevant distributions become Gaussian.

In this paper, we suggest that multilayer neural networks, including the training stage, can be stud-
ied by observing the training dynamics of the weight matrices, whose singular values undergo Dyson
Brownian motion [23] and follow qualitatively different dynamics depending on the choice of hyper-
parameters. We start by recalling that the loss function of a multilayer neural network can be inter-
preted as a disordered Hamiltonian [11, 24], where we further argue that the variance of the weight
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matrices can be interpreted as the strength of the disorder, and the stochasticity of the training induces
the notion of effective temperature [23, 25–28]. Then, depending on the hyperparameters, three differ-
ent ‘phases’ of the training dynamics can be observed, where each phase is characterised by distinctive
weight matrix dynamics. Such phase diagrams of ML architectures are expected to provide theoretical
insight into the capacity of the model and the choice of hyperparameters [14, 20, 29–34]. Here, we study
the trainability of the model depending on the ratio of the learning rate and batch size of stochastic
gradient descent, and the initial variance of the weight matrices, which provides guidance to the optimal
choice of hyperparameters with regard to the training dynamics.

This paper is structured as follows. In section 2 we define a multilayer neural network and explain
how it can be interpreted as a disordered system. We discuss in detail how the degrees of freedom and
hyperparameters in the neural network are mapped to ‘soft spins’ and physical parameters (temperat-
ure, disorder) in the disordered system. In section 3 we present the empirical phase diagram of a neural
network with two hidden layers and hyperbolic tangent activation functions. In particular, we analyse
a range of observables and identify three phases during and after training. The phases depend on the
choice of hyperparameters and are identified with an ordered or ferromagnetic phase, in which the net-
work learns well, a disordered or jamming phase, in which the network does not learn, and a paramag-
netic phase, in which the dynamics is dominated by fluctuations preventing learning. In section 4, we
focus on the singular values of the weight matrices and demonstrate that they follow qualitatively dif-
ferent dynamics in each phase, closely related to the existence of stationary distributions at the end of
training. To characterise the phase structure further, we derive expressions for the phase boundaries,
using a symmetry-breaking argument as well as a stochastic equation for the average level spacing. In the
final section, we show good agreement between these phase boundaries and the regions in the empirical
phase diagram obtained by numerical simulations, and discuss the practical implications for successful
learning. Some more details on the interpretation of the loss function and on the average level spacing
can be found in two appendices.

2. Deep neural networks as disordered systems

2.1. Feed-forward neural network and loss function
To make the connection between neural neural networks and disordered systems, we start by defining
the former, following closely the notation of [21]. We consider a neural network with L+ 1 layers, with
each layer consisting of nl nodes (l= 0, . . . ,L). The first layer is the input layer, with the input data given
by n0-dimensional vectors, and the final layer is the output layer, with nL components. The layers are
connected by L weight matrices W(l) (l= 1, . . . ,L) of size nl × nl−1. We do not include a bias (but this
can easily be done). The input data set is indicated as

D = {xiα} i = 1, . . . ,n0, α= 1, . . . , |D|, (2.1)

where the first index (i) is the component index and the second index (α) labels each sample in the data
set. Activation functions, denoted as ϕ(z), are applied at the hidden nodes and act component-wise.
Here, the z’s are the pre-activations, i.e. linear combinations of the components of the previous layer.
Explicitly, the first and subsequent pre-activations are then given by

z(l+1)
i (xα) =

nl∑
j=1

W(l+1)
ij ϕ

(
z(l)j (xα)

)
, z(1)i (xα) =

n0∑
j=1

W(1)
ij xjα, (2.2)

and the result on the final layer defines the neural network function

ŷi (xα;θ)≡ z(L)i (xα) =

nL−1∑
j=1

W(L)
ij ϕ

(
z(L−1)
j (xα)

)
. (2.3)

This function depends on the Nθ learnable parameters, collectively denoted as

θ =
{
W(1), . . . ,W(L)

}
, Nθ =

L∑
l=1

nl−1nl. (2.4)

The choice of activation function is discussed below. The outputs of the final hidden layer are often
called features or representations learnt by the neural network [35], such that the neural network func-
tion is a linear combination of these features. Below we indicate the features as

ϕjα ≡ ϕ
(
z(L−1)
j (xα)

)
. (2.5)

2
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In this paper, we consider the mean squared error (MSE) as the loss function, i.e.

L(θ)≡ 1

|D|

|D|∑
α=1

ℓ(y(xα) , ŷ(xα;θ)) , ℓ(y, ŷ)≡ 1

2

nL∑
i=1

(yi − ŷi )
2
, (2.6)

where ℓ is the per-sample loss function for input data sample xα ∈ D, with target value yi(xα)≡ yiα.
To make the connection with disordered systems, we expand the loss function and write

L(θ) =
1

2|D|

D∑
α=1

nL∑
i=1

yiα −
nL−1∑
j=1

W(L)
ij ϕjα

2

=
1

2|D|

|D|∑
α=1

nL∑
i=1

 nL−1∑
j,k=1

W(L)
ij W(L)

ik ϕjαϕkα − 2

nL−1∑
j=1

yiαW
(L)
ij ϕjα + yiαyiα


=

1

2|D|

|D|∑
α=1

nL−1∑
i,j=1

Jijϕiαϕjα − 1

|D|

|D|∑
α=1

nL−1∑
j=1

hjαϕjα +C (2.7)

where to reach the final line, we renamed the indices and introduced

Jij ≡
nL∑
k=1

W(L)
ki W

(L)
kj , hjα ≡

nL∑
i=1

yiαW
(L)
ij , C≡ 1

2|D|

|D|∑
α=1

nL∑
i=1

y2iα. (2.8)

Here we intentionally have chosen a notation that resembles the one familiar from disordered systems,
with the features ϕi playing the role of spin degrees of freedom, interacting via a spin-spin coupling J ij
and with an external magnetic field hj, see also appendix A. The final term is independent of the neural
network and will be dropped; hence, from now on, we consider the loss function

L(θ) =
1

2|D|

|D|∑
α=1

nL−1∑
i,j=1

Jijϕiαϕjα − 1

|D|

|D|∑
α=1

nL−1∑
j=1

hjαϕjα. (2.9)

Note that this form of MSE is generic for any neural network model whose output is defined as a linear
combination of the nodes on the last hidden layer, regardless of the structure of the preceding layers. In
the remainder of this section, we further explore the relation to disordered systems. To do so, we remind
the reader that the usual spin-glass Hamiltonian is written for binary spins, si =±1, as [36]

H=−1

2

∑
i,j

Jijsisj +
∑
j

hjsj, (2.10)

where J ij is the random coupling and hj is a random external field, both drawn from a Gaussian distri-
bution. Phase diagrams of spin-glass systems have been studied since the 1970s, and may exhibit ferro-
magnetic, paramagnetic and spin-glass phases, in the plane spanned by temperature and the strength of
the disorder.

To analyse our loss function (2.9) in the language of disordered systems and arrive at a phase dia-
gram, we now address the various ingredients, namely the initalisation of the network, the feature
degrees of freedom ϕiα, disorder and the coupling J ij, the external field hjα, and the emergence of an
effective temperature when using stochastic gradient descent.

2.2. Initialisation
The network is initialised by sampling the weight matrix elements from normal distributions, according
to

W(l)
ij ∼N

(
0,σ2

W/nl−1

)
, (2.11)

where we will refer to σ2
W as the weight matrix variance (the factor nl−1 is discussed below). In principle,

weight matrices connecting different layers can have their own variance, σ2
W → σ

(l)2
W , but for notational

simplicity we take them identical. Denoting the pre-activations as

z(l)iα ≡ z(l)i (xα) , (2.12)

3
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moments of pre-activations at initialisation over the weight matrix distributions can be computed
recursively [21, 37]. The first moments vanish for symmetry reasons. The second moments read, for
l> 1,

Ep(W)

[
z(l)iα z

(l)
jβ

]
=

nl−1∑
k,k ′=1

Ep(W)

[
W(l)

ik W
(l)
jk′

]
ϕ
(
z(l−1)
kα

)
ϕ
(
z(l−1)
k′β

)

= δij
σ2
W

nl−1

nl−1∑
k=1

ϕ
(
z(l−1)
kα

)
ϕ
(
z(l−1)
kβ

)
, (2.13)

while at the first layer, one finds

Ep(W)

[
z(1)iα z(1)jβ

]
=

n0∑
k,k ′=1

Ep(W)

[
W(1)

ik W(1)
jk′

]
xkαxk′β = δij

σ2
W

n0

n0∑
k=1

xkαxkβ . (2.14)

Averaging also over the data set, assuming it is standardised, with

ED
[
xiαxjβ

]
= δijδαβ , (2.15)

then yields

Ep(W),D

[
z(1)iα z(1)jβ

]
= δijδαβσ

2
W. (2.16)

The important observation for us is that all second moments scale with σ2
W.

As activation function we use the hyperbolic tangent, ϕ(z) = tanh(z), which is bounded between ±1.
We then trivially have ∣∣∣ϕ(z(l)kα)ϕ(z(l)k′β)∣∣∣⩽ 1, (2.17)

and hence find ∣∣∣Ep(W)

[
z(l)iα z

(l)
jβ

]∣∣∣⩽ σ2
W

nl−1

nl−1∑
k=1

∣∣∣ϕ(z(l−1)
kα

)
ϕ
(
z(l−1)
kβ

)∣∣∣⩽ σ2
W. (2.18)

At initialisation, the variances of the pre-activations therefore scale with and are bounded by σ2
W; this

is one reason to normalise the weight matrix variance with nl−1. Note that the scaling with σ2
W always

holds, while the boundedness is due to the boundedness of the activation function.

2.3. Features as ‘soft spins’
Disordered systems are usually formulated in terms of binary spins, si =±1, see equation (2.10). Here
we argue that the features, ϕiα, play the role of ‘soft spins’, which take continuous values, but are still
bounded between ±1, due to the choice of the hyperbolic tangent activation function. The distribution

of features at initialisation depends on pre-activations, z(L−1)
jα . As shown above, the variance of the pre-

activation scales with (and is bounded by) σ2
W. Motivated by results in the large width limit of neural

networks [21] and the central limit theorem, we assume that

z(L−1)
iα ∼N

(
0,σ2

z

)
, σ2

z ≲ σ2
W. (2.19)

Dropping the indices for simplicity, we write

ϕ(z) = tanh(z) , −1⩽ ϕ(z)⩽ 1, (2.20)

with the distribution

p(ϕ)∼ p(z(ϕ))

∣∣∣∣ dzdϕ
∣∣∣∣∼ exp

[
− 1

2σ2
z

(arctanhϕ)2 − ln
(
1−ϕ2

)]
∼ exp [−V(ϕ)] . (2.21)

Expanding the potential around ϕ= 0, we find

V(ϕ) =

(
1

2σ2
z

− 1

)
ϕ2 +

(
1

3σ2
z

− 1

2

)
ϕ4 + . . . , (2.22)

4
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Figure 1. Left: Distribution of post-activation ϕ(z), with z∼N (0,σ2
z ). For small σ2

z < 1/2, the distribution is peaked around
zero, while for large σ2

z ≫ 1/2, the distribution is sharply peaked towards±1. Right: Hyperbolic tangent function ϕ(z) =
tanh(z) as activation function, with a linear regime (|z| ≲ 1) and a jamming or vanishing gradient regime (|z| ≫ 1).

which exhibits a transition from a single well to a double well at σ2
z = σ2

c = 1/2. This observation also
holds without the expansion, as the extrema of the potential are determined by ϕ = tanh(2σ2

zϕ). We
conclude that the distribution of features has a single peak centred around 0 when σ2

z ⩽ 1/2 and a
double peak when σ2

z > 1/2, as demonstrated in figure 1(left).
The activation function is shown in figure 1(right). We can now draw a first conclusion on how the

initial variance of the weight matrices, a hyperparameter, affects the learning efficiency for bounded
activation functions. For large σ2

z ∼ σ2
W, features ϕ are close to ±1. The activation function is then

mostly in the vanishing gradient regime, and poor learning is expected. On the other hand, for small
σ2
z ∼ σ2

W, the features lie around 0, which corresponds to the linear regime in the activation function,
where good learning is expected. This vanishing gradient transition can be regarded as a jamming trans-
ition in disordered systems, where a distribution of pre-activations z, with variance σ2

z , is placed in a
finite box (the activation function) with a vanishing gradient on the boundary, and the dynamics of the
distribution starts to get jammed once the size of the distribution exceeds a critical value σ2

c . Below, we
will numerically confirm that indeed a large initial variance of the weight matrices results in poor learn-
ing, corresponding to a jammed phase.

2.4. Disorder
Next, we turn to the coupling between the features, J ij, the product of the weight matrices at the final
layer,

Jij =
nL∑
k=1

W(L)
ki W

(L)
kj , (2.23)

see equation (2.8). In a standard disordered system with N spins [36], the spin couplings are drawn
from a normal distribution, Jij ∼N (J0, J2), and a transition from a ferromagnetic phase to a spin-glass
phase is observed as

√
NJ0/J is reduced, where the scaling with N ensures a proper thermodynamic

limit.
In the case considered here, at initialisation the matrix elements of W(L) are drawn from a normal

distribution with variance σ2
W/nL−1. The nL−1 × nL−1 coupling matrices J ij are hence symmetric and

positive semi-definite, and belong to a Wishart-Laguerre ensemble with Dyson index β= 1 [38]. In the
limit of large matrix size, its spectral density tends to the Marchenko-Pastur distribution defined on a
finite support.

At initialisation, the mean and covariance of the J’s are given by

Ep(W)

[
Jij
]
=

nL
nL−1

σ2
Wδij, Cov

[
JijJkl

]
=

nL
n2L−1

σ4
W

(
δikδjl + δilδjk

)
. (2.24)

To determine what variable to vary to observe a possible transition between an ordered and a disordered
phase, we may follow the choice in the disordered spin system and use mean divided by

√
variance, J0/J.

However, for the Wishart ensemble, this scales as σ0
W and hence it is not a suitable combination. Instead,

we will use the scaling with 1/
√
variance of the initial weight matrices, i.e. 1/σW. As we will demon-

strate below, this choice indeed provides a useful control parameter.

5
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2.5. External field alignment
The second term in the loss function (2.9) is the coupling between the features ϕjα and the external
magnetic field hjα,

Lh (θ) =− 1

|D|

|D|∑
α=1

nL−1∑
j=1

hjαϕjα, hjα =

nL∑
i=1

yiαW
(L)
ij , (2.25)

where yiα is the target value and both hjα and ϕjα depend on the input data.
Given that the prediction of the network is

ŷiα =

nL−1∑
j=1

W(L)
ij ϕjα, (2.26)

this term can also be written as

Lh (θ) =− 1

|D|

|D|∑
α=1

nL∑
i=1

yiαŷiα (2.27)

which is minimised when the output vectors are aligned, as expected. This explains the relation between
the alignment of the output data on one hand and the features and external field on the other hand.

2.6. Temperature
An important difference between disordered systems and neural networks is that the former are usually
considered at a temperature T, whereas the latter evolve during training, from initialisation to poten-
tially being well-trained, and should therefore be considered as non-equilibrium systems. Indeed, weight
matrix elements are typically drawn from normal distributions at initialisation and training will induce
correlations, leading to characteristic heavy-tailed distributions of weight matrix spectra [39, 40], known
from random matrix theory [41, 42].

Nevertheless, it is possible to identify a notion of temperature, characterising fluctuations observed
during training. This can be made precise in the case of stochastic gradient descent (SGD), one of the
most commonly used training algorithms. Each weight matrix element is updated according to

W(l) ′
ij =W(l)

ij − ϵ∆
(l)
ij,B, ∆

(l)
ij,B =

1

|B|
∑
α∈B

∆
(l)
ij,α ∆

(l)
ij,α =

∂ℓ(xα)

∂W(l)
ij

. (2.28)

Here ϵ> 0 is the learning rate (or step size), which we take fixed in this analysis, ∆(l)
ij,α is the element-

wise gradient of the loss function for data point xα, and updates are performed using batches of size |B|.
Stochasticity is induced because of the finite batch size. The mean and fluctuations of the gradient

can be separated using the central limit theorem, assuming the input data is i.i.d. The evolution of the
model parameters can then be described by a discrete Langevin equation,

W(l) ′
ij =W(l)

ij − ϵE
[
∆

(l)
ij

]
+

√
ϵ2

|B|
V
[
∆

(l)
ij

]
ηij, ηij ∼N (0,1) . (2.29)

Here E[∆] and V[∆] are the mean and variance of the gradient, respectively, and the scaling with learn-
ing rate and batch size has been derived in [23] in the context of Dyson Brownian motion. The scal-
ing with the step size does not follow the standard (Itô) scaling in (discretised) stochastic differential
equations (SDEs). In [23] it was demonstrated that the particular scaling in equation (2.29) leads to the
linear scaling rule, i.e. a dependence on the ratio ϵ/|B| only3. Moreover, this ratio combines with the
Coulomb potential in the random matrix theory description of Dyson Brownian motion in the same
way as a temperature would [23].

An alternative way to arrive at ϵ/|B| as an effective temperature is by taking the limit of zero step
size in a weak sense. A naive ϵ→ 0 limit would lead to deterministic gradient flow without stochasticity

3 The dependence on the ratio ϵ/|B|, and not on the hyperparameters ϵ and |B| separately, has been observed empirically in SGD
optimisation and is known as the linear scaling rule [43, 44]. It implies that decreasing the learning rate by a factor k has the same effect
as increasing the batch size by the same factor. This is explained by noting that the effective temperature T= ϵ/|B| is invariant under a
simultaneous scaling of both.

6
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[25, 26, 45]. Instead, the correct SDE limit is obtained if the ratio ϵ/|B| is kept fixed when the learning
rate ϵ and the batch size |B| are taken to zero simultaneously. This yields a Langevin equation in con-
tinuous time,

Ẇ(l)
ij =−E

[
∆

(l)
ij

]
+

√
TV

[
∆

(l)
ij

]
ηij, T≡ ϵ

|B|
, (2.30)

where the dot indicates the time derivative and the effective temperature T is a measure of the stochasti-
city, appearing as a temperature in the stationary solution of the corresponding Fokker-Planck equation
(assuming that it exists) [23]. Below, we identify ϵ/|B| with the temperature axis in the phase diagram,
to which we turn now.

3. Empirical phase diagram

In the preceding section, we have argued that a neural network with hyperbolic tangent activation func-
tions and subject to the MSE loss function should be considered as a disordered system, with a tem-
perature set by the ratio of learning rate and batch size, T= ϵ/|B|, disorder by the variance σ2

W of the
weight matrices upon initialisation, and features ϕi as soft spins. In contrast to a disordered spin system
at a given temperature, the learnable parameters in a neural network, i.e. the weight matrix elements,
evolve during training, and our aim is to determine how the efficiency and accuracy of training dynam-
ics change depending on the temperature and initial variance. A practical application of this study is that
it provides guidance on how to choose the hyperparameters.

As argued above, we consider the phase diagram in the plane spanned by the temperature and the
inverse square root of the initial variance, the T− 1/σW plane. Intuitively, three characteristic phases
resembling a disordered system [36, 46] can be expected:

• a high-temperature or paramagnetic phase, in which the model is subject to large fluctuations and the
features of the model are randomly distributed;

• a disordered spin-glass or jamming phase at large σW , in which the model parameters accumulate
near gradient vanishing points and the training dynamics is jammed from initialisation;

• a low-temperature or ferromagnetic phase with little disorder, in which the model is capable to learn
the target features and reach an equilibrium state at the end of training.

Traditionally, in statistical mechanics, a phase diagram is studied by identifying symmetries and order
parameters, and subsequently calculating the system’s free energy. Here, the neural network is evolving
during training, which calls for a non-equilibrium treatment, and the identification of order paramet-
ers is not obvious. Hence, we probe the phase diagram empirically, using numerical experiments, and
consider observables which are both inspired by disordered systems but also relevant in the context of
learning, such as the loss, the gradient of the loss, and alignment at the end of training.

3.1. Numerical setup
We consider a neural network with two hidden layers (L= 3): the input layer has n0 = 3 input neurons,
the hidden layers have n1 = 32 and n2 = 16 neurons respectively, and the output is a scalar, nL=3 = 1.
The task is regression and, as stated, the activation functions are hyperbolic tangents. Specifically, we use
a teacher-student setting, where the training data for the network are generated from a teacher neural

network with weight matrices W
(l)

(l= 1,2,3). The matrix elements in the teacher network, as well as
the input data, are sampled from a normal distribution,

W
(l)
ij ∼N (0,1/nl−1) , xiα ∼N (0,1) . (3.1)

Note that the (scaled) variance in the teacher weight matrices is equal to 1. This setup determines the
output of the teacher network.

The student network is defined with the same architecture as the teacher network, but with the inter-
mediate weight matrix W(2) set to be trainable and initialised according to equation (2.11). The first and

final student weight matrices are identical to the corresponding teacher ones, W(1) =W
(1)
, W(3) =W

(3)
.

This setting can be regarded as a variation of a Random Feature Neural Network [47], where instead of
given random features, the linear combinations are given and the features representing the correct target
feature space are learnt. From a theoretical perspective, this setting enables us to isolate the dynamics of
a single layer and carry out a precise numerical study of the phase diagram and weight matrix dynamics.

7
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Figure 2. The mean test loss of the trained models in the T− 1/σW plane for the hyperbolic tangent teacher-student network. A
darker colour indicates a lower value.

Moreover, using the teacher-student setting is useful as one has direct control over the target distribution
for the student network, allowing one to check the theoretical predictions with experimental outcomes.

In the numerical experiments discussed below, for each combination of hyperparameters, an
ensemble S with a total of |S|= 100 teacher networks is generated, and each student network is trained
on a different teacher network. The hyperparameters are selected as follows: the learning rate is var-
ied from ϵ= 2−3, . . . ,28 in powers of 2, with a batch size of |B|= 4. Hence the temperature range is
T= ϵ/|B|= 2−5, . . . ,26. The inverse square root of the variance of the student weight matrix W(2) is
varied as 1/σW = 2−8, . . . ,23. Each model is trained with the same number of iterations t= 105. A typ-
ical training set consists of |D|= 4000 data points.

3.2. Observables
We now come to the results of the numerical experiments and introduce four observables that capture
different aspects of the dynamics of learning across the phase diagram. The training time is denoted with
t and the end of the training with t= tf. All observables are evaluated on a test set with |Dtest|= 100
data points after training.

First, we measure the mean test loss at the end of the training, defined as an average of the loss (2.6)
over the ensemble S of trained networks at a fixed choice of hyperparameters,

ES [L] =
1

|S|

|S|∑
s=1

Ls, (3.2)

where Ls is the final test loss of the s-th model in the ensemble S . A high mean loss indicates that the
model has not converged to the correct solution and the training is unsuccessful, while a low mean loss
indicates that the model is well trained.

The results for the final mean loss are shown in figure 2, where the mean loss is seen to vary
between approximately 10−1 and 10−7 in the plane spanned by T= ϵ/|B| and 1/σW. The darker region
corresponds to a smaller final loss. At higher temperatures and at larger initial variance, the loss remains
large, indicating that the ensembles of models are not close to the target ones. On the other hand, at low
temperature and small initial variance, i.e. in the bottom-right corner of this phase diagram, the average
loss is substantially smaller, and we may deduce that the ensembles of models have converged with high
probability. Below, we identify the bottom-right corner in figure 2 with a ferromagnetic phase.

As a second observable, we consider the mean gradient to quantify whether the training is active or
dormant. We define the mean gradient as

ES [∥∇L∥] = 1

|S|

|S|∑
s=1

√√√√ n2∑
i=1

n1∑
j=1

(
∆

(2),s
ij

)2
, (3.3)
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Figure 3.Mean loss (left) and gradient (right) at the end of training as a function of ϵ/|B| for various values of 1/σW. Error bars
are omitted for visibility.

Figure 4. The mean loss (left) and mean gradient (centre) at the end of training along the temperature axis at the smallest value
of σW considered, 1/σW = 8. A transition is visible at ϵ/|B| ∼ 1. Mean gradient at initialisation (right) along the 1/σW axis at
the lowest temperature, ϵ/|B|= 2−5. For small 1/σW (large initial disorder), learning is already inefficient at initialisation.

where ∆(2),s
ij is the gradient of the loss function for the s-th model with respect to W(2)

ij , averaged over
the data set.

In figure 3, we show the mean loss and gradient at the end of training as a function of ϵ/|B| for
various values of 1/σW, i.e. each collection of data points connected by a line corresponds to a vertical
slice of the preceding phase diagram. Error bars are omitted for visibility, but are shown in figure 4 for
1/σW = 8. We observe different behaviour, which we identify with the phases discussed above:

• If the temperature and initial variance are small, ϵ/|B| ∼ 10−1, 1/σW ≳ 1, both the final loss and
gradient are small, indicating that the models have learnt successfully and that learning is completed.
This corresponds to the ordered or ferromagnetic phase.

• Increasing the initial variance at small temperature results in a larger loss, while the gradient remains
large as well. This indicates that learning remains active but without making progress. This is identi-
fied with a jamming phase with slow dynamics.

• At higher temperature, ϵ/|B| ∼ 100, a transition is observed to a regime where both the final loss and
final gradient are large, indicating a lack of convergence. Since this dynamics is independent of the
matrix initialisation, it signifies a transition to a paramagnetic phase4.

• At even higher temperature, ϵ/|B| ∼ 102, and for all values of 1/σW, the dependence on the initialisa-
tion has vanished and the models are clearly in the paramagnetic phase, with the dynamics dominated
by thermal fluctuations.

In figure 4, we add error bars for the loss (left) and the gradient (middle) as a function of ϵ/|B| for the
smallest value of σW considered, 1/σW = 8. We note a rapid increase at ϵ/|B| ∼ 1, in a manner that is
not dissimilar to a phase transition, albeit in a finite volume or with a finite number of degrees of free-
dom. In figure 4(right), we show the gradient of the loss at initialisation, along the 1/σW axis at the
lowest temperature considered. We observe that for large initial variance, 1/σW ∼ 10−2, the mean gradi-
ent is already small at initialisation, resulting in slow spin-glass-like dynamics, while with small initial
variance, 1/σW ≳ 100, the dynamics is much more efficient. We argue, therefore, that for practical imple-
mentations, the optimal values of the learning rate over batch size are located right before the transition

4 This corresponds to the dotted regions in the phase diagrams analysed in [31], which are considered in the plane spanned by the
learning rate and the batch size.
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Figure 5. The correlation between features at initial and final time, G(tf,0) = E[ϕ(tf)ϕ(0)], (left) and between the features ϕ
and the external magnetic field h, E[hϕ], or alignment between model and target features, (right), in the T− 1/σW plane for the
hyperbolic tangent teacher-student network. A darker colour indicates less correlations.

from the low-temperature to the high-temperature phase, with small initial variance for the weight mat-
rix elements, allowing for fast training while yielding good convergence.

The next observable we consider is the time correlation function of features, defined by

G(t, t ′)≡ ES [ϕ(t)ϕ(t
′)] =

1

|S|
∑
s∈S

1

|D|
∑
α∈D

1

nL−1

nL−1∑
j=1

ϕs
jα (t)ϕ

s
jα (t

′) , (3.4)

where ϕs
jα(t) is a component of a feature at time t in the s-th model. We consider in particular the cor-

relation between the initial features, at t= 0, and the features at the end of training, at t= tf, i.e. G(tf,0).
The results for G(tf,0) are shown in figure 5(left). A darker colour corresponds to a lower value and
hence less correlations, whereas a lighter colour implies that correlations are preserved. The observed
correlations in figure 5 are in agreement with the discussion presented so far. In the high-temperature
(paramagnetic) phase and in the well-trained (ferromagnetic) phase, the correlations between features
at initialisation and after training are lost, as expected. With a large initial variance, on the other hand,
correlations are preserved, which is interpreted as poor learning in the disordered spin-glass phase.
Increasing the temperature reduces this correlation, but leads to poor training due to the transition to
the paramagnetic phase.

The final observable we consider is the alignment between target and model features, via the correla-
tion between the features ϕjα and the external magnetic field hjα, see section 2.5. We define

ES [hϕ] =
1

|S|

|S|∑
s=1

hs ·ϕs

∥hs∥∥ϕs∥
(3.5)

where

hs ·ϕs =

|D|∑
α=1

nL−1∑
j=1

hsjαϕ
s
jα, ∥hs∥2 =

|D|∑
α=1

nL−1∑
j=1

hsjαh
s
jα, (3.6)

and similar for ∥ϕs∥2. The results are shown in figure 5(right). We observe the strongest alignment in
the well-trained region of the phase diagram, giving a clear justification to associate the region with the
ferromagnetic phase.

In summary, we have considered several observables in the plane spanned by the hyperparameters.
Each observable probes different characteristics of learning, allowing us to identify the various phases.
The behaviour of the mean loss gives the first indication of a well-trained phase. The alignment with
the external magnetic field emphasises the similarity with a ferromagnetic phase. The difference between
the paramagnetic phase and the disordered spin-glass phase is captured by the correlations of features in
time, which are preserved in the latter. These findings are consistent with the understanding of different
phases in disordered systems, using the mapping between the hyperparameters and the parameters in
generic spin-glass models.
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Figure 6. Evolution of the eigenvalues of X=W(2)W(2)T during training for ensembles of teacher-student models at three
choices of hyperparameters, in the ordered phase (left) with ϵ/|B|= 2−5, 1/σW = 8, in the high-temperature phase (centre)
with ϵ/|B|= 4, 1/σW = 8, and in the disordered phase (right) with ϵ/|B|= 2−5, 1/σW = 2−8. Dashed horizontal lines denote
the target eigenvalues and are only visible on the left. Note the difference in scale on the vertical axis.

4. Dynamics of training

In this section, we take a complementary approach, i.e. rather than focussing on the features, we study
the dynamics of the weight matrices and demonstrate that the various phases can also be observed in the
evolution of these. We consider the n2 × n1 weight matrix W(2), where in our case n2 = 16< n1 = 32.
Following [23], we consider the symmetric combination

X=W(2)W(2)T, (4.1)

and denote its eigenvalues with xi (i = 1, . . . ,n2). These eigenvalues are semipositive and are the squares
of the singular values of W(2).

The evolution of the eigenvalues xi(t) during training is presented in figure 6 in the ordered phase
(left), the high-temperature phase (centre), and the disordered phase (right). Dashed horizontal lines
denote the target eigenvalues and are only visible on the left. Note the difference in scale on the vertical
axis. What is shown in each figure is the evolution for an ensemble of 100 teacher-student models, hence
a total of 1600 eigenvalues.

At initialisation, with W(2)
ij ∼N (0,σ2

W/n1), the distribution of eigenvalues of X is given by the
Marchenko-Pastur distribution,

PMP (x) =
1

2πσ2
Wrx

√
(x+ − x)(x− x−), x− < x< x+, (4.2)

where r= n2/n1 = 1/2, x± = σ2
W(1±

√
r)2. The upper limit is hence given by x+ = 0.046 for 1/σW = 8

and x+ = 1.9× 105 for 1/σW = 2−8. This explains the difference in the initial range between the figure
on the right and the two other examples.

We observe dynamics characteristic of all three phases. In the ordered phase (left), the distribution of
eigenvalues flows towards the target distribution. In the high-temperature phase (centre), stochastic fluc-
tuations are so strong that the distribution quickly widens and the eigenvalues grow until they poten-
tially reach a gradient vanishing point. In the jamming phase (right), the initial distribution is already
very broad, and eigenvalues evolve slowly without ever converging.

4.1. Stochastic dynamics of the average level spacing
The dynamics of the eigenvalues can in principle be modelled by generalised Dyson Brownian motion
[23], derived from the stochastic equation for the weight matrix, with discrete updates (2.29) or in
continuous time (2.30). Dyson Brownian motion for the eigenvalues of X in continuous time, with
T= ϵ/|B|, is given by [23, 48, 49],

ẋi = Ki +T
∑
j ̸=i

Vij

xi − xj
+
√
TVii ηi, ηi ∼N (0,1) . (4.3)

Here Ki = Kii and V ii are the diagonal elements of the mean and variance of the gradient after diagonal-
isation of the former, and Vi̸=j are the off-diagonal components, with

Kij =−E
[
∆X

ij

]
, Vij = V

[
∆X

ij

]
, ∆X

ij =

n1∑
k=1

(
W(2)

ik ∆
(2)
kj +∆

(2)
ik W(2)

kj

)
, (4.4)
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where the final equation follows from the update for W(2), see equation (2.28). The second term in
equation (4.3) is the Coulomb term, leading to eigenvalue repulsion.

Solving the coupled set (4.3) of SDEs would give the time evolution of the eigenvalues, but it is not
straightforward to do so, as the drift, Coulomb term, and diffusion coefficients are complicated non-
linear and time-dependent functions. To simplify the problem, we introduce a ‘one-particle theory’, see
also [50], by focussing on the average level spacing. Let xi be the i-th eigenvalue of X and assume that
the eigenvalues are ordered, 0⩽ x1 < x2 < · · ·< xn2 . We consider the level spacing Si = xi+1 − xi, and its
average value,

S=
1

n2 − 1

n2−1∑
i=1

Si =
1

n2 − 1
(xn2 − x1) . (4.5)

As a first Ansatz, we assume that the average level spacing effectively evolves with a local rate λ(t), i.e.

Ṡ(t) = λ(t)S(t) ⇒ S(t) = S(0)e
´ t
0 dsλ(s). (4.6)

We can then define a time-averaged rate,

λ(t) =
1

t

ˆ t

0
dsλ(s) =

1

t
log

S(t)

S(0)
. (4.7)

The computed values at the end of learning, λ(tf), are shown in figure 7. We observe that the averaged
rate is smallest in the jammed phase and largest in the paramagnetic phase, consistent with the time cor-
relation of the features shown in figure 5(left)5.

To improve on this, we construct a stochastic equation for S, by subtracting the equation for
the smallest eigenvalue x1 from the one for xn2 , see equation (4.5). A detailed derivation is given in
appendix B. This results in

Ṡ= KS +VS
T

S
+
√
2TDS η, η ∼N (0,1) . (4.8)

Expressions for KS,VS, and DS in terms of K ij and V ij are given in equations (B.7) and (B.9). In the fol-
lowing, we use equation (4.8) to derive a relation for the phase boundary between the high-temperature
phase and the other phases.

4.2. Phase boundary from a stability analysis
In the high-temperature phase, the level spacing keeps increasing, see figure 6(centre), unlike in the
two other phases in which it approximately stabilises after the initial stage, albeit for different reas-
ons. We now derive a condition of convergence using a stability analysis of the combined force term
in equation (4.8). A restoring force is required to balance the effects of fluctuations due to the noise,
c.f. the fluctuation-dissipation theorem.

We consider the deterministic part of equation (4.8),

Ṡ= KS +VS
T

S
, (4.9)

where in general, S will converge if the RHS is negative and diverge if it is positive. Note that KS < 0
close to a (local) minimum, when the loss function is minimised. We assume VS > 0. Hence, the conver-
gence condition is given by the inequality,

T

S
⩽−KS

VS
⇔ converge,

T

S
>−KS

VS
⇔ diverge. (4.10)

The quantity on the RHS represents the signal-to-noise ratio of the gradient of the loss function. The
LHS can be related to the initial hyperparameters, as follows. If the average level spacing keeps increas-
ing, we have

S
(
tf
)
> S(t)> S(0) or

1

S(0)
>

1

S(t)
>

1

S
(
tf
) . (4.11)

5 In the paramagnetic phase, at the highest temperature and smallest variance and at tf ∼ 105, see figure 6(centre), we find
(n2 − 1)S(tf)∼ 106, (n2 − 1)S(0) = x+ − x− ∼ 0.04, and hence λ(tf)∼ 10−5 log(106/0.04)∼ 2× 10−4, in agreement with figure 7.
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Figure 7. Time-averaged rate at the end of learning, λ(tf), in the T− 1/σW plane. A darker colour means a smaller value.

Combining this with equation (4.10) in the case of divergent dynamics then yields the following inequal-
ity during training,

T

S(0)
>

T

S(t)
>−KS (t)

VS (t)
. (4.12)

On the other hand, a conservative estimate for converging dynamics is given by

T

S(0)
<−

KS

(
tf
)

VS

(
tf
) . (4.13)

The initial eigenvalue distribution of X is given by the Marchenko-Pastur distribution (4.2). Hence, the
average level spacing at initialisation is bounded by

S(0)⩽ 1

n2 − 1
(x+ − x−) =

1

n2 − 1
4σ2

W

√
r, r=

n2
n1

. (4.14)

The boundary for divergent dynamics is then approximately given by

n2 − 1

4
√
r

T

σ2
W

>−
KS

(
tf
)

VS

(
tf
) . (4.15)

The quantities on the LHS are variables determining the network setup, initialisation, and details of the
SGD (n1,n2,σW,T= ϵ/|B|), whereas the quantity on the RHS indicates the signal-to-noise ratio of the
gradient at the end of training. Equation (4.15) therefore establishes that the average level spacing con-
verges to a stationary value only when the signal-to-noise ratio of the gradient on the RHS is larger than
the stochasticity on the LHS.

To apply equation (4.15) in practice, we compute the gradient and variance of the loss function at
the end of training and estimate the RHS for each run, see appendix B for details. We then compare
both sides of equation (4.15) to determine whether, according to this criterion, the dynamics has con-
verged or not. Each point in the phase diagram is assessed using an ensemble of S = 100 models, and
we determine whether 1σ (68%), 2σ (95%), and 3σ (99.7%) of the models satisfy the inequality (4.15).
These boundaries are shown in figure 8. Figure 8(left) shows the 1σ boundary for the smallest σW : the
vertical line separates the ordered phase and the high-temperature phase, indicating the temperature of
the transition. In figure 8(centre and right) three lines are shown, indicating that 68%, 95%, and 99.7%
of the models satisfy inequality (4.15) at the end of the training. In the upper region, above the 1σ line,
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Figure 8. Convergence boundaries obtained from equation (4.15). Left: the vertical dashed-dotted line is the 1σ boundary at fixed
1/σW = 8, separating the ordered and the high-temperature phase. Three convergence boundaries on top of the time correlation
(centre) and feature alignment (right). The dimmest line indicates that 1σ (68%) of the models have converged, and the brighter
two lines indicate that 2σ (95%) and 3σ (99.7%) of the models have converged.

the dynamics has not converged due to thermal fluctuations; this is the high-temperature phase. This
boundary tracks the transition region especially well for the time correlation function, shown in the
centre. In the lower region towards the left, below the 1σ line, the dynamics has not converged due to
disorder; this is the jamming phase in which the dynamics is slow but not completely static. Increasing
the requirement for convergence, we observe that the 2σ and 3σ boundaries capture the ordered phase
in the lower-right region very well: here essentially all models converge due to the strong alignment of
features.

5. Discussion and outlook

Starting from the observation that the loss function of a multilayer neural network can be interpreted as
a Hamiltonian of a disordered system, we analysed in some detail its training dynamics under stochastic
gradient descent in the case of a teacher-student model. We have shown that three phases can be iden-
tified, depending on the choice of hyperparameters. These findings can be conveniently summarised in
a phase diagram, in which the ratio of the learning rate over batch size, T= ϵ/|B|, determines the ‘tem-
perature axis’, while the initial variance σ2

W of the weight matrix elements sets the ‘disorder axis’.
Figure 9 contains a summary of our findings, with four observables probing different aspects of

the phase structure. Superimposed are the estimates of the phase boundaries between the three phases.
Starting in the lower-left corner, the dynamics is dominated by the large initial variance, leading to
a jamming phase familiar from spin-glass like systems, in which training is extremely slow. This res-
ults in a large loss, poor feature alignment, and persistent memory of the initial state of the network.
Reducing the initial variance while keeping the temperature low leads to a transition to a well-trained—
or ferromagnetic—phase, in which the loss is small, the features are aligned with the target data, and
memory of the initial state is successfully erased. The phase boundary is given by the vertical dashed
line, which is derived from a symmetry-breaking argument, directly linked to our choice of hyperbolic
tangents as activation functions, see section 2.3. Increasing the level of stochasticity brings us to the
high-temperature—or paramagnetic—phase, in which the loss is again large and feature alignment is
absent, but due to the fluctuations, the memory of the initial state is erased rapidly. The phase bound-
ary, indicated by the dashed-dotted line, is derived using the framework of Dyson Brownian motion
for stochastic weight matrix dynamics and follows essentially a signal-to-noise argument, with the high-
temperature phase dominated by noise.

A practical implication of this study is that the phase boundaries can guide the choice of optimal
hyperparameters: selecting the largest temperature in the ordered phase leads to fast training. It is noted
that to determine the phase boundary to the high-temperature phase, one has to compute the signal-
to-noise ratio of the gradient at the end of the training, but having a grasp of what the phase diagram
looks like will help in finding optimal hyperparameters effectively, even without explicit knowledge of
this boundary. More generally, the significance of this work lies in the fact that it incorporates stochastic
training dynamics in the analysis, proposes a direct interpretation of hyperparameters as physical quant-
ities, and provides intuition from theory on how hyperparameters affect the training dynamics.

There are several directions to explore in the future. The phase boundary between the ordered and
disordered phases at low temperature is closely linked to hyperbolic tangent activation functions being
bounded. In contrast, activation functions of the ReLU type are only bounded on one side, which will
affect the phase structure. This is worth exploring further. In this study, we used a teacher-student
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Figure 9. Four observables probing different aspects of the phase structure: final test loss (top left), time correlation of features
(top right), feature alignment (lower left), and time-averaged rate of the average level spacing (lower right) in the T− 1/σW

plane, with superimposed the estimates of the phase boundary between the jamming and ferromagnetic phase (dashed vertical
line) and between the paramagnetic and the other phases (dashed dotted line).

model and focused on one of the weight matrices in the neural network. It is of interest to extend this
to include realistic data sets such as MNIST and analyse the dynamics of all weight matrices. Our neural
network is relatively small; considering deeper and especially wider architectures may lead to more pro-
nounced phase boundaries and potentially the use of finite-size scaling techniques to analyse the trans-
itions at a more quantitative level. To achieve this, one first needs to define the correct thermodynamic
limit, which preserves the dynamical properties of the optimisation, as naive large width or depth limits
lead to lazy training, where the norm of the gradient vanishes [51].

While we followed the evolution of the singular values of the weight matrices during training, we
did not study the evolution of their spectral density [23, 52]. Empirical evidence shows that correla-
tions between the weight matrix elements are induced during training, such that the ensemble of weight
matrices at the end of training deviates from the Wishart–Laguerre distribution at initialisation, lead-
ing, e.g. to heavy tails [39, 40]. It would be interesting to analyse these distributions using techniques
developed in the random matrix community [41, 42].

Once the spectral properties of the trained network and a consistent thermodynamic limit are
obtained, a theoretical calculation of the phase boundaries might be feasible using methods developed
for disordered systems [53, 54]. An ambitious long-term objective would then be to study universality
properties of different neural network architectures, potentially leading to insights on designing efficient
architectures and predicting scaling behaviour from first principles.
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Appendix A. Duality in feature space

In section 2, we claimed that the output of a neural network is a linear combination of learned features.
Here, we develop this viewpoint somewhat further.

Using the notation of section 2,

ŷiα =

nL−1∑
j=1

W(L)
ij ϕjα, ϕjα = ϕ

(
z(L−1)
j (xα)

)
, (A.1)

we note that the ϕjα’s are nL−1 × |D|-dimensional matrices. These can be interpreted in two ways,
namely as a set of nL−1 vectors of size |D| or as a set of |D| vectors of size nL−1, i.e.

ϕj ∈
{
ϕi

∣∣∣ϕi ∈ R|D|, i ∈ [1,nL−1]
}

or ϕα ∈
{
ϕβ

∣∣∣ϕβ ∈ RnL−1 ,β ∈ [1, |D|]
}
. (A.2)

In the first interpretation, the output of a neural network is a linear combination of features,

ŷi =

nL−1∑
j=1

W(L)
ij ϕj, ŷi ∈ R|D|, (A.3)

whereas in the second interpretation, the output ŷα ∈ RnL is a vector in the image given by the map
W(L), which is not necessarily bijective, depending on the sizes of nL and nL−1.

We may carry this distinction through to the loss function (2.9), since the sums over the data index
and node indices are independent. In the first case, we can write

L=
1

|D|

|D|∑
α=1

Hα, Hα ≡ 1

2

nL−1∑
i,j=1

Jijϕiαϕjα −
nL−1∑
i=1

hiαϕiα, (A.4)

where the term Hα is a random field spin-glass Hamiltonian of nL−1 soft spins. In the second case, we
can define a local Hamiltonian along the node index direction, for fixed indices i, j,

L=

nL−1∑
i,j=1

Hij, Hij ≡
1

|D|

|D|∑
α=1

(
1

2
Jijϕiαϕjα − hiαϕjαδij

)
(A.5)

which is a local Hamiltonian of a random field with n= |D| components and constant J ij for fixed i and
j. Similarly, we can define the overlap or alignment ⟨hϕ⟩ by contracting over either the data index or the
node index, and these two interpretations capture different physics.

In the main part of the paper, we follow the first interpretation and consider the output as a linear
combination of features ϕj.
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Appendix B. Stochastic equation for the average level spacing

Let xi be an eigenvalue of a symmetric positive definite N ×N matrix X subject to stochastic dynamics,

ẋi = Ki +T
∑
j ̸=i

Vij

xi − xj
+
√
TVii ηi, ηi ∼N (0,1) . (B.1)

We assume the eigenvalues are ordered, 0⩽ x1 < x2 < .. . < xN. We are interested in the eigenvalue spa-
cing, Si = xi+1 − xi, and its average value for each realisation,

S=
1

N− 1

N−1∑
i=1

Si =
1

N− 1
(xN − x1) . (B.2)

In addition, one may average over an ensemble of trajectories.
Our aim is to introduce a ‘one-particle theory’ for S, in the spirit of [50]. Subtracting the equation

for the smallest eigenvalue x1 from the one for xN, one obtains

ẋN − ẋ1 = (N− 1) Ṡ= KN −K1 +T

(
VN1

xN − x1
− V1N

x1 − xN

)
+T

N−1∑
j=2

(
VNj

xN − xj
−

V1j

x1 − xj

)
+
√
TVNN ηN −

√
TV11 η1. (B.3)

The noise term is the difference of two independent Gaussian random variables with zero mean and
variances TVNN and TV11, respectively. These can be combined as√

TVNN ηN −
√
TV11 η1 =

√
T(VNN +V11)η, η ∼N (0,1) . (B.4)

The Coulomb terms are non-trivial. We propose to replace the level spacings by the appropriately scaled
average level spacing, i.e.

xN − xj = (N− j)S, x1 − xj =−( j− 1)S. (B.5)

We then write the combination of Coulomb terms as

T

N− 1

(
VN1

xN − x1
− V1N

x1 − xN

)
+

T

N− 1

N−1∑
j=2

(
VNj

xN − xj
−

V1j

x1 − xj

)
= VS

T

S
, (B.6)

with

VS =
2VN1

(N− 1)2
+

1

N− 1

N−2∑
k=1

1

k
(VN,N−k +V1,k+1) . (B.7)

Here we used that V ij is symmetric and relabelled the summation index (N− j = k, j− 1= k) in the two
sums. The equation for Ṡ then takes the elegant form

Ṡ= KS +VS
T

S
+
√
2TDS η, (B.8)

where we also introduced the drift and the diffusion coefficient,

KS =
1

N− 1
(KN −K1) , DS =

V11 +VNN

2(N− 1)2
. (B.9)

In the main text, it is shown that the phase boundary between the high-temperature phase and the
other phases depends on the ratio KS/VS. We determine this ratio as follows. We start with the gradient
after training, K ij at t= tf, for a given training run. This matrix is diagonalised, yielding the eigenvalues
Ki. From this, we immediately obtain KS as the normalised difference between the largest and smallest
eigenvalue, see equation (B.9). Using the same transformation, we also rotate Vij = V[Kij] to compute
VS and DS, see equations (B.7) and (B.9). Subsequently, we compute KS/VS and compare this to LHS of
equation (4.15), to test the inequality.
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