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SU(3) gauge theories with an increasing number of light fermions are the templates of strongly
interacting sectors and studying their low-energy dynamics and spectrum is important, both for
understanding the strong dynamics of QCD itself, and for discovering viable UV completions of
beyond the Standard Model physics. In order to contrast many-flavor strongly interacting theories with
QCD on a quantitative footing, we use lattice field theory simulations. We focus on the study of the
flavor-singlet spectrum in the scalar and pseudoscalar channels: This is an interesting probe of the
dynamics of the strongly interacting sector, as reminded by the QCD case with the f0ð500Þ (σ) and η0

mesons. The hierarchy of the spectrum of a strongly coupled new gauge sector of the Standard Model
defines the potential reach of future colliders for new physics discoveries. In addition to a novel hierarchy
with light scalars, introducing many light flavors at fixed number of colors can influence the dynamics of
the lightest flavor-singlet pseudoscalar. We present a complete lattice study of both of these flavor-singlet
channels on high-statistics gauge ensembles generated by the LatKMI Collaboration with 4, 8, and 12
copies of light mass-degenerate fermions. We also present other hadron masses on the lightest ensemble
for Nf ¼ 8 generated by the LatKMI Collaboration and discuss the chiral extrapolation of the spectrum
in this particular theory. We contrast the results to Nf ¼ 4 simulations and previous results of Nf ¼ 12

simulations.

DOI: 10.1103/vnml-g6nx

I. INTRODUCTION

Since the discovery in 2012 of the Higgs boson [1,2], the
Standard Model (SM) has been so successful that there has
been little hint of new physics beyond the SM. However,
the origin of mass remains a central mystery of the SM in
the form of the naturalness problem (see Ref. [3] for a
recent review), which is suggestive that there should be
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some underlying theory to account for it. Walking techni-
color [4,5] is a candidate for such a theory; it is charac-
terized by a chiral condensate with a large anomalous
dimension γm ≃ 1, and by an approximate scale symmetry
which is broken spontaneously and explicitly (the
scale anomaly) by the same chiral condensate.1 The
latter of these predicts the Higgs boson as a composite
light pseudodilaton (“technidilaton”), a pseudo-Nambu-
Goldstone (NG) boson of the broken scale symmetry.
Such a theory would be strongly coupled with a slowly
running (“walking”) gauge coupling.
Such a walking gauge theory may be realized by an

asymptotically free SUðNcÞ gauge theory with a large
number of massless flavors Nfð≫NcÞ [9], which we may
refer to as “large-Nf QCD.” It is inspired by the near scale-
invariant/conformal structure around the Caswell-Banks-
Zaks infrared (IR) fixed point α� in the two-loop beta
function at large Nf (8 < Nf ≤ 16 for Nc ¼ 3) [10,11].
The walking regime is anticipated to be at a value of the

IR strong coupling α� larger than a critical value α� ≳ αcr,
such that 1 ≪ nf ≡ Nf=Nc < ncrf , where nf ¼ ncrf at
α� ¼ αcr. We expect a significant separation between the
UV scale ΛUV and the scale of the chiral condensate with
dynamical mass mD ≪ ΛUV, where ΛUV is identified with
ΛQCD generated by the regularization in perturbation
theory. This is in contrast to QCD where ΛQCD ≈mD. In
the infrared region μ < ΛIR ¼ OðmDÞ, the coupling α
blows up with the fermion loop decoupled; i.e., the
perturbative IR fixed point α� is washed out. For
ΛIR < μ < ΛUV, it starts running slowly in units of ΛIR
as αðμÞ ↘ αcr and γmðαðμÞÞ ≠ 0, with αcr now being the
UV fixed point; this gives rise to a nonperturbative trace
anomaly of orderOðm4

DÞ in contrast to the perturbative one
of order OðΛ4

UVÞ.
On the other hand, the region α� < αcr (nf > ncrf ) is the

conformal window, with mD ≡ 0.
While experiments provide direct access to this spectrum

in the case of QCD with light flavors Nf ¼ 2þ 1, the case
Nf ≫ 2 has not been observed in nature, and so it can only
be studied theoretically. Analytic approaches involve mak-
ing an approximation, such as the ladder approximation
(see, e.g., Ref. [12] and references therein), which intro-
duces somewhat large theoretical uncertainties in our
understanding of the spectrum. Lattice simulations fill this
gap, providing a nonperturbative first-principles approach
relatively free of large or uncontrolled approximations, and
providing us with data which can be used to benchmark
phenomenological models.
Several lattice groups, including the LatKMI

Collaboration, have searched for a candidate walking
theory within the space of large-Nf QCD (Nc ¼ 3) theories

on the lattice. The cases Nf ¼ 8 and 12 have drawn
particular attention. The spectrum of the theory toward
the chiral limit gives one avenue to probing the viability of
such a theory as a candidate walking theory. Among other
observables, we have particularly focused on the possible
large anomalous dimension visible in the spectra of bound
states, with a special focus on a flavor-singlet scalar σ,
which would be a candidate for the light pseudodilaton
[13–17]. In order to shed light on signals of near-
conformal dynamics, we have checked the hyperscaling
and otherwise compared the behavior of the σ mass from
lattice simulations of Nf ¼ 4; 8, and 12 QCD with
simulations that have used the same lattice setup to
minimize systematic differences between the results from
the three theories.
Our prior lattice numerical simulations indicated that

these three different values of Nf correspond to rather
different types of dynamics, implying that ncrf ≲ 4.

(i) Nf ¼ 4 shows [14,17] essentially the same features
as of Nf ¼ 2þ 1 QCD, specifically, spontaneous
chiral-symmetry breaking, and neither hyperscaling
nor a light flavor-singlet scalar state σ are observed.

(ii) The Nf ¼ 12 theory appears to show [13,17] con-
formal dynamics, and hence lies in the conformal
window, implying mD ≡ 0. The two-body hadronic
mass MH shows typical universal hyperscaling

of the (renormalized) fermion mass mðRÞ
f , MH=2 ∼

mD þmðRÞ
f ¼ mðRÞ

f ∼ ðmfÞ1=ð1þγmðα�ÞÞ [18–20], with
γmðα�Þ ≃ 0.4 − 0.5.2 The ratios of various bound
state mass scales remain constant toward the chiral
limit. We subsequently found a light σ [15], even
lighter than the pion π, an observation to which we
shall return to in this work.

In the conformal window, the presence of an
explicit fermion massmf means that all bound states
are in fact nonrelativistic “unparticles” due to the
conformal phase transition [22], since there are no
bound states in the chiral limit. Nevertheless, σ is
still a pseudo-NG boson, while π is not: Chiral
symmetry is only broken explicitly by mf, while
scale symmetry is further broken spontaneously by
the gluon condensate (triggered in turn by the same
mf). We will return to this discussion in Sec. II.

(iii) Most excitingly, we found [14,17,23] that Nf ¼ 8 is
a candidate for a walking theory. The pion mass
decreases Mπ → 0 toward the chiral limit mf → 0,
while other (flavor-non-singlet) bound states mass

1Walking technicolor has also been advocated without the
notion of scale-symmetry breaking giving a dilaton or a large
anomalous dimension [6–8].

2This result is roughly consistent with the ladder Schwinger-
Dyson (SD) equation in the conformal phase, with γm ¼ 1 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α=αcr
p

∼ 0.8 at α ¼ α�. Including nonleading terms for the
large mass and finite size gives γm ∼ 0.5–0.6 when fitted by a
simple hyperscaling form (with only the leading term) as in the
lattice analyses in [21].
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MH do not, i.e., MH=Mπ → ∞. This signals that the
π is a pseudo-NG boson of a spontaneously broken
symmetry. At the same time, the theory shows
signals of being in the near-conformal phase. Spe-
cifically, most states in the mass spectrum (including
Fπ and the string tension) dominated by the explicit

chiral-symmetry breaking mðRÞ
f ≳mD obey the

approximate hyperscaling relation with a large
anomalous dimension

γm ≃ 1: ð1:1Þ

The exception to this is the pion, as we expect: Since
the pion is a pseudo-NG boson, the hyperscaling
form is expected to fit best near the chiral limit,
while for other states, the scaling breaks in this
region. The would-be anomalous dimension that we
see for the pion is “γm” ≃0.6 in the mass region we
study [17]; we refer to this as “nonuniversal” hyper-
scaling. This has been found to be consistent with
other groups’ results [24–26].3

Moreover, for the Nf ¼ 8 theory we reported [16,17] a
signal that the flavor-singlet scalar state σ may be a
pseudodilaton. Specifically, it was observed to be as light
as the pseudo-NG boson pion π all the way down to the
vicinity of the chiral limit

Mσ ≃Mπ ≪ Mρ ð1:2Þ

and displayed “γm” ≈0.5 (again, as far as γm can be
considered meaningful for a pseudo-NG boson). These
observations contrast sharply with QCD with a smaller
number of flavors. By implementing the proposal in
Ref. [29], we also observed that the ratio of decay constants
of the σ and π,4

Fσ

Fπ=
ffiffiffi
2

p ≈ 4 ≫ 1; ð1:3Þ

which, with Eq. (1.2), suggests that σ in this theory may be
identified as a candidate for the Higgs boson.
We obtained the latter result by fitting the lattice data

using the mass formula [29]

M2
σ ≡ d0 þ d1 ·M2

π: ð1:4Þ

This relation may be derived5 via the scale and axial Ward-
Takahashi (WT) identities. Since its original derivation via
these routes, there have been further developments in a
variant of this mass formula based on a low-energy dilaton
effective field theory description [30–39]. To preempt the
results that we will present in Sec. II, we will later
demonstrate that d1 ≈ 1 in this theory, implying γm ≈ 1,
and hence, Eq. (1.4). This allows a direct comparison
among the three theories we consider here, regardless of
whether they are conformal or chirally broken, which we
will employ in this work. Here, d0 ¼ Oðm2

DÞð≪Λ2
UVÞ,

which is due to the nonpertubative trace anomaly, and will
be nonzero even in the chiral limit.
We have also observed [16] that this coincides with both

linear-sigma-model-based and holographic calculations, a
result that was further confirmed by subsequent lattice
computations of the scalar decay constant FS [17,40]. The
light σ has been confirmed by lattice studies by other
groups [41,42]. (For more recent lattice studies, see, e.g.,
Refs. [43–46]). The value we obtain for Fσ is roughly
consistent with more recent analyses of data from the
Lattice Strong Dynamics (LSD) Collaboration,
Fσ=ðFπ=

ffiffiffi
2

p Þ ≃ 3.4 [33,47] (see also Refs. [34,46,48]).
We have also reported preliminary results for the flavor-

singlet pseudoscalar η0 [49,50], which has a mass even in
the chiral limit due to the chiral anomaly in the anomalous
chiral WT identity:

M2
η0 ¼ ðM2

η0 ÞðanomalousÞ þM2
π: ð1:5Þ

While for Mσ, d0, and d1 depend on Nf and Nc only
implicitly via γm, we found [50] that when normalized by
an appropriate IR scale t0, the η0 mass depends directly on
these as [12]

8t0 ·M2
η0 ≃ 8t0 · ðM2

η0 ÞðanomalousÞ ∼ n2f; ð1:6Þ

where nf ¼ Nf=Nc. These flavor-singlet bound states have
additional mass due to anomalies—the trace anomaly for σ
and the chiral anomaly for η0—which gives extra symmetry
breaking beyond the fermionic mass term. We will revisit
this in more detail in Sec. II.
Extending our previous study of the flavor-singlet scalar

σ [15–17] and also the preliminary studies of the flavor-
singlet pseudoscalar η0 [49,50], in this work we perform
lattice field theory simulations of QCD with different Nf to
study the spectrum of bound states. We highlight the
differences, and similarities, between QCD theories with
different numbers of light (or massless) flavors, in a
quantitative way, with new data. In particular, we present
an extensive study of η0, as well as an updated study of the

3See also Refs. [27,28] for recent and different approaches
that suggest that the Nf ¼ 8 QCD theory exhibits a fixed
point existing at a much stronger coupling region than previous
studies, consistent with being near the onset of the conformal
window.

4Decay constants of the pion and σ are defined as
h0jDμð0ÞjσðqμÞi ¼ iFσqμ, or equivalently, h0jθμνjσðqμÞi ¼
−Fσðqμqν − gμνq2Þ=3, h0jAα

μð0ÞjπβðqμÞi ¼ iδαβðFπ=
ffiffiffi
2

p Þ · qμ,
where our Fπ corresponds to 130 MeV for the usual QCD pion.

5This was first derived in Ref. [29] in the context of dilaton
chiral perturbation theory, giving the same expressions for d0
and d1.
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spectra of σ and other bound states, all of which are
consistent with our previous results mentioned above.
This comparison is informed by the mass formulas

above, Eqs. (1.4) and (1.5), discussed in more detail in
Sec. II, which are valid independently of the chiral phase
(spontaneously broken or conformal), and hence may be
applied equally to all values of Nf we consider.
We also measure the gradient flow energy scale 1=

ffiffiffiffiffiffi
8t0

p
for Nf ¼ 4; 8; 12, with the same systematics, including a
study of the hyperscaling of t0 for Nf ¼ 8; 12.
The remainder of this paper is organized as follows: In

Sec. II we motivate the use of the gradient flow scale
1=

ffiffiffiffiffiffi
8t0

p
as an infrared scale and derive mass formulas from

anomalous WT identities for the scale symmetry (for σ)
and for the Uð1ÞA symmetry (for η0), which will be used to
contextualize the lattice data in subsequent sections. In
Sec. III, we describe our setup of the lattice measure-
ments. We then present an update of the flavor-non-singlet
spectra:
(1) We first confirm our previous results on the char-

acteristic mf dependence of Mρ=Mπ toward the
chiral limit for Nf ¼ 4; 8; 12, as deeply broken,
walking, and conformal phases, respectively.

(2) We present measurements of the gradient flow
energy scale 1=

ffiffiffiffiffiffi
8t0

p
for Nf ¼ 4; 8; 12, which pro-

vide the basis for comparing the lattice results for
different Nf. We show that it obeys hyperscaling for
Nf ¼ 8 and 12, while not for Nf ¼ 4, reinforcing
previous indications that the former theories are in a
(near-) conformal phase, while the latter has a deeply
spontaneously broken chiral symmetry.

(3) Then the updated results for the nonsinglet Nf ¼ 8
spectra are given, which are all consistent with our
previously published data [17].

Then in Sec. IV, we present the data for σ mass, giving an
update to our previous data for Nf ¼ 8, which are analyzed
according to the formula Eq. (1.4) and found to give d0, d1
consistent with the previous publications [16,17]. We also
present new data for Nf ¼ 4, and further compare d0, d1
among Nf ¼ 4; 8 and Nf ¼ 12. We also present the σ mass

and the nonsinglet masses both in units of Fπ=
ffiffiffi
2

p
and in

units of 1=
ffiffiffiffiffiffi
8t0

p
, and highlight the characteristic features

of Nf ¼ 4; 8; 12.
Section V is the core part of the present paper, presenting

completed results for the η0 in comparison with other
spectra. We show the results for the mass both in terms
of the UVand IR scales; the latter indicate good agreement
with the prediction of the nf dependence in the anti-
Veneziano limit Eq. (1.6), thus confirming the previous
results [49,50]. Section VI is devoted to the summary.
We also include more detailed data and analyses in the

Appendixes. In particular, Appendix C compares our
results with those of the LSD Collaboration in units
of 1=

ffiffiffiffiffiffi
8t0

p
.

II. MESON MASSES IN THE
ANTI-VENEZIANO LIMIT

In the following sections, we will present new lattice data
for Nf ¼ 4; 8; 12 QCD. In particular, we will present
results for the masses of the flavor-singlet scalar σ and
the pseudoscalar η0, each of which has characteristic con-
tributions from the anomaly, the scale, and the Uð1Þ axial
anomaly. In order to understand and contextualize the
numerical results we will present, we must have a theoretical
functional form to compare them with. In this section, we
will discuss the theoretical issues surrounding the character-
istic nfð≡Nf=NcÞ dependence of the anomalous parts of the
two mesons we will be focusing on, in the limit

Nc → ∞ with Ncα ¼ fixed;

nf ¼ Nf=Nc ¼ fixed ≫ 1: ð2:1Þ

We refer to this as the anti-Veneziano limit [12], by analogy
with the related limit proposed byWitten [51] and Veneziano
[52] in which nf is fixed at a small value referred to as the
Veneziano limit. The anti-Veneziano limit is of interest in our
setup as in the theories we are considering, nf ∈ ½4

3
; 4�; this

range is well away from the Veneziano limit, and we may
expect the upper end to be better represented by the anti-
Veneziano limit than the lower end.

A. An IR scale from the gradient flow

In the discussion that follows, we will normalize the
spectral quantities using an IR scale ΛIR ¼ ΛIRjNc;Nf

; that
is, a scale where the coupling becomes strong, allowing the
formation of bound states from the nonperturbative dynam-
ics. This scale is intrinsic to the theory specified by the
combination of Nc and Nf. To allow comparisons between
theories with differentNf, bound state masses such as those
of the η0 and σ should be measured in terms of such a scale.
In the broken phase, ΛIR is essentially the confinement

scale and/or the spontaneous chiral breaking scale mD (the
“dynamical mass”). More properly, this can be called the

“consitutent quark mass” mðconstituentÞ
f ; it is related to the

mass of the ground state bound state

ΛIR ≃ 2mðconstituentÞ
f ≃ 2mD þ 2mðRÞ

f ≃Mρ; ð2:2Þ

where mðRÞ
f is the “current quark mass” defined as the

renormalized, on-shell mass of the fermion: mðRÞ
f ¼

mðRÞ
f ðμÞj

μ¼mðconstituentÞ
f

.6

6Note that another ground state mass, that of the π, is the NG
boson mass in the broken phase, and so it has a different
dependence on mD and mðRÞ

f .
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However, defining ΛIR via Eq. (2.2) is not suitable for
theories in the conformal phase, where bound states exist
only in the presence of a nonzero explicit fermion mass

mðRÞ
f ≠ 0. Ordinary fermionic bound states (except for the

flavor-singlet scalar σ discussed in a later subsection) are
formed via the weakly coupled Coulomb force instead of
the confining force. The masses of two-body hadrons then
become

MH ∼ 2mðRÞ
f ¼ 2mf · Z−1

m ¼ 2mf

�
ΛUV

mðRÞ
f

�
γm

¼ 2ΛUV

�
mf

ΛUV

� 1
1þγm

; ð2:3Þ

where γm ¼ γmðαðμÞÞjμ¼mðRÞ
f

and ΛUV a corresponding

UV scale (the intrinsic scale denoted in QCD as ΛQCD),
which characterizes the asymptotically free running of
the coupling. Specifically, for scales μ ≫ ΛUV, then
γmðαðμÞÞ ∼ αðμÞ ∼ 1= lnðμ=ΛUVÞ ≪ 1. On the lattice, we
may identify this UV scale with the inverse lattice spacing
ΛUV ¼ 1=a, then this is nothing but the hyperscaling
relation [18–20]

aMH ∼ 2amðRÞ
f ¼ 2ðamfÞ

1
1þγm: ð2:4Þ

This explicit fermion mass also introduces a new IR scale
ΛYM below which the fermions decouple, leaving a con-
fined pure Yang-Mills theory. [Although the IR fixed point
α� is washed out, there still remains a remnant αðμÞ ≃ α� for
mðRÞ

f < μ < ΛUV.] This is given by [18]

ΛYM ¼ mðRÞ
f exp

�
−

1

b0α�

�

¼ ΛUV

�
mf

ΛUV

� 1
1þγm

exp
�
−

1

b0α�

�
; ð2:5Þ

where b0 ¼ 11Nc
6π is the coefficient of the one-loop beta

function of pure Yang-Mills theory, and α� the IR fixed
point in two-loop perturbation theory.
For the specific case of Nc ¼ 3, Nf ¼ 12, then b0 ¼ 11

2π,
α� ≃ 0.754, giving exp ð− 1

b0α�
Þ ≃ 0.47. On the lattice,

Eq. (2.5) then becomes

aΛYM¼amðRÞ
f exp

�
−

1

b0α�

�
≃0.47amðRÞ

f <amðRÞ
f : ð2:6Þ

Comparing Eq. (2.3) with Eq. (2.6), we see that in the
conformal phase,

ΛYM < MH: ð2:7Þ

When comparing theories in different phases including
inside and outside the conformal window, we may choose
to use for ΛIR the gradient flow scale [53]

ΛIR ¼ 1ffiffiffiffiffiffi
8t0

p ð2:8Þ

as an alternative to using Mρ as in Eq. (2.2). As a gluonic
operator, we expect this to be relatively independent of
explicit chiral breaking effects, and allow a more robust
comparison between theories in different phases. On the
lattice, we may compare ΛIR with a corresponding UV
scale ΛUV ¼ 1=a. Analogous to Eq. (2.2), we expect the
scale 1=

ffiffiffiffiffiffi
8t0

p
to consist of two contributions: the chiral

limit value from the dynamics of the theory 1=
ffiffiffiffiffiffi
8t0

p jmf¼0,
and a deformation due to the fermion mass, proportional to

mðRÞ
f . This leads us to anticipate the following behavior for

the ratio of the two scales:

ΛIR

ΛUV
¼ affiffiffiffiffiffi

8t0
p ≃ 2amD þ Ct0am

ðRÞ
f ≃

affiffiffiffiffiffi
8t0

p
����
mf¼0

þ Ct0ðamfÞ
1

1þγm: ð2:9Þ

The first term is expected to scale with the dynamical
mass mD generated by the chiral condensate
a=

ffiffiffiffiffiffi
8t0

p jmf¼0 ∼ a · 2mD; this then tends to zero as the
conformal window is approached from below, while in
the conformal window, there is no chiral condensate, and
a=

ffiffiffiffiffiffi
8t0

p jmf¼0 ≡ 0. We also introduce the coefficient Ct0 ,
which depends on the flow time. Since this is a gluonic
operator, Ct0 is expected to be smaller than the coefficients
associated with the two-body hadron masses in Eq. (2.3).
Therefore, in the broken phase, we expect Ct0 ≤ 2, while in
the conformal phase, Eq. (2.6) implies Ct0 < 1.
More concretely, as we will demonstrate in Sec. III, these

expectations—or even the stronger condition Ct0 ≤ 1 for
Nf ¼ 4; 8—are typically satisfied for our chosen values of
the flow time. This implies

Brokenðnear-conformalÞ∶ Mρ

ffiffiffiffiffiffi
8t0

p
≃

2mD þ 2mðRÞ
f

2mD þ Ct0m
ðRÞ
f

→

8<
:

≳2 ðmðRÞ
f ≫ mDÞ;

≃1 ðmðRÞ
f ≪ mDÞ;

Conformal∶ Mρ

ffiffiffiffiffiffi
8t0

p
ð≳Mπ

ffiffiffiffiffiffi
8t0

p
Þ > 2: ð2:10Þ
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B. η0 mass in the anti-Veneziano limit

We will consider first the η0 meson. In QCD with Nf
degenerate fermions, the flavor-singlet axial-vector current

A0
μðxÞ ¼

XNf

i¼1

ψ̄ iðxÞγμγ5ψ iðxÞ ð2:11Þ

has divergence

∂
μA0

μðxÞ ¼ 2mf

XNf

i¼1

ψ̄ iiγ5ψ i þ 2Nf
α

8π
GμνG̃μνðxÞ; ð2:12Þ

where the second term is the chiral anomaly. We may then
define the η0 decay constant via

h0jA0
μðxÞjη0ðqμÞi ¼ i

ffiffiffiffiffiffiffiffiffi
2Nf

p
Fη0qμe−iqx; ð2:13Þ

h0j∂μA0
μðxÞjη0ðqμÞi ¼

ffiffiffiffiffiffi
Nf

p
FπM2

η0e
−iqx; ð2:14Þ

which then gives Fη0 ¼ Fπ=
ffiffiffi
2

p
; this is independent of

whether the theory is in the broken or conformal phase.

The relevant anomalous chiral WT identity then takes the
form

0 ¼ lim
qμ→0

iqμ
Z

d4xe−iqxhTðA0
μðxÞ · ∂μA0

μð0Þi

¼ h½iQ0
5; ∂

μA0
μðxÞ�i þ iF :T :hTð∂μA0

μðxÞ · ∂μA0
μð0ÞÞijqμ→0;

ð2:15Þ
−h½iQ0

5; ∂
μA0

μðxÞ�i ¼ iF :T :hTð∂μA0
μðxÞ · ∂μA0

μð0ÞÞijqμ→0

¼ NfF2
πM4

η0

M2
η0 − q2

����
qμ→0

ð2:16Þ

¼ NfF2
πM2

η0

¼ NfF2
π½ðM2

η0 Þðnon-anomalousÞ

þ ðM2
η0 ÞðanomalousÞ�; ð2:17Þ

where F :T : refers to the Fourier transform of the corre-
lator, which the anti-Veneziano (i.e., large-Nc) limit allows
us to evaluate using a single pole.
The nonanomalous and anomalous contributions are

then given by

ðM2
η0 Þðnon-anomalousÞ ¼ 1

NfF2
π

��
−iQ0

5; 2mf

XNf

i¼1

ψ̄ iiγ5ψ i

�	
;

¼ 1

NfF2
π
· 2mf

XNf

i¼1

−2hψ̄ iψ ii ¼ M2
π → 0ðmf → 0Þ; ð2:18Þ

ðM2
η0 ÞðanomalousÞ ¼ M2

η0 −M2
π ¼

1

NfF2
π
iF :T :

�
T

�
2Nf

α

8π
GμνG̃μνðxÞ · 2Nf

α

8π
GμνG̃μνð0Þ

�	����
qμ→0

∼
Nf

F2
π
Λ4
IR

�
ðgluonloopÞ þ Nf

Nc
ðfermionloopÞ

�

∼
Nf

Nc
Λ2
IR

�
ðgluonloopÞ þ Nf

Nc
ðfermionloopÞ

�
: ð2:19Þ

Here, “gluon loop” and “fermion loop” refer to the
contributions from the diagrams in the left and right panels
of Fig. 1, respectively [12].
In the Veneziano limit nf ≡ Nf=Nc ≪ 1, the theory is in

the broken phase, and the gluonic loop contribution in
Eq. (2.19) dominates over the fermionic one. In this case,
the anomalous mass of the η0 becomes

ðM2
η0 ÞðanomalousÞ

Λ2
IR

∼ nf ≪ 1: ð2:20Þ

This matches the expectations that in this limit, the η0 meson
is a pseudo-NG boson with parametrically vanishing mass.7

In the anti-Veneziano limit as defined in Eq. (2.1),
however, the fermion loop contribution in Eq. (2.19)
dominates over the gluon one. This then gives

7In Nf ¼ Nc ¼ 3 QCD, as observed in experiments, we see a
large value ofMη0 comparable withMρ, which does not align with
this prediction of a parametrically vanishing mass. This is
because Nf ¼ Nc ¼ 3 is far from the idealized Veneziano limit
of Nf ≪ Nc.
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ðM2
η0 ÞðanomalousÞ ∼

Nfα
2

F2
π

ðN3
cNfα

2Λ4
IRÞ ∼ n2f · Λ2

IR: ð2:21Þ

The nonanomalous contribution proportional to the pion
mass is negligible in this limit, giving

M2
η0

Λ2
IR
≃
M2

η0
ðanomalousÞ

Λ2
IR

: ð2:22Þ

We therefore expect to observe the normalized η0 mass to be
approximately independent of mf in the broken phase.
Meanwhile, in the conformal phase, the only scale is
provided by the explicit deforming fermion mass, meaning
M2

η0
ðanomalousÞ obeys the same hyperscaling relations as M2

π

and Λ2
IR ¼ 1=ð8t0Þ, and so the normalized η0 mass should

be fully independent of mf.
We may now define the ratio

R2
Nf

≡ 8t0 · ðMðanomalousÞ
η0 Þ2

Nf
¼
 
MðanomalousÞ

η0

ΛIR

!2

Nf

¼
�M2

η0 −M2
π

Λ2
IR

�
Nf

∼ n2f ð2:23Þ

in the anti-Veneziano limit. Thus, for the values of Nf we
consider, we expect

R2
12∶ R2

8∶R2
4 ≃ 9∶4∶1: ð2:24Þ

These will be shown to be consistent with our lattice data
in Sec. V.

C. σ mass in the conformal and
broken phases

The flavor-singlet scalar σ has a mass obeying the WT
identity for the scale symmetry, such that

θμμ¼∂μDμ¼βðNPÞðαÞ
4α

G2
μνþð1þγmÞmf

XNf

i¼1

ψ̄ iψ i; ð2:25Þ

where βðNPÞðαÞ
4α G2

μν is the nonperturbative component of the
trace anomaly, in which Gμν is the gluon field strength, and
βðNPÞðαÞ is the nonperturbative beta function for the non-
perturbative running (or walking) of the coupling. The
mass anomalous dimension γm here is the nonperturbative
infrared value γm ¼ γmðαðμÞÞjμ¼ΛIR

.
In the broken phase, both the nonperturbative beta function

and the nonperturbative infrared mass anomalous dimension
may be estimated via the ladder SD equation (which con-
ceptually aligns with the anti-Veneziano limit), giving

mf ≡mðRÞ
f · Zm ∼mðRÞ

f ·
mD

Λ
;

βðNPÞðαÞ ¼ ∂αðΛÞ
∂ lnΛ

����
mD¼fixed

¼ −
2π2αcr

ln3


4Λ
mD

� ¼ −
2αcr
π

�
α

αcr
− 1

�
3=2

;

γmðαÞ ¼
∂ lnZ−1

m

∂ lnΛ

����
mD¼fixed

¼ 1; ð2:26Þ

and

mD ¼ 4Λ exp

�
−

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=αcr − 1

p �
; ð2:27Þ

then mD=Λ ¼ mD=ΛUV → 0 near the conformal edge in an
essential singularity and cannot be power expanded. (Fuller
details are presented in Ref. [12] and references therein.)
We then expect bound state masses to have a hierarchy of

order OðΛIRÞ ¼ Oð2mDÞ ≪ ΛUV as α → αcr. Noting that
nf ¼ ncrf at α ¼ α� ¼ αcr, we have

ΛIR

ΛUV
∼
2mD

ΛUV

∼ exp

�
−

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=αcr − 1

p �
∼ exp

�
−

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncrf − nf

p �

→ 0 as nf ≡ Nf

Nc
→ ncrf ≡

�
Nf

Nc

�
cr
: ð2:28Þ

FIG. 1. The loop diagrams contributing to the correlation function of αGμνG̃
μν coming from the gluon loop (left panel) and fermion

loop (right panel). The large-Nc and -Nf scalings have also been specified.
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At this point, at the two-loop level,

αðμ2 ¼ Λ2
UVÞ ¼

α�
1þWðe−1Þ ≃ 0.78α�; ð2:29Þ

where the IR fixed point is at

α� ≃
4π

Nc
·
11 − 2nf
13nf − 34

; ð2:30Þ

and the ladder critical coupling is

αcr ¼
π

3
·
1

C2

¼ π

3

2Nc

N2
c − 1

≳ 2π

3Nc
: ð2:31Þ

The two-loop values are then

A ≃
3
ffiffiffi
2

p
π

5
≃ 2.7; ncrf ≲ 4: ð2:32Þ

This suggests that Nf ¼ 12 is barely inside the conformal
window, although the two-loop value for α� is not expected
to be precise, and hence neither is the value of ncrf . Further
details may be found in Ref. [12].
Turning our attention back to the conformal phase,

we may at first sight expect that since we introduce
a nonzero fermion mass, both the scale symmetry
and chiral symmetry are broken explicitly but not
spontaneously. In this case, all fermionic bound
states, including the π and σ, would be Coulombic
bound states as discussed in Eq. (2.3) above. This is
what is observed in heavy quarkonia, for similar
reasoning.
However, a key difference of the conformal phase from

the heavy quarkonia is that the degenerate massive
fermions giving rise to confinement decouple, with the
induced confinement scale—the gluon condensate—
totally governed by the fermion mass mðRÞ

f as described
by Eq. (2.5). The gluon condensate breaks the scale
symmetry not only explicitly, but also spontaneously.
Specifically, the σ is a pseudo-NG boson of the scale

symmetry (although the explicit breaking scale mðRÞ
f is

much larger than the spontaneous breaking scale ΛYM ≃

mðRÞ
f =2 in the Nf ¼ 12 case). The gluon condensate does

not however break chiral symmetry, which as such is
only explicitly broken; the π therefore remains a non-
NG boson.
Given this, we may try to estimate the σ mass not

only in the broken phase, but also in the conformal
phase, where the scale symmetry is broken both
explicitly and spontaneously by the same infrared mass

scale of the fermion mass mðRÞ
f . (It is of course also

explicitly broken in the UV by the regularization; this
makes no difference to the formation of bound states.)

Following the argument of Ref. [29], we may start with
the dilatation current given in Eq. (2.25), whose WT
identity [with single-pole dominance as in the case for
η0 in Eq. (2.16)] is

M2
σF2

σ ¼ iF :T :hTð∂μDμðxÞ · ∂μDμð0ÞÞijqμ→0

¼ h½−iQD; ∂μDμð0Þ�i ð2:33Þ

¼ −4 ·
βðNPÞðαÞ

4α
hG2

μνi − ð3 − γmÞ · ð1þ γmÞmf

XNf

i¼1

hψ̄ iψ ii:

ð2:34Þ

Similarly, the single-pole-dominated WT identity for the
nonsinglet axial-vector current Aα

μ (α ¼ 1; 2; 3) for each
doublet ψ i (i ¼ 1; 2) gives the Gell-Mann–Oakes–
Renner (GMOR) relation:

�
Fπffiffiffi
2

p
�

2

M2
π · δαβ ¼ h½−iQα

5; ∂
μAβ

μð0Þ�i

¼ −mf

X2
i¼1

hψ̄ iψ ii · δαβ: ð2:35Þ

While Eqs. (2.33) and (2.35) are usually derived using
the soft pion theorem, they are in fact based simply on
the pole dominance and hence are valid in both the
broken and conformal phases. This then gives [29]

M2
σ ¼



MðanomalousÞ

σ

�
2 þ

ð3 − γmÞ · ð1þ γmÞ Nf

2



Fπffiffi
2

p
�
2

F2
σ

·M2
π

¼ d0 þ d1 ·M2
π: ð2:36Þ

This may then be used as a fit form for lattice data.
When combined with an estimate of the anomalous

dimension γm, the results of the fit for d1 may be used to
estimate the ratio Fσ=ðFπ=

ffiffiffi
2

p Þ ¼ ffiffiffiffiffiffiffi
ND

p
Fσ=vEW (where

ND is the number of electroweak doublets). From
Eq. (2.36),

d1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3 − γmÞð1þ γmÞ
Nf

2

r
·
Fπ=

ffiffiffi
2

p

Fσ

�2

≡
�
Cγm ·

Fπ=
ffiffiffi
2

p

Fσ

�2

: ð2:37Þ

Linear sigma model and holographic QCD calculations
in the near-conformal broken and conformal phases suggest
that (via footnote 18 of Ref. [12] and references therein)

F2
σ ¼ d2σ ·

Nf

2

�
Fπffiffiffi
2

p
�

2

¼ ð3 − γmÞ2 ·
Nf

2

�
Fπffiffiffi
2

p
�

2

; ð2:38Þ
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with dσ ¼ 3 − γm the scale dimension of σ ∼ ψ̄ψ .8 If this is
the case throughout the near-conformal and conformal
phases, then from Eq. (2.37) we have

d1 ¼
1þ γm
3 − γm

: ð2:39Þ

We may also use this result to make predictions
informing potential lattice studies of 12 < Nf < 16.5: In
this case, the SD equation gives

γm ≃ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α�=αcr

p
; ð2:40Þ

↘ 0 as α� ↘ 0ðNf ↗ 16.5Þ: ð2:41Þ

This in turn would predict

d1 ↘ 1=3 as Mσ ↘ Mπ=
ffiffiffi
3

p
and ð2:42Þ

Fσ

Fπ=
ffiffiffi
2

p ↗ 8.6 as Mw
σ ≃ d1M2

πð≫ d0Þ: ð2:43Þ

On the other hand,

d0¼M2
σ
ðanomalousÞ ¼−

4 ·hθμμi
F2
σ

¼−
βðNPÞðαÞ

α

hG2
μνi

F2
σ

ð2:44Þ

comes from the nonperturbative trace anomaly. In the
broken phase, it is nonzero even in the chiral limit, as
mD violates the scale symmetry, both spontaneously and
explicitly. Thus, the chiral limit σ mass d0 is a key
observable to understand whether a theory is a suitable
candidate for a walking technicolor model with a composite
Higgs boson of appropriate mass.
In the anti-Veneziano limit, the fermion loop dominates

over the gluon loop in the computation of the anomaly.
Similar to the η0 in Fig. 1, this then gives from Eq. (2.33)

M2
σ
ðanomalousÞ · F2

σ ¼ iF :T :

*
T

 
βðNPÞðαÞ

4α
G2

μνðxÞ ·
βðNPÞðαÞ

4α
G2

μνð0Þ
!+

j
qμ→0

ð2:45Þ

∼NfNcm4
D; ð2:46Þ

with

F2
σ ∼ ð3 − γmÞ2NfNcm2

D ð2:47Þ

up to a numerical factor roughly independent ofNf andNc.
An implicit Nf dependence comes from F2

σ ∼ ð3 − γmÞ2 via
the details of the dynamics as in the linear sigma model/
holography discussed above.
This then implies

M2
σjmf¼0 ¼ d0 ¼ O

��
mD

3 − γm

�
2
�
; ∀ Nf; : ð2:48Þ

As the conformal window is approached from below, we
expect the anomalous dimension γm → 1, and so this
vanishes:

M2
σjmf¼0 ¼ O

��
mD

2

�
2
�

→ 0 ðnf ↗ ncrf Þ: ð2:49Þ

This is similar to other states in the spectrum, which obey

M2
Hjmf¼0 ¼ Oðð2mDÞ2Þ → 0 ðnf ↗ ncrf Þ ð2:50Þ

with no additional suppression, contrary to the popular
assumption [5,30,55,56] that the vanishing beta function
suppresses M2

σ relative to other states.9 Thus, in the near-
conformal region, σ as a pseudo-NG boson has a small but
nonzero ratio:

M2
σ

M2
H

����
mf¼0

→ const:ð≪ 1Þ ðnf ↗ ncrf Þ: ð2:51Þ

Note that M2
σjmf¼0 ¼ d0 ∼mD

2 has no additional
dependence on Nf when expressed in units of ΛIR ¼
1=

ffiffiffiffiffiffi
8t0

p
(aside from the abovementioned implicit Nf

dependence of F2
σ through γm). Similarly, d1 also has8For Nf ¼ 2, this becomes the standard linear sigma model

relation Fσ ¼ Fπ=
ffiffiffi
2

p ¼ hσi for dσ ¼ 1, or equivalently, the
Nambu–Jona-Lasinio (NJL) model with γm ¼ 2. Note also that
the kinetic term (the scale-invariant part) of the Nf ¼ 2 linear
sigma model (or the Standard Model Higgs Lagrangian) is
rewritten into the dilaton chiral perturbation theory (dChPT)
Lagrangian, Eq. (2) of Ref. [29], through polar decomposition,
with its mass from the explicit scale-symmetry breaking potential
M2 ¼ 2λhσi2 as a pseudodilaton for λ ≪ 1. The interested reader
is referred to Ref. [54] and references cited therein.

9An explicit ladder computation [12,57] shows that the
vanishing beta function in Eq. (2.26) is precisely canceled by
the diverging hG2

μνi ∼ NfNcm4
D · ln3ðΛ=mDÞ → ∞, such that

−βðNPÞðαÞ=α · hG2
μνi ∼ NfNcm4

D is independent of Λ, with the
result precisely the same as an independent computation of hθμμi
through the effective potential. Such a complete cancellation
might be avoided only by including nonladder effects, such as in
the holographic model [58].
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no explicit dependence on Nf in the anti-Veneziano
limit (but again has an implicit Nf dependence from
γm). This contrasts the result in Eq. (2.23)
that M2

η0 · 8t0 ¼ M2
η0=Λ

2
IR ∼ N2

f.
Equation (2.36), here based on the WT identity for the

scale symmetry, was originally derived in the broken phase
via dChPT [29] at tree level. It has further been shown
explicitly [29] that there exists a possible deviation from
Eq. (2.36) due to the chiral log of the pion loop effects (as in
the standard ChPT) near the chiral limit. For the loop
expansion parameter

χ ¼ M2
π=Λ2

χ ≪ 1; ð2:52Þ

where

Λ2
χ ¼ ð4π · ðF=

ffiffiffi
2

p
ÞÞ2=Nf; F≡ Fπjmf¼0; ð2:53Þ

as well as M2
π ≪ M2

σ . Then, from Eq. (10) of Ref. [29]

M2
σ

Λ2
χ
≃
d0
Λ2
χ

�
1þ d1

2
χ ln χ

�
þ d1

�
1þ 9

4
χ ln χ

�
· χðNf ≫ 1Þ:

ð2:54Þ

While this expansion is relatively flat for 0 < χ < 1, as χ
increases past this region, the chiral log present in dChPT
no longer makes sense, and Eq. (2.36) should be used
instead. This is the region where our numerical results lie,
with χ ≫ 1 and (for Nf ¼ 8) M2

σ ≲M2
π . Further, since

Λ2
χ ≃ ðNc=NfÞ · ð2mDÞ2, simulations at much smaller val-

ues of mf would be needed in order to observe the loop
effects.
This implies that the value obtained for d0 by fitting

using Eq. (2.36) is effectively shifted to a smaller value than
the true chiral limit value of d0 ¼ M2

σjmf¼0 ¼ M2
σ
ðanomalousÞ,

as illustrated in Fig. 2 of Ref. [29]. On the other hand, the fit
value of d1 is the same as d1 in the chiral limit χ → 0 where
chiral log effects disappear, and so is the value Fσ

Fπ=
ffiffi
2

p in

Eq. (2.59). We shall return to this point in Sec. IV where we
discuss the new data of this paper on the mass of the σ as a
candidate for the Higgs boson.
While dChPT is valid in the near-conformal broken

phase, the alternative derivation [29] presented here shows
that Eq. (2.36) is also valid not only deep in the broken
phase (again with the d0 fit value up to the chiral log) in the
absence of any remnant of scale symmetry (and where we
do not expect to observe hyperscaling), but also inside the
conformal window where dChPT is irrelevant. Inside the
conformal window, both d0 and βðNPÞðαÞ are identically
zero in the chiral limit, where no bound states exist. As
such, there is a “conformal phase transition” where the
order parameter mD continuously changes going from the

broken to the conformal phase in the essential singularity
form, while bound states do not [22].
When we introduce an explicit fermion mass mf, the

scale symmetry is broken explicitly and spontaneously as
described in Sec. II A. We expect that similar to Eq. (2.5),
the anomalous component of the σ mass is of the order of

the confining scale of pure Yang-Mills theory ΛYM ≃

mðRÞ
f =2 ¼ 1=ð2 ffiffiffiffiffiffi

8t0
p Þ instead of ΛIR ¼ 1=

ffiffiffiffiffiffi
8t0

p
, in contrast

to that of η0 [Eq. (2.23)], which is irrelevant to the
spontaneous scale-symmetry breaking. Specifically,

d0¼ðMðanomalousÞ
σ Þ2≃ Λ2

YM

ð3− γmÞ2
≃

ðmðRÞ
f Þ2

4ð3− γmÞ2
≃

M2
π

16ð3− γmÞ2
;

ð2:55Þ

where we have again relied on relation Eq. (2.38). Putting
this back into Eq. (2.36) gives

M2
σ ¼

�
1

16ð3 − γmÞ2
þ d1

�
M2

π: ð2:56Þ

Let us now briefly explore the compatibility of the
predictions above with our previous work. Considering
Eq. (2.36), for Nf ¼ 8 we found in our previous
work [17]10:

d0 ¼ −0.0028ð98Þð36354Þ; d1 ¼ 0.89ð26Þð7511Þ: ð2:57Þ

Here, d0 ≲ 0 would suggest that

M2
σ ≲ d1M2

π ≃M2
π; ð2:58Þ

suggesting that if the Nf ¼ 8 theory is in the broken phase,
then our data are far from the chiral limit, where we
expect M2

σ > M2
π ¼ 0.

Our previous observations for γ� from hyperscaling
would then indicate that for Nf ¼ 8, γm ≃ 1.
Considering Eq. (2.37), this then implies ⇒ Cγm ≃ 4,
and so11

ffiffiffiffiffiffiffi
ND

p
Fσ

vEW
¼ Fσ

Fπ=
ffiffiffi
2

p ¼ Cγm ·
1ffiffiffiffiffi
d1

p ≃ 4: ð2:59Þ

This is consistent with the linear sigma model prediction
in Eq. (8), and gives d1 ≃ 1. For Nf ¼ 12, γm ≃ 0.4 – 0.5
would give

10A consistent set of coefficients was obtained in the first
lattice result for Mσ in Nf ¼ 8 QCD [16].

11A consistent result was also obtained through the measure-
ment of the scalar density decay constant FS which is indepen-
dent of the d1 measurement; see Fig. 50 in Ref. [17].
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d
ðNf¼12Þ
1 ≃ 0.54 − 0.6: ð2:60Þ

Equation (2.56) implies that Mσ is less than Mπ

for Nf ¼ 12, since d
ðNf¼12Þ
1 < 1 [see Eq. (2.60)]; i.e., the

smallness of the σ mass is related to that of its slope. Since
there is no chiral log correction in the conformal phase, we
expectM2

σ=M2
π < 1 all the way down to near the chiral limit

(although not, as previously discussed, atmf ≡ 0, where no
bound states exist).
By directly comparing the three theories, we will later

demonstrate in Sec. IV how our updated lattice results for
Mσ and Mπ align with these formulas. Meanwhile, the
relation Mσ < Mπ for Nf ¼ 12 has been numerically
confirmed in our previous lattice result [15], independently
of these formulas.

III. SETUP OF LATTICE SIMULATIONS AND
HADRON SPECTRUM

The LatKMI Collaboration has been systematically
investigating Nf ¼ 4; 8; 12, and 16 QCD using a common
setup for the lattice action, exploring different fermion
masses and volume sizes, and employing a single value for
Nf ¼ 8 and two values of the gauge coupling for Nf ¼ 4

and Nf ¼ 12 [13–17].
The fermionic action discretization used is the highly

improved staggered quark (HISQ) action [59], while the
gauge action is the tree-level improved Symanzik action
[60]. It suppresses the effects of taste breaking that spoil
flavor symmetry [14,17]. Moreover, for theories with a
number of degenerate quarks that is a multiple of 4,
staggered quarks are very efficient compared to other
numbers of flavors, as taking a fourth root of the fermionic
determinant is not required.
The spectrum of the low-lying flavor-non-singlet states

is extracted using standard techniques involving the analy-
sis of two-point correlation functions of interpolating

operators with the correct quantum numbers. The bench-
mark states are the vector and the pseudoscalar, which are
called the ρ and π meson, respectively, by analogy with the
corresponding QCD states. Their masses, denoted by Mρ

and Mπ , respectively, are easy to compute, and their mass
ratio is a good qualitative indicator for spontaneous chiral-
symmetry breaking or for conformality. In the first case, the
π mass would be expected to go to zero and Mρ=Mπ to go
to infinity in the massless fermion limit. On the other hand,
an infrared conformal spectrum in the presence of an
explicit fermion mass would show a constant finite
Mρ=Mπ toward the masslesss limit, with possible correc-
tions to this behavior at large quark masses.
Our previous studies have shown that the SU(3) gauge

theory with Nf ¼ 4 and 8 is in a hadronic, chirally broken
phase where the lattice simulations show a decisive
increase of the ratio Mρ=Mπ toward the massless quark
limit. On the contrary, the Nf ¼ 12 theory displays a
constant ratio in our simulations. We repeat this compu-
tation using an updated set of lattice simulations (discussed
in more detail in the specific subsection below), and
confirm that we continue to observe this effect, as can
be seen in Fig. 2. Note that, while the fermion mass range
for the three theories is similar (in lattice units), the hadron
mass ratioMρ=Mπ has a different scale, highlighting a large
deviation from a constant in the Nf ¼ 4 and 8 cases. The
staggered fermion taste-symmetry breaking, which is the
relevant lattice discretization effect in this investigation, is
briefly discussed in Appendix C; this includes, for exam-
ple, Nf ¼ 4 simulations performed at different lattice
spacings. For Nf ¼ 8, we have already shown that these
effects are small [17].
In the following subsections, we will first define the

means by which we set the scale using the gradient flow, as
well as how this scale can be used to extract the anomalous
dimension via finite-size hyperscaling, and then revisit
the spectrum computations of our previous work. After

FIG. 2. The ratioMρ=Mπ shows indications of spontaneous chiral-symmetry breaking in the massless fermion limit for Nf ¼ 4 and 8
QCD different from Nf ¼ 12 QCD. For Nf ¼ 8, the results using different taste operators for the ρ meson are shown. The range of
fermion mass considered in the three theories is similar. Lines connecting the data points are meant to guide the eye, and points are
horizontally shifted for clarity.
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establishing that the conclusions of our previous work still
hold for Nf ¼ 8 with the updated simulations at smaller
quark masses, we will not repeat a full chiral or conformal
analysis; subsequent sections will focus on the flavor-
singlet spectrum.

A. Gradient flow scale and hyperscaling

In addition to the mass scales of the hadronic spectrum,
we measure the gradient flow scale t0 [53]. We use the
Symanzik flow kernel to smooth the clover definition of
the one-point energy operator hEi. From this, we define the
scale tE as the value of flow time t such that t2hEðtÞi≡ E,
and in particular, the scale t0 as the value of tE where
E ¼ 0.3≡ E0. This is the same setup we used in our
previous publications [17,61]. We calculate t0 for Nf ¼ 4

at two β values and four quark masses mf, for Nf ¼ 8 at
one β and six quark masses, and for Nf ¼ 12 at one β and
five quark masses, while we have simulated at two β values
for Nf ¼ 12 (see Ref. [17] for details of the mass spectra
analysis). The results are summarized in Table I. While t0 is
in units of a2, it is convenient to define a length scale
(associated with the smearing radius of the diffusion
process to which the gradient flow is equivalent) as
r ¼ ffiffiffiffiffiffi

8t0
p

, which can be intuitively associated with the
Sommer radius r0 in QCD [62]. We plot the energy scale

corresponding to 1=
ffiffiffiffiffiffi
8t0

p
for all values of Nf as a function

of the bare quark mass in lattice units in Fig. 3. We observe
smaller a=

ffiffiffiffiffiffi
8t0

p
as Nf=Nc increases, which indicates that

the chiral limit values would decrease toward the conformal
window.
To understand the scaling behavior of a=

ffiffiffiffiffiffiffi
8tE

p
, we fit

these data with a finite-size hyperscaling (FSHS) ansatz of
the form

Lffiffiffiffiffiffiffi
8tE

p ¼ fðLm
1

1þγm
f Þ; ð3:1Þ

where γm is the mass anomalous dimension, as enters into
Eq. (2.3) in the conformal phase. This fit was performed
using the piecewise-interpolating curve-collapse method
proposed by Bhattacharjee and Seno [63] and previously
deployed by DeGrand [64]. The value found for γm shows
significant dependence on E, as shown in Fig. 4. As the
gradient flow has a smoothing effect removing ultraviolet
effects, the fit result at larger values of t—and since t2E
increases monotonically with t, larger values of E—is
closer to the infrared value than that at smaller values.
Furthermore, since the residual PðγmÞ (analogous to a χ2

measure for this type of fit) decreases as 1=E approaches
zero for Nf ¼ 12, this suggests that a=

ffiffiffiffiffiffiffi
8tE

p
can be well

described by the FSHS ansatz at larger flow times t.
This result, together with the observation in Fig. 3,

supports our identification of a hadronic energy scale
ΛIR=ΛUV ¼ a=

ffiffiffiffiffiffi
8t0

p
, as indicated in Eq. (2.9), though

Eq. (2.9) strictly applies only in the infinite volume limit.
Among various possible definitions, for comparisons across
different theories, it is convenient to use a gluonic definition
a=

ffiffiffiffiffiffi
8t0

p
as the reference scale ΛIR=ΛUV, since it exhibits

only mild fermion mass dependence, as discussed later in
Secs. IVand V. As a result, in the following wewill often use
the length scale r ¼ ffiffiffiffiffiffi

8t0
p

(and its reciprocal) as a reference
scale across theories with different number of flavors.

FIG. 3. The hadronic energy scale 1=
ffiffiffiffiffiffi
8t0

p
in lattice units as a

function of the bare quark mass is plotted for all values of Nf.

TABLE I. The gradient flow scale t0 in lattice spacing units for
the ensembles used in the spectrum analysis.

Nf β L mf t0

4 3.7 20 0.01 1.13807(89)
4 3.7 20 0.02 1.09109(73)
4 3.7 20 0.03 1.05237(86)
4 3.7 20 0.04 1.01459(73)
4 3.8 20 0.01 1.4535(19)
4 3.8 20 0.02 1.3841(20)
4 3.8 20 0.03 1.3262(17)
4 3.8 20 0.04 1.2752(15)

8 3.8 48 0.009 5.0762(72)
8 3.8 42 0.012 4.7543(56)
8 3.8 36 0.015 4.4556(64)
8 3.8 36 0.02 4.0304(49)
8 3.8 30 0.03 3.3842(35)
8 3.8 30 0.04 2.9563(39)
8 3.8 24 0.05 2.6599(70)
8 3.8 24 0.06 2.39320(77)
8 3.8 24 0.07 2.1885(32)

12 4.0 36 0.04 11.206(57)
12 4.0 36 0.05 8.292(26)
12 4.0 30 0.05 8.338(26)
12 4.0 30 0.06 6.603(19)
12 4.0 36 0.08 4.632(17)
12 4.0 24 0.08 4.627(12)
12 4.0 24 0.1 3.6133(70)
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In Fig. 4, we show the result for γm as a function of 1=E,
for both values of Nf ¼ 8; 12. We note that the region of E
in which a stable fit is obtained differs between the two
cases. This is due to differences in the fermion masses and
lattice volumes considered in the two cases, since there
must be sufficient overlap between the data at different L to
allow all data to contribute to the fit; we would anticipate
that dedicated studies controlling these parameters could
allow overlapping regions of E to be explored.
In both cases, the data visibly begin to level off at larger

values of E, which we interpret as γ� ¼ limE→∞ γm. This is
most pronounced in the Nf ¼ 12 case, which appears to
almost reach its plateau value; in the Nf ¼ 8 case,
extrapolation to the E → ∞ limit is needed. Imposing
ad hoc an exponential form for this behavior gives a
limiting value of γ� ¼ 1.0830ð11Þ for Nf ¼ 8 and γ� ¼
0.4395ð20Þ for Nf ¼ 12, both of which agree closely with
results previously obtained from (basic and finite-size)
hyperscaling of the mass spectrum [17] (specifically that
obtained for states other than the π in the Nf ¼ 8 case).

B. Updates of hadron spectra in Nf = 8 QCD

Before discussing the scalar spectrum, we will give an
update of the hadron spectra and their chiral extrapolations,
which include a newly added lightest mass point in Nf ¼ 8

QCD at mf ¼ 0.009. These new data were generated with
volume L3 × T ¼ 483 × 64 at β ¼ 3.8, using the same
algorithm as in our previous works [14,16,17] where
the lightest point was mf ¼ 0.012 on L3 × T ¼ 483 × 64

lattices.
We report details of the simulation parameters and a

finite volume study in Appendix A.
In the analyses that follow, physical quantities are extrapo-

lated to the chiral limit by a polynomial function of mf, as
in the previous work [17], whereas effects from chiral

FIG. 4. The result of the finite-size hyperscaling analysis for Nf ¼ 8 (left) and Nf ¼ 12 (right). In each case, the upper panel shows
the value of the anomalous dimension γm obtained via a fit of the energy scale t as a function of the reference scale E (points), and the
lower panel the residual PðγmÞ [defined in Eq. (19) of [65] ] of the fits for the points in the upper plot. The dashed line shows the
exponential fit used to find the final quoted values for γ�.

TABLE II. Fit results for F and M2
π=mf in the chiral limit of

Nf ¼ 8 using a fit form C0 þ C1mf þ C2m2
f. “Linear” and

“Quadratic” denote the fit forms with C2 ¼ 0 and C2 ≠ 0,
respectively. The value of χ2=d:o:f:, the number of d.o.f. in
the fits, and the fit range are also tabulated.

C0 χ2=d:o:f: d.o.f. Fit form mf fit range

F 0.02105(61) 0.17 2 Quadratic [0.009, 0.03]
F 0.0212(13) 0.33 1 Quadratic [0.009, 0.02]
F 0.02371(52) 1.22 1 Linear [0.009, 0.015]
M2

π=mf 1.892(41) 0.24 2 Quadratic [0.009, 0.03]
M2

π=mf 1.945(92) 0.06 1 Quadratic [0.009, 0.02]
M2

π=mf 1.938(39) 0.07 1 Linear [0.009, 0.015]
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logarithm are taken into account to estimate the systematic
error of chiral extrapolation for some limited cases.

1. Fπ and Mπ

The decay constant Fπ is fitted by a quadratic fit with the
fitting range amf ∈ ½0.009; 0.03�, because including larger
masses results in large fit residuals (χ2/degree of freedom).
Having a new lightest mass point at mf ¼ 0.009 allows us
to shift our fitting ranges toward the chiral limit while
keeping the same number of fit degrees of freedom.
The chiral limit extrapolations of these fits (F) are shown

in Table II. The result of F with a quadratic form using the
fit range mf ∈ ½0.009; 0.03� agrees reasonably well with
other fit results, which are from quadratic and linear fit
forms using the data in the intervals mf ∈ ½0.009; 0.02�
and mf ∈ ½0.009; 0.015�, respectively. These results are
presented in Fig. 5, and a comparison of these results with
those from the LSD Collaboration [42] is provided in
Appendix C.
The data for M2

π=mf are also fitted by the same fit
forms as Fπ and shown in Fig. 5. The results are presented
in Table II, and are in good agreement with those in
the previous paper [17]: F ¼ 0.0212ð12Þðþ49

−71Þ and
M2

π=mf ¼ 1.866ð57Þ, including the possible chiral log
effects for F.
Although the updated and previous results are consistent,

our data are far from the chiral limit. At mf ¼ 0.009 the
expansion parameter of ChPT for Nf ¼ 8 QCD [66–68] is
still large,

χ ¼ M2
π=Λ2

χ ¼ 2NfðMπ=4πFÞ2 ¼ 4.388ð528Þð43737Þ ≫ 1:

ð3:2Þ

In order to obtain a more reliable value of F, we would need
several data points at yet smaller values of mf. The

systematic error of F is estimated with the same procedure
we used in our previous paper [17], and we obtain

F ¼ 0.0210ð6Þðþ27
−70Þ; ð3:3Þ

where the quoted uncertainties are statistical and system-
atic, respectively. The central value and statistical error are
determined from the quadratic fit with mf ∈ ½0.009; 0.03�.
The lower systematic error is estimated from the effect of
the chiral log term in next-to-leading-order ChPT, and the
upper from the difference between the quadratic and linear
fit results tabulated in Table II.

2. Chiral condensate

We estimate the chiral condensate in the chiral limit with
two analyses. The first is a direct measurement of the chiral
condensate

hψ̄ψi ¼ Tr½D−1
HISQ�
4

: ð3:4Þ

The chiral extrapolation of hψ̄ψi using a quadratic fit in the
range mf ∈ ½0.009; 0.03� is presented in Appendix B.
The second analysis is based on the GMOR relation,

hψ̄ψijmf→0 ¼
F2B
2

; ð3:5Þ

where 2B ¼ M2
π=mf in the chiral limit. We calculate Σ

given by

Σ ¼ F2
πM2

π

4mf
ð3:6Þ

at each mf. The data in the interval mf ∈ ½0.009; 0.02� are
extrapolated to the chiral limit with a quadratic function of

FIG. 5. Left: chiral extrapolations of Fπ inNf ¼ 8. The range ofmf considered for each fit curve is noted in the legend. Right: same as
the left panel but for M2

π=mf.
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mf, as shown in Fig. 6. Comparing the fit curve with one
estimated using the fit results of Fπ and M2

π=mf shows a
reasonably good agreement. However, we observe a large
fit range dependence of the chiral limit value, similar to our
previous study [17]. A fit with a wider fit range gives a
smaller value in the chiral limit, as presented in Table III.
The fit results in the chiral limit are summarized in

Table III. We also tabulate the estimated value from the
GMOR relation in Eq. (3.5), using the fit results for Fπ and
M2

π=mf presented in Table II. The fit result of the direct
measurement agrees with the GMOR relation, and also
with the result in the previous paper [17], which was
hψ̄ψijmf→0 ¼ 0.00022ð4Þ. The new result hψ̄ψijmf→0 ¼
0.000200ð20Þ has a smaller error thanks to the wider mass
range for the fit given by the addition of a precise value at a
lighter fermion mass.
The result of Σ with the shorter fit range

mf ∈ ½0.009; 0.02� is consistent with the direct measure-
ment, although the error is large. It is in tension with the fit
results with Σ in our previous work [17], where all the
extrapolated values are negative. It is expected that the
chiral extrapolation of Σwill become more stable as we add
several smaller mf data points.

3. Masses of mesons and baryons

We extrapolate the masses of the ρ, a0, a1, b1, N, and N�
1

states to the chiral limit using a linear fit of the data for
mf ∈ ½0.009; 0.03�. The ρ and N states show a curvature in
this range, and so they are also extrapolated using a
quadratic fitting form, for the same fit range, as shown
in Fig. 7. The results of these fits are tabulated in Table IV;
plots of the individual fits for the different mesons are
included in Appendix B. As the χ2/degree of freedom
(d.o.f.) of the linear fit of N is large, we consider only the
quadratic fit result for the following discussion. While the
linear fit of ρ is acceptable, we choose the quadratic fit
result as the central value, and the linear fit result is used to
estimate a systematic error. The results in the chiral limit are
consistent with the ones in the previous paper [17], except
for MN : This is about 20% smaller than the previous result
due to the curvature at light mf.
Note that Mρ agrees with the value in the previous paper

within the systematic error coming from the difference of
the quadratic and linear fits. Using the results in Table IV,
we obtain Ma1=Mρ ¼ 1.59ð14Þð019Þ, where the first and
second errors are statistical and systematic ones, respec-
tively. Here we have used the quadratic fit for Mρ and the
linear fit for Ma1 to determine the central values. This
agrees with the result in the previous paper within uncer-
tainties.12 Moreover, it is also compatible with the Particle
Data Group value [69] of Ma1=Mρ ¼ 1260=770 ≈ 1.64
corresponding to ordinary QCD. A more detailed discus-
sion of this ratio will be presented in a forthcoming
publication [70]. To obtain more stable results in the chiral
limit, calculations with several lighter fermion will be
necessary. We also note that our extrapolations are not
based on a rigorous effective description, but rather are

FIG. 6. Chiral extrapolations of Σ ¼ F2
πM2

π=4mf in Nf ¼ 8
using a quadratic fit form. The dashed line represents the
estimatedmf dependence of Σ using the fit results for Fπ andMπ .

TABLE III. Fit results for the chiral condensate hψ̄ψi and Σ ¼
F2
πM2

π=4mf in the chiral limit of Nf ¼ 8 using a quadratic fit
form C0 þ C1mf þ C2m2

f together with the result from the
GMOR relation F2B=2. The value of χ2=d:o:f:, the number of
d.o.f., and the fit range in the fits are also tabulated.

C0 χ2=d:o:f: d.o.f. mf fit range

hψ̄ψi 0.000200(20) 0.41 2 [0.009, 0.03]
hψ̄ψi 0.000198(42) 0.82 1 [0.009, 0.02]
Σ 0.000031(39) 1.69 2 [0.009, 0.03]
Σ 0.000156(79) 0.09 1 [0.009, 0.02]
F2B=2 0.000210(13) � � � � � � � � �

FIG. 7. Chiral extrapolations of Mρ and MN in Nf ¼ 8 using a
quadratic fit form. There is a noticeable curvature at the lightest
fermion masses.

12In Ref. [17], we extrapolated linearly the ratio Ma1=Mρ;
repeating the same analysis with our new data reproduces the
same results within uncertainties.
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meant to provide guidance for interpreting our results in the
context of strongly coupled theories near the edge of the
conformal window, and as a comparison with previous
results.
The ratios for the hadron masses (shown in Table IV) to

F [in Eq. (3.3)] are presented in Table V and are our chiral
limit predictions for the spectrum of the Nf ¼ 8 QCD
theory. These ratios are suggesting that this theory is in the
hadronic, chirally broken phase, but these results alone
cannot establish how close the theory is to the conformal
window.
Note that the central values for ρ and N are determined

from the quadratic fit results, and the systematic error
quoted for

ffiffiffi
2

p
Mρ=F includes the difference between the

quadratic and linear fit results for Mρ shown in Table IV.
Our result in Table V

ffiffiffi
2

p
Mρ

F
¼ 8.91ð66Þðþ4.44

−1.00Þ ð3:7Þ

obtained from a quadratic fit for both Mρ and F is
consistent with the values included in our previous
works:

ffiffiffi
2

p
Mρ=F ¼ 7.7ð1.5Þðþ3.8

−0.4Þ in [14] and
ffiffiffi
2

p
Mρ=F ¼

10.1ð0.6Þðþ5.0
−1.9Þ in [17], where the latter was obtained from

a linear extrapolation for Mρ and a quadratic one for F.
Finally, we should discuss the discretization effects and

their implications for our study of the phase structure. In the
Nf ¼ 8 theory, the suppression of taste breaking indicates
that lattice artifacts are at least reduced in the fermion
sector. However, the overall magnitude of the discretization
error is difficult to estimate, and with the present data we
cannot definitively exclude the conformal scenario. At the
same time, our spectrum analysis provides strong evidence
for chiral-symmetry breaking. Unlike other bound states,
the pion mass does not exhibit universal hyperscaling.
Instead, the effective anomalous dimension γm extracted
from Mπ decreases as mf increases. This behavior is
naturally explained by the GMOR relation

M2
π ¼ 4

Σ
F2
π
mf ¼ 4hψ̄ψijmf→0

F2
mf þOðm2

fÞ; ð3:8Þ

in which the linear term dominates near the chiral limit
(γm ≃ 1), while the quadratic term controls the large-mass
regime (γm ≃ 0). Our Nf ¼ 8 results are fully consistent
with this tendency, which is characteristic of NG bosons, in
sharp contrast to conformal dynamics. For Nf ¼ 12, by
contrast, the effective γm never decreases with mf and
shows a universal value at small fermion masses, as
confirmed for two different β values (Fig. 33 of our
previous paper [17]). For the Nf ¼ 8 theory, it remains
possible that all γm values could converge near 1 at much
smaller fermion masses than we have simulated, making it
exceedingly difficult to distinguish a chirally broken phase
from a conformal one based solely on spectrum analysis
(cf. Ref. [46]). Furthermore, the theory could undergo a
phase transition at stronger coupling, as recently suggested
in Refs. [27,28]. Since our Nf ¼ 8 study is limited to a
single β and masses far from the chiral limit, exploring a
wider range of β values and smaller fermion masses will be
essential for a more definitive conclusion, though such an
analysis lies beyond the scope of this work.

IV. THE FLAVOR-SINGLET SCALAR STATE

In this section, we report our results for the lightest
flavor-singlet scalar state in the Nf ¼ 8 and Nf ¼ 4
theories. While the former is an update of our previous
results by adding a new lightest fermion mass, the latter is
new to this work. We also summarize these data, comparing
both with theoretical predictions and with the nonsinglet
spectrum together with the data for Nf ¼ 12 previously
reported in [13,17].

A. Update for Nf = 8 QCD

The mass of the flavor-singlet scalar in Nf ¼ 8 QCD at
β ¼ 3.8, mf ¼ 0.009 is calculated in the same way as the

TABLE IV. Fit results for hadron masses in the chiral limit of
Nf ¼ 8 with a polynomial fit form C0 þ C1mf þ C2m2

f in the
range mf ∈ ½0.009; 0.03�. “Linear” and “Quadratic” denote the fit
forms with C2 ¼ 0 and C2 ≠ 0, respectively. The value of
χ2=d:o:f: and the number of d.o.f. in the fits are also tabulated.

C0 χ2=d:o:f: d.o.f. Fit form

Mρ 0.1485(25) 1.68 3 Linear
Mρ 0.1326(90) 0.83 2 Quadratic
Ma0 0.1450(99) 0.85 3 Linear
Ma1 0.210(12) 1.28 3 Linear
Mb1 0.206(18) 0.39 3 Linear
MN 0.2058(26) 4.84 3 Linear
MN 0.1749(92) 1.10 2 Quadratic
MN�

1
0.273(11) 0.00 3 Linear

TABLE V. Ratios of
ffiffiffi
2

p
MH=F in the chiral limit. The first and

second errors are statistical and systematic errors. ρ and N are
evaluated from the quadratic fit results, and others from the linear
results shown in Table IV.

H
ffiffiffi
2

p
MH=F

Mρ 8.91ð66Þð4.441.00Þ
Ma0 9.74ð72Þð4.851.09Þ
Ma1 14.13ð88Þð7.041.59Þ
Mb1 13.9ð1.3Þð6.91.6Þ
MN 11.75ð70Þð5.861.32Þ
MN�

1
18.34ð92Þð9.142.06Þ
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results at largermf presented in our previous work [15–17].
The simulation parameters, including the number of con-
figurations and the bin size for the jackknife analysis, are
summarized in Table X.
Figure 8 shows the effective mass of the σ state at mf ¼

0.009 evaluated from the vacuum subtracted disconnected
correlator 2DðtÞ. The effective masses from the positive
parity projected full correlator 2DþðtÞ − CþðtÞ and the
negative parity projected connected correlator −C−ðtÞ are
also plotted, where C�ðtÞ ¼ 2CðtÞ � Cðtþ 1Þ � Cðt − 1Þ
at even t. We estimate Mσ separately from two fit ranges,
t∈ ½6; 11� and t∈ ½16; 21�. Both results are statistically
consistent with each other and also with the effective σ
mass of the full correlator. We obtain Mσ ¼ 0.112ð17Þð033Þ
as shown in Table XI. The central value is determined from
the result with the fit range at smaller t. The result from the
larger-t fit range is used to estimate the systematic error, as
in our previous work [15–17]. At this mf, finite volume
effects are expected to be small, because the value of

LMσ ¼ 5.38ð79Þð01.56Þ statistically satisfies the criterion for
negligible finite volume effects LMσ ≥ 6 [17].
We have updated the chiral extrapolations of the σ mass

with this new data point. The data are fitted using the form
from the WT identity/dChPT discussed in Sec. II,
Eq. (2.36), represented here for convenience,

M2
σ ¼ d0 þ d1M2

π; ð4:1Þ

and with an empirical linear fit form,

Mσ ¼ c0 þ c1mf: ð4:2Þ

The results of these fits are tabulated in Table VI and
plotted in Figs. 9 and 10. As emphasized in Sec. II, any
possible deviations of the dChPT from the WT identity
Eq. (2.36) that may arise near the chiral limit (due to the π
loop [29]) are not relevant to our lattice data, lying as they
do far from the chiral limit.

FIG. 8. The effective σ mass at mf ¼ 0.009 in Nf ¼ 8. The
circle and diamond symbols represent effective masses from
positive parity projected and disconnected correlators, respec-
tively. The effective mass of the connected correlator with
negative parity projection is also plotted for comparison. Solid
and dashed horizontal lines express the fit results with 1 standard
deviation error bands. The dot-dashed line is Mπ .

FIG. 9. The chiral extrapolation of Mσ in Nf ¼ 8, fitted with
M2

σ ¼ d0 þ d1M2
π . The inner error is statistical, while the outer

error represents the combined error, where statistical and sys-
tematic errors are added in quadrature. The dotted line shows the
case where M2

σ ¼ M2
π .

FIG. 10. The chiral extrapolation of Mσ in Nf ¼ 8 fitted with
Mσ ¼ c0 þ c1mf. The inner error is statistical, while the outer
error represents the combined error, where statistical and sys-
tematic errors are added in quadrature.Mπ andMρ are plotted for
comparison.

TABLE VI. Results of the chiral extrapolation ofMσ in Nf ¼ 8
with the fit form from the anomalous WT identity/dChPT,
Eq. (4.1), and the linear fit form. The fit range in both cases
is mf ∈ ½0.009; 0.03�. The first and second errors are statistical
and systematic errors, respectively. The value of χ2=d:o:f: and the
number of d.o.f. in the fits are also tabulated.

Fit form M2
σ ¼ d0 þ d1M2

π Mσ ¼ c0 þ c1mf

d0 ¼ −0.0066ð62Þð81144Þ c0 ¼ 0.0526ð184Þð26787Þ
d1 ¼ 1.01ð20Þð3249Þ c1 ¼ 7.35ð96Þð2.9539 Þ

χ2=d:o:f: 0.21 0.34
d.o.f. 3 3
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These results are consistent with the those presented
previously [16,17] with a good overlap, while the lower
systematic errors are improved by more than a factor of 2.
The linear fit result c0 ¼ 0.0526ð184Þð26787Þ combined

with our chiral fit value of F ¼ Fπjmf¼0 ¼ 0.02120×

ð127Þð25215 Þ, Eq. (3.3), gives Mσ=ðF=
ffiffiffi
2

p Þ ¼ 3.51×
ð1.25Þð175.27Þ. This is slightly smaller than, but consistent
within uncertainties, with our previous result omitting
the new lightest point [17] Mσ=ðF=

ffiffiffi
2

p Þ ¼ 4.2ð2.0Þð1.49.5Þ.
The new value would give Mσ=vEW ¼ ðMσ=FÞ×ffiffiffiffiffiffiffiffiffiffiffiffi
2=ND

p
∼ 1.75 for ND ¼ 4 (the one-family model),

which remains consistent (within uncertainties, which
remain large) with the possibility to identify σ with the
Higgs boson, with Mσ=vEW ≃ 1

2
.

The fit results for d0 and d1 from the WT identity and
dChPt presented in Table VI also remain consistent with the
previous ones [16,17] discussed in Eq. (2.57). As such, the
logic of Eqs. (2.58) and (2.59) holds:

M2
σ≲d1M2

π≃M2
π;

Fσ

Fπ=
ffiffiffi
2

p ¼Cγm ·
1ffiffiffiffiffi
d1

p ¼3.97ð40Þð9663Þ forCγm ¼4: ð4:3Þ

d0 is consistent (up to a large uncertainty, and the possible
chiral log effects discussed in Sec. II) with the value

d0 ¼M2
σjmf¼0≃

v2EW
4

¼ND

4
·
F2

2
≃
ND

4
· 0.0002247ð270Þð37722 Þ

ð4:4Þ

that would be required for σ to be identified with the Higgs
boson in the TC model with ND electroweak doublets.
Our data for M2

σ vs M2
π (and γm ≃ 1) are also consistent

with those of the LSD Collaboration [42]; we provide
details of the comparison in Appendix C. As such, the
result Eq. (4.3) is also consistent with Fσ=ðFπ=

ffiffiffi
2

p Þ ≃ 3.4
in Ref. [33],13 fit from the LSD Collaboration’s data (see
also similar estimates in Refs. [34,48]).

B. Results for Nf = 4 QCD

The σ mass in Nf ¼ 4 at β ¼ 3.8 on L3 × T ¼ 203 × 30
is calculated using the same action as in Nf ¼ 8. Fermion
masses are chosen to be mf ¼ 0.01, 0.02, and 0.03 in
lattice units.
In contrast to Nf ¼ 8, the effective σ mass of DðtÞ in

Nf ¼ 4 has a strong oscillating behavior. (A typical
example is the data at mf ¼ 0.01, as plotted in Fig. 11.)

This is because, despite using the HISQ action, the taste-
symmetry breaking of the pseudoscalar masses is larger in
Nf ¼ 4 QCD (cf. Fig. 27) [17].
Because of this oscillating behavior, we do not determine

Mσ from DðtÞ; instead, we calculate Mσ from the positive
parity projected correlator DþðtÞ − CþðtÞ, whose effective
mass and fit result are plotted in Fig. 11.14 Since the
signal of the effective σ mass is limited in the Nf ¼ 4 case
compared to the one in Nf ¼ 8, we do not estimate the
systematic error coming from the choice of the fit range. In
contrast to Nf ¼ 8, the figure shows that Mσ > Mπ in
Nf ¼ 4, which is similar to the usual QCD [71–74] and to
the Nf ¼ 4 QCD result reported by the LSD Collaboration
[42] with a different choice of lattice regularization.
We also obtainMσ inmf ¼ 0.02 and 0.03 using the same

method. The results are tabulated in Table VII together with
the masses for π and ρ. The extraction of Mσ becomes
harder as mf increases, as the correlator of σ rapidly
degrades as mf increases, as can be seen in Fig. 12 where
we plot the data in lattice units. Similar to the Nf ¼ 8 case,
we extrapolate the σ mass to the chiral limit using Eq. (4.1).

C. Comparison of theories

Here we present summary plots of M2
σ vs M2

π for the
three theories considered. Figure 13 shows the results in
lattice units, including the fits for d0, d1, while Fig. 14
shows the results in units of 1=

ffiffiffiffiffiffi
8t0

p
.

Our new data summarized in Table VIII indicate thatM2
σ

is dominated by the term d1M2
π ≫ d0, such that M2

σ ≃
d1M2

π not only forNf ¼ 12 but also for Nf ¼ 4 and 8 (with
the caveat that our data are still some distance from the

FIG. 11. Effective masses for the DþðtÞ − CþðtÞ and DðtÞ
correlators atmf ¼ 0.01 and β ¼ 3.8 for Nf ¼ 4. The dot-dashed
line represents Mπ . The solid lines express the fit result of
DþðtÞ − CþðtÞ with the 1 standard deviation band.

13Their fit formula, Eq. (14) combined with Eq. (15) in [33], is
the same as our Eq. (2.59), with the parameters corresponding to
Cγm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNf=2Þyð4 − yÞp ¼ 4.00 [from yð¼ 3 − γmÞ ¼
2.06� 0.05 in their Eq. (16)], and

ffiffiffiffiffi
d1

p ¼ Mσ=Mπ ≳ 1 from
their Fig. 1, thus with Fσ=ðFπ=

ffiffiffi
2

p Þ slightly smaller than ours.

14We have confirmed that the same Mσ is obtained from the
positive parity projected correlator after subtracting the contri-
bution of the parity partner of σ.
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chiral limit). As suggested in Sec. II, this implies that
whetherM2

σ > M2
π is determined by whether d1 > 1, which

may in turn be linked to whether γm > 1. The approximate
equality of the power-law behavior of mf for σ as well as π
(i.e., the nonuniversal “γm” value [16,17]) may be the cause
of the comparable values of the Mσ and Mπ in the Nf ¼ 8

theory.
The fit result d0 ≃ 0 within (large) uncertainties, both for

Nf ¼ 4 and Nf ¼ 8, arises from Eq. (4.1), which is
obtained from the WT identity, and it so is valid for the
present lattice data with χ ≫ 1. However, in the region of
the chiral limit we would expect chiral log effects to
become more significant. As discussed in Eq. (2.54) of
Sec. II, this will increase the chiral limit value of d0, relative
to that obtained from these relatively heavy-mass data, as
d0 ¼ M2

σjmf¼0 > 0 [29]. In contrast, the fit result d0 ≃ 0 in
Nf ¼ 12 in the conformal phase has no such chiral log
corrections.
Meanwhile, the fit value of d1 has no such chiral log

effects, neither in the broken nor the conformal phase, and
hence the obtained result for Fσ=ðFπ=

ffiffiffi
2

p Þ may be iden-
tified with that in the chiral limit, which is of direct
relevance to the comparison with the anticipated properties
of a composite Higgs boson.
In addition to the result of a hyperscaling fit for

Nf ¼ 8 and 12, we also present in Table VIII the value
of γm obtained by solving Eq. (2.39) (the prediction of
d1 from holographic and linear sigma models) for the

fitted value of d1. For Nf ¼ 8 and 12, this is consistent
with the hyperscaling result. The larger value γm ¼
2.11ð21Þ in the Nf ¼ 4 case cannot be verified, as that
theory does not exhibit hyperscaling. However, it may
be suggestive of an alternative description of infrared
QCD with Nf ≲ 4, with ΛIR ∼ ΛUV: the gauged NJL
model with induced strong four-fermion interaction and
effectively reduced gauge coupling αeff ≪ 1. The model
in the broken phase has γm ≃ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − αeff=αcr
p

≃ 2 for
αeff ≪ αcr, with the four-fermion operator becoming
relevant [75]. By contrast, in the Nf ¼ 8 case, ΛIR ≪
ΛUV is realized by the essential singularity scaling, with

FIG. 12. The fermion mass dependence of Mσ in Nf ¼ 4 at
β ¼ 3.8 compared with Mπ and Mρ.

TABLE VII. Results for Mσ, Mπ , Fπ , and Mρ at each mf in Nf ¼ 4 at β ¼ 3.8. The number of configurations in
the ensemble analyzed (Nconf ) and the bin size (Nbin) for the flavor-singlet scalar calculation are also tabulated.

amf aMσ Nconf Nbin aMπ aFπ aMρ

0.01 0.311(35) 3750 150 0.19731(26) 0.09039(17) 0.526(14)
0.02 0.498(49) 6250 250 0.27927(26) 0.10487(13) 0.5931(78)
0.03 0.58(10) 6250 250 0.34384(24) 0.11555(12) 0.6549(56)
0.04 � � � � � � � � � 0.40030(20) 0.124636(96) 0.7146(46)

FIG. 13. Results forM2
σ forNf ¼ 4; 8; 12, showing in each case

the fit to Eq. (4.1).

FIG. 14. Results for M2
σ for Nf ¼ 4; 8; 12 in units of 1=

ffiffiffiffiffiffi
8t0

p
.
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the gauge coupling staying strong αeff ≃ αcr even at
induced four-fermion coupling, such that γm ≃ 1. If it is
the case, from Eq. (2.37) we may have Fσ=ðFπ=

ffiffiffi
2

p Þ ≃ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Nf=2

p
=
ffiffiffiffiffi
d1

p
≃

ffiffiffi
2

p
for Nf ¼ 4.15

Further, we may also observe from Fig. 14, though with
large uncertainty, that

MðanomalousÞ
σ

ffiffiffiffiffiffi
8t0

p
≃

1

2ð3 − γmÞ
; ∀ Nf; ð4:5Þ

consistent with the arguments in Sec. II, Eqs. (2.9), (2.48),
and (2.56).
Considering now each Nf in more detail, in the Nf ¼ 4

case,Mσ lies between ρ and π in the observed range of mf,
similar to the behavior observed in Nf ¼ 2þ 1 QCD. M2

σ

decreases rapidly, with slope d1 ≃ 3.5ð1.1Þ, toward the
chiral limit. d0 appears very small, comparable with the
value in the Nf ¼ 8 case, up to a factor of 1=ð3 − γmÞ2 in
units of ΛIR ¼ 1=

ffiffiffiffiffiffi
8t0

p
.16 However, the relatively large

uncertainties on these data mean that this statement cannot
yet be made definitively.
For Nf ¼ 8, the σ mass is comparable with (with hints of

being slightly smaller than) that of the pseudo-NG boson π
in the observed range ofmf. The values found for d0 and d1
obtained Eq. (4.3) are consistent with those previously
found [16,17], with Fσ=ðFπ=

ffiffiffi
2

p Þ also observed to be
consistent with the holographic and linear sigma models
described in Eq. (2.38).
We may regard σ in the Nf ¼ 8 theory as the techni-

dilaton in the walking technicolor model [4,5] with
ND electroweak doublets, which would correspond to
the physical Higgs boson with mass MHiggs≃
125 GeV ≃ vEW=2. Then we would expect d0 ¼ M2

Higgs≃
ND · ðF= ffiffiffi

2
p Þ2=4, which reads d0 ≃ ND=4 × 0.0002247×

ð270Þð37722 Þ, with our result F ≃ 0.02120ð127Þð25215 Þ in
Eq. (3.3). This is in rough consistency with our direct
measurement of d0 in Table VIII [up to chiral log effects,
Eq. (2.54), and large uncertainties]. Taken together
with Eq. (2.10), which reads d0 ∼ ð2 · F= ffiffiffi

2
p Þ2 (with

Mρ=ðF=
ffiffiffi
2

p Þ ∼ 8, from Table V), Eq. (4.5) would imply
d0 ∼ ð1=4 × 1=

ffiffiffiffiffiffi
8t0

p Þ2 ≃ ðMρ=4Þ2; that is, the implied
Higgs mass would be roughly consistent with reality, up
to a factor of 2, for ND ¼ 4. The result in Eq. (4.3) implies
that vEW=Fσ ≃

ffiffiffiffiffiffiffi
ND

p
=4, which may be compared directly

with ≃0.27 from the LHC experiments for the signal
strength of the 125 GeV Higgs boson [12].
For Nf ¼ 12, d0 is also very small, consistent with zero

as suggested by Eq. (2.56). Setting d0 ¼ 0 for simplicity in
Eq. (4.1) and adopting the scale ΛIR ¼ 1=

ffiffiffiffiffiffi
8t0

p
gives

M2
σ · 8t0 ¼ d1M2

π · 8t0; ð4:6Þ

hyperscaling implies that both sides of this equation should
be constant in a conformal theory, independent of the
deforming mass mf. This is indeed what we see in Fig. 14.
In this case, the reason that Mσ < Mπ is that d1 < 1 [in
turn, via Eq. (2.39), because γm < 1] because σ in the
conformal phase is a pseudo-NG boson, while π is not, as
discussed in Sec. II C. Using the measured values of d1 and
γm, we then find

Mσ ≃
ffiffiffiffiffi
d1

p
Mπ ≃ 0.844ð136Þð2124ÞMπ;

Fσ

Fπ=
ffiffiffi
2

p ≃ 5.6 − 5.7 ðfor γm ¼ 0.4 − 0.5Þ: ð4:7Þ

We also present summary plots of σ mass together with
nonsinglet spectra in units of

ffiffiffi
2

p
Fπ in Fig. 15 and in units

of 1=
ffiffiffiffiffiffi
8t0

p
in Figs. 14 and 16. The former are consistent

with the picture that for Nf ¼ 8 the nonsinglet masses
behave in the same hyperscaling as Fπ , while σ and π do
not, and for Nf ¼ 12 all the spectra behave in the universal
hyperscaling. In the latter case, the mf dependence is
approximately consistent with Eq. (2.10).
It is interesting to note that the ratio

ffiffiffi
2

p
Mρ=Fπ ≃ 8 is

almost independent of mf for all Nf ¼ 4; 8; 12, consistent
with our previous results [14,17]. Its value is also close to

TABLE VIII. Summary of the fits of the data for Mσ to Eq. (4.1) in lattice units, including also the approximate
value of γm estimated by comparing the fit value for d1 with Eq. (2.39) and that from hyperscaling, both consistent
with each other for Nf ¼ 8 and 12. (We do not observe hyperscaling in the Nf ¼ 4 case.).

Nf d0a2 d1 γm γmjhyperscaling
4 −0.039ð54Þ 3.5(1.1) 2.11(21)
8 −0.0066ð62Þð81144Þ 1.01ð20Þð3249Þ 1.01(20) ≃1 [14,17,23]
12 0.0030ð202Þð4127Þ 0.712ð229Þð3640Þ 0.66(31) 0.4–0.5 [13,17]

15Indeed, we may expect this to extend to Nf ¼ 2, where
γm ≃ 2 ⇒ d1 ≃ 3, and hence, Fσ=ðFπ=

ffiffiffi
2

p Þ ≃ 1; this would also
be expected from linear sigma model predictions, as discussed in
footnote 8.

16Equation (4.5) also implies that for Nf ¼ 2, with γm ¼ 2
similar to Nf ¼ 4, M2

σ ∼ ðMρ=2Þ2 þ 3M2
π ≃ ð450 MeVÞ2 for the

physical point Mπ ≃ 140 MeV, in rough agreement with the
reality for f0ð500Þ.
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that of Nf ¼ 2þ 1 QCD (experimental value ≈8.3).17 The
chiral extrapolation of this ratio for Nf ¼ 8 given in
Eq. (3.7) is also consistent. The Kawarabayashi-Suzuki-
Ryazuddin-Fayyazuddin relation [76,77] suggests that this
ratio should be equal to the ρ–ππ coupling (up to a factor offfiffiffi
2

p
) in the broken phase, which would then also be

universal—independent of both mf and nfð< ncrf Þ. A
similar observation has already been reported in
[42,78,79], where lattice numerical results confirm that
the ratio Mρ=Fπ remains insensitive to Nf up to Nf ≤ 10.
We will further explore this ratio in a companion publica-
tion to this work focusing on the S parameter [70].
From a phenomenological perspective, in the Nf ¼ 8

walking technicolor scenario, such nonsinglet spectra could
appear as resonances detectable in experiments, while new

particles predicted by many other extensions of the
Standard Model have yet to be observed. Notably, the ρ
meson in the Nf ¼ 8 theory could lie at the order of a TeV
within uncertainties, as indicated in Eq. (3.7). This opens
the possibility that the 2 TeV diboson excess reported by
ATLAS and CMS could be interpreted as a contribution
from technivector mesons [80,81]. To confirm or exclude
this scenario, further progress is needed on two fronts:
lattice simulations with lighter fermion masses near the
chiral limit, and more precise experimental studies of TeV-
scale resonances in ongoing and future LHC runs.

V. THE FLAVOR-SINGLET
PSEUDOSCALAR STATE

In this section, we present lattice results for the flavor-
singlet pseudoscalar state for a different number of flavors:
Nf ¼ 4; 8, and 12. Preliminary results have been reported
before in conference proceedings [49,50].
The flavor-singlet pseudoscalar state has quantum num-

bers JPC ¼ 0−þ. In Nf ¼ 2þ 1 QCD, this state is known
as the η0 particle, with mass Mη0 ¼ 958 MeV. In the
following, for convenience we refer to the flavor-singlet
pseudoscalar state in theories with many flavors using the
same name as in QCD. Witten [51] and Veneziano [82]

FIG. 15. The ratio
ffiffiffi
2

p
MH=Fπ for H ¼ π; σ; ρ; a1, and N as a function of mf for Nf ¼ 4; 8, and 12 QCD using the Nf ¼ 12 data from

Appendix G of Ref. [17] and the Nf ¼ 4 data from Table VII.

FIG. 16. The ratio MH
ffiffiffiffiffiffi
8t0

p
for H ¼ π; σ; ρ; a1, and N as a function of mf for Nf ¼ 4; 8, and 12 QCD.

17This is roughly consistent with the Pagels-Stokar

formula ðFπ=
ffiffiffi
2

p Þ2 ¼ Nc

4π2

R Λ2
UV

0 dxx ΣðxÞ2−x
4

dðΣðxÞ2Þ
dx

ðxþΣðxÞ2Þ2 ≃ ð3=4π2Þ ·M2
F ≃

ðMF=4Þ2 (MF ¼ mðconstituentÞ
f ) with the integral dominated by

x < M2
F, roughly independently of Nf , under the simplest ansatz

for the mass function ΣðxÞ ≃MFðx < M2
FÞ. This is to be

compared with Mρ ≃ 2MF (¼2mðRÞ
f ≃Mπ for Nf ¼ 12) roughly

independently of Nf.
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showed that the η0 mass is directly related to the contri-
bution of the axial anomaly as

M2
η0 ¼ ðM2

η0 ÞðanomalousÞ þM2
π: ð5:1Þ

As discussed in Sec. II, in the Veneziano limit, where
Nc → ∞ with Ncα ¼ fixed and nf ≡ Nf=Nc ¼ fixed ≪ 1,
where ΛIR ∼ ΛUV and gluon loops dominate, we have

ðM2
η0 ÞðanomalousÞ=Λ2

IR ∼ ðM2
η0 ÞðanomalousÞ=Λ2

UV ∼ nf ≪ 1:

ð5:2Þ

Hence, the η0 has a parametrically small mass in the chiral
limit M2

π ¼ 0 and behaves as a pseudo-NG boson. In the
realistic Nf ¼ 2þ 1, Nc ¼ 3 QCD with ms ≫ md ≫ mu,
however, we have

ðM2
η0 ÞðanomalousÞ ≃M2

η0 þM2
η − 2M2

K ≃ ð0.726 GeVÞ2;
ð5:3Þ

and hence [52],

ðM2
η0 ÞðanomalousÞ=Λ2

IR∼ðM2
η0 ÞðanomalousÞ=M2

ρ≃1ð∼nfÞ: ð5:4Þ

Thus, the η0 behaves as a pseudo-NG boson only in the
idealized case of the Veneziano limit where nf ≪ 1, even in
the chiral limit.
Conversely, as we described in Sec. II, large Nf ¼

4; 8; 12 QCD is close to the anti-Veneziano limit, where
nf ≡ Nf=Nc ¼ fixed ≫ 1 for Nc → ∞ with Ncα ¼ fixed,
in which case ΛIR ≪ ΛUV, and fermion loops dominate
over gluon loops in the computation of the chiral anomaly,
and we have [12]

ðM2
η0 ÞðanomalousÞ=Λ2

IR ∼ n2f ≫ 1: ð5:5Þ

Then we have as in Eq. (2.23):

M2
η0=Λ

2
IR ≃ ðMη0

ðanomalousÞ=ΛIRÞ2 ∝ n2f ≫ 1: ð5:6Þ

It is notoriously difficult to compute the mass of the
flavor-singlet pseudoscalar, because the pion contribution
to the two-point function on the lattice is statistically
challenging to remove. In our calculations, we design a
gluonic operator (without fermion fields) to construct the
correlation function. This bypasses the challenge,
because a gluonic operator does not couple directly to
π states. The same method has been adopted in Nf ¼
2þ 1 QCD and has led to results in agreement with
experiment [83].
In practice, the gluonic interpolating operator used in

our calculations is the topological charge density. On
the lattice, the topological charge density operator is

defined through the clover-plaquette field strength
tensor GμνðxÞ:

qðxÞ ¼ 1

32π
ϵμνρσTrGμνðxÞGρσðxÞ: ð5:7Þ

The two-point function hqðxÞqðyÞi is computed for all
pairs of points ðx; yÞ in the four-dimensional volume
L3 × T. Using a fast Fourier transform allows this to be
done efficiently, obtaining a full-volume object in a
single calculation step. Moreover, because of translation
invariance, the two-point correlator only depends on the
distance r ¼ jx − yj, and we average all contributions at
fixed distance to increase statistics and reduce discre-
tization effects due to the breaking of rotational sym-
metry. For a particle freely propagating in four
dimensions [84], the correlator takes the form

CðrÞ ¼ A
r1.5

�
1þ 3

8r

�
e−Mη0 r ð5:8Þ

at large distances r → ∞. We fit the lattice data of CðrÞ
to the form in Eq. (5.8), and we choose a specific
fitting window of distances r∈ ½rmin; rmax� to extract the
two parameters A and Mη0 corresponding to the propa-
gating single-particle ground state. A posteriori, we
check that the fitting window is at large enough r that
the form in Eq. (5.8) is valid. For the fitting procedure
we use the LSQFIT Python package [85], and we assign
large (uninformative) Bayesian priors on the parameters
based on the analysis of effective masses at large r.
Additionally, it is well known that ultraviolet fluctua-

tions strongly affect the operator in Eq. (5.7). We utilize the
gradient flow [53] of the Symanzik action as a smearing
technique to remove the UV components and smooth the
operator before constructing the two-point function. In
other words, the interpolating operator in Eq. (5.7) is used
to construct the correlator, but GμνðxÞ is computed for
several values of the flow time tw. We choose tw values in
units of the lattice spacing a2 lying in the interval [0, 3] and
in steps of 0.15. This is a large range and we expect that the
operator qðxÞ at some smearing tw will have an approxi-
mate physical size with good overlap to the ground state.
This physical size can be identified with a smearing scale
sw ¼ ffiffiffiffiffiffiffi

8tw
p

. As a consequence, we obtain a large number of
correlators CtwðrÞ ¼ −hqtwðxÞqtwðyÞi. The statistical fluc-
tuations are dramatically reduced by the gradient flow
smearing, such that correlators at larger tw can be easily
fitted to the exponential form in Eq. (5.8). Moreover, the
autocorrelation effects on CtwðrÞ are negligible. However,
the smearing scale sw introduces systematic corrections that
have to be addressed [86]. In fact, it turns out that the
dominant source of uncertainty in extracting Mη0 comes
from systematic effects of the fitting procedure. There are
mainly two competing effects:
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(1) Equation (5.8) can only be assumed to be valid in a
specific region of large r, where the ground state
dominates: In other words, we should make sure that
the extracted mass does not depend on the value
of rmin.

(2) The correlator at large distances suffers from larger
statistical fluctuations and can be extracted only at
large values of the smearing scale sw, where smear-
ing artifacts [86] are larger: In other words, we
should check that the extracted mass does not
depend on rmax.

We estimate the systematic uncertainty on Mη0 by
looking for a plateau in the fitting range ½rmin; rmax�
and for a plateau in the smearing range sw ¼ ffiffiffiffiffiffiffi

8tw
p

.
Representative examples of such plateaux for one ensemble
of Nf ¼ 12 QCD are shown in Fig. 17. Note that sw is
always smaller than the fit range boundary rmin ≥ 7 we
typically choose, and that rmax is always less than half the
lattice spatial extent L. When the smearing range sw is
considered in units of the characteristic radius given by the
gradient flow scale

ffiffiffiffiffiffi
8t0

p
, we seem to find a common region

of
ffiffiffiffiffiffiffiffiffiffi
tw=t0

p
values for all the ensembles at fixed Nf where

the fitted mass does not change within the statistical
uncertainty. This region does not appear to depend on
the fermion mass or on the volume: It corresponds to the
interval [0.69, 0.81] for Nf ¼ 4, [0.39, 0.51] for Nf ¼ 8,
and [0.35, 0.41] for Nf ¼ 12. The difference in these
intervals might be related with the nature of the flavor-
singlet pseudoscalar state as Nf is increased because
such a smearing scale sw corresponds to some physical
scale for the operator with the best coupling to the

ground state. In the identified region, we take the
difference between the largest and the smallest fitted
mass as an estimate of the systematic error. The
statistical errors of the individual points are typically
smaller than or of the same order as this systematic
uncertainty. Additional plots for the rest of the ensem-
bles are collated in Appendix D.
We can now compare the flavor-singlet pseudoscalar

state with the rest of the low-lying spectrum as we change
the number of flavors. The results obtained for Nf ¼ 4; 8,
and 12 QCD are summarized in Fig. 18 in units of 1=a.
We identify a notable increase in the gap between
the flavor-singlet pseudoscalar and the vector meson
visible in Fig. 19. In Nf ¼ 4 QCD the mass ratio
Mη0=Mρ is close to 1 and gradually increases toward the
chiral limit, while it grows rapidly from near 2 to ∼3–4 for
Nf ¼ 8, and it stays around 2.5 for Nf ¼ 12. We shall
return to this point later.
In Sec. II, we discussed the expectation that

M2
η0
ðanomalousÞ

Λ2
IR

∼ n2f: ð5:9Þ

As anticipated in that discussion, we do not see this
proportionality when we choose Mρ as the IR scale, as
is shown in Fig. 19. None of the values of Nf gives flat
behavior, and the Nf ¼ 12 data are not higher than Nf ¼ 8

as would be predicted.
However, when ΛIR ¼ 1=

ffiffiffiffiffiffi
8t0

p
is chosen instead, we

obtain the result shown in Fig. 20. In this case, the resulting
behavior for each Nf is significantly flatter, and the values

FIG. 17. The η0 mass fitted for different distance regions and smearings, for a specific ensemble of Nf ¼ 12 QCD. The error bars on
the horizontal axis are much smaller than the symbols, and points for different fitting ranges are shifted for clarity.

ffiffiffiffiffiffi
8t0

p ¼ 7.2680ð99Þ
for this ensemble. The gray band shows the estimate of the systematic error computed as described in the text.
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obtained in the three cases display the predicted scaling.
Specifically, we observe that

M2
η0 ·8t0≃M2

η0
ðanomalousÞ ·8t0≃

8>><
>>:
ð2.5Þ2 Nf ¼ 4;

ð5.0Þ2 Nf ¼ 8;

ð7.5Þ2 Nf ¼ 12;

ð5:10Þ

independent ofmf, in close agreement with the expectation
Eq. (2.23) in the anti-Veneziano limit as shown in Fig. 21.
In view of this result, we may now gain some further

understanding of the gross features of Mη0=Mρ shown in
Fig. 19. From Eq. (2.10), we expect that in the broken
phase, Mρ

ffiffiffiffiffiffi
8t0

p
→ 1 toward the chiral limit, and → 2

toward the heavy-fermion limit, while we have observed
that Mη0 is roughly constant. For Nf ¼ 4 and 8, moving to
larger Mπ=Mρ in Fig. 19 corresponds to dividing the
constant Mη0

ffiffiffiffiffiffi
8t0

p
by Mρ

ffiffiffiffiffiffi
8t0

p
→ 2, and so giving

Mη0=Mρ ≃ 1.25 and 2.5 respectively, which is approxi-
mately what we observe. Moving to smaller Mπ=Mρ

meanwhile takes the opposite limit, and in Fig. 19 we

do indeed see the data move in this direction, although the
limit is not reached. Meanwhile, the data for Nf ¼ 12 are
constant within uncertainties, as we would expect.

FIG. 18. The flavor-singlet scalar and pseudoscalar spectrum compared to flavor-non-singlet pseudoscalar and vector spectrum for
Nf ¼ 4; 8, and 12. The η0 mass has error bars that reflect a large systematic uncertainty. For the other states, only statistical errors are
reported.

FIG. 19. Comparison of the results forMη0 between the theories
with Nf ¼ 4; 8; 12 when normalized by Mρ.

FIG. 20. Comparison of the flavor-singlet pseudoscalar mass
for Nf ¼ 4; 8, and 12 as a function of the pion mass. The
hadronic masses are in units of the gradient flow scale 1=

ffiffiffiffiffiffi
8t0

p
for

the various Nf theories. Different quark mass regions are
explored for different Nf values, in particular for Nf ¼ 12.

FIG. 21. Comparison of the differenceM2
η0 −M2

π normalized by
the gradient flow scale

ffiffiffiffiffiffi
8t0

p
.
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VI. SUMMARY

We have investigated the mass spectra of the SU(3)
gauge theory with Nf ¼ 4, 8, and 12 fundamental flavors
(4-, 8-, and 12-flavor QCD), using a first-principles lattice
gauge theory analysis. This analysis used the tree-level
improved Symanzik gauge action and the HISQ fermion
action.
In the case of Nf ¼ 8 QCD, we observe approximate

conformality, which we interpret as indicating the theory is
in the hadronic phase just below the conformal window;
i.e., the chiral limit shows walking dynamics with a light
flavor-singlet scalar “σ” as a pseudo-NG boson (pseudo-
dilaton) of the scale symmetry, broken spontaneously and
explicitly by the same origin of the spontaneous mass
generation, a candidate for the composite Higgs boson
[16,17]. This property and the Nf ¼ 8 flavor structure
match the simplest version of the WTC model, which is
advocated as a viable candidate for a theory of physics
beyond the Standard Model (BSM). Regarding the walking
dynamics, the mass spectra at small fermion massmf are of
particular interest. These have been investigated in this
paper by updating our previous results [16,17] with a new
lightest fermion mass: mf ¼ 0.009 (in lattice units). We
have compared the Nf ¼ 8 spectra with those in Nf ¼ 4

QCD the latter is close to real-world QCD, showing
spontaneous chiral-symmetry breaking, but without the
walking dynamics. For Nf ¼ 4, we have updated our data
to include a finer lattice spacing. This has allowed us to
extract the flavor-singlet scalar spectrum in Nf ¼ 4.
We also compared the spectrum for Nf ¼ 4, 8 on the

same footing as the previous results of Nf ¼ 12 [13,17],
which was shown to be the conformal phase without
spontaneous chiral-symmetry breaking in contrast
to Nf ¼ 4; 8.
Moreover, we have examined the flavor-singlet pseudo-

scalar spectra “η0” for all Nf ¼ 4; 8, and 12 QCD, and
discussed the Nf dependence of the spectra in terms of the
scaling law emerging in the anti-Veneziano limit described
in Sec. II.
For Nf ¼ 8, we have confirmed that two important

properties remains intact in the updated data: First, the
improvement in the HISQ action has continued to allow
the taste violation to be suppressed to 5% or less of the
Goldstone pion mass, and second, the ratio Mρ=Mπ

increases with decreasing mf, consistent with the sponta-
neous breaking of the chiral symmetry. We have also
observed this ratio increasing similarly for Nf ¼ 4 QCD.
In Nf ¼ 8, we have evaluated the chiral limits of Fπ ,

Mπ=mf, Mρ, Ma0 , Ma1 , Mb1 , MN , and MN�
1
with a poly-

nomial ansatz in mf. All of their chiral limit values have
been positive finite with good fit qualities and are consistent
with our previous studies [17]. For the chiral condensate,
we have investigated three different observables: hψ̄ψi, Σ,
and F2B=2, as defined in Eqs. (3.5) and (3.6). With the

inclusion of the new data at the lightest value of mf, the
chiral limit values for these three observables are now
consistent when a linear fit ansatz is used, as is expected
theoretically. While previously, the central value of the Σ
extrapolation was negative [17], the inclusion of the
updated spectral data gives a positive result for the central
value. Thus, the update has provided further evidence of the
broken chiral symmetry for Nf ¼ 8.
We have observed that the flavor-singlet scalar mass Mσ

in the new ensemble for Nf ¼ 8 at mf ¼ 0.009, similar to
previous observations at heaviermf [16,17], is significantly
smaller than the other hadron masses except the pion. At
this new mass in particular,Mσ is still even smaller than the
pion massMπ , similar to the previous result, and in contrast
to the expectation in the chiral limit that Mσ > Mπ ¼ 0.
Conversely, Mσ in Nf ¼ 4 tends to remain larger than Mπ ,
though getting closer, with decreasing mf. The light Mσ in
Nf ¼ 8 indicates a dilatonic feature and a stable sigma
meson, which contrasts sharply with real-world QCD. We
have performed chiral extrapolations of the light Mσ data
both with a simple linear ansatzMσ ¼ c0 þ c1mf and with
the WT identity for the scale symmetry M2

σ ¼ d0 þ d1M2
π,

Eq. (2.36). The results are given together with those for
Nf ¼ 4; 12 in Table VIII. Both extrapolations for Nf ¼ 8

resulted in masses consistent with the discovered Higgs
boson mass 125 GeV ≃ vEW=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ND=4
p

· F=
ffiffiffi
2

p
. Owing

to the updated data, the lower systematic errors are
improved by more than a factor of 2.
Equation (2.36) may also be derived by the dChPT in the

broken phase, up to chiral log effects that are irrelevant to
our data points, lying as they do far from the chiral limit.
However, chiral log effects will raise the value of Mσ near
the chiral limit, and as such a value estimated from a fit
form excluding them (and extrapolated from data in the
region where they are not present) will by necessity
underestimate the chiral limit value d0. This is reflected
in our data; the central value for the fit of d0 is negative,
although the large uncertainties still do allow for a
positive value.
On the other hand, the fit value of d1 is identified with

that in the chiral limit where chiral log effects disappear,
and so is the ratio Fσ=ðFπ=

ffiffiffi
2

p Þ as in Eq. (2.37), which is
most relevant to the Higgs phenomenology. It was obtained
from the observed value of d1 for Nf ¼ 8 to give Eq. (4.3):

Fσ=ðFπ=
ffiffiffi
2

p
Þ ¼ 3.97ð40Þð9663Þ for γm ¼ 1; ð6:1Þ

which is consistent with the previous results
Fσ=ðFπ=

ffiffiffi
2

p Þ ≃ 4 [16,17]. This implies vEW=ðFσjmf¼0Þ ≃ffiffiffiffiffiffiffi
ND

p
=4 to be compared with vEW=Fσjmf¼0 ≃ 0.27, the

value from the LHC data when σ identified with the Higgs
boson [12], where vEW ¼ 250 GeV and ND is the number
of weak doublets of the WTC model.
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More importantly, the WT identity formula Eq. (2.36)
is valid in both the broken (at least for our data points,
which lie away from the chiral limit) and the conformal
phase, thus is our basic framework to compare Nf ¼
4; 8; 12 on the same footing. The measured values of d1
for Nf ¼ 8 and Nf ¼ 12, when combined with the
measured γm through hyperscaling, give values of
Fσ=Fπ=

ffiffiffi
2

p
consistent with those from linear sigma

and holographic models, Eq. (2.38); this in turn gives
the relation between d1 ¼ ð1þ γmÞ=ð3 − γmÞ, Eq. (2.39),
consistent with the fit values, as summarized in
Table VIII. It is remarkable that for Nf ¼ 12, σ with
M2

σ ≃ 0.7M2
π is definitely lighter than π in spite of the

P-wave bound state compared with the S-wave π; this is
consistent with the picture discussed in Sec. II that σ is a
pseudo-NG boson while π is not. If this relation is also
valid for Nf ¼ 4 without a fit value of γm due to the lack
of hyperscaling, then the large value of d1 would imply
γm ≃ 2.11ð21Þ, suggesting the system to be effectively
described by the gauged NJL model with reduced
effective gauge coupling in the infrared. If this relation
is valid also in the whole conformal phase where the
SD equation gives γm ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α�=αcr

p
, then we may

predict M2
σ ≃ d1M2

π ¼ M2
πðnf ¼ ncrf Þ further down to

M2
σ ≃ d1M2

π ¼ 1=3 ·M2
πðnf ¼ 16.5=3Þ.

Our focus in this work has been on the flavor-singlet
pseudoscalar meson η0. We have extracted the η0
correlator from the two-point function of the topological
charge density hqðxÞqðyÞi, where pion contaminations
are absent. To increase the statistics, the correlator has
been expressed as a function of the distance r ¼ jx − yj,
and all contributions at a fixed r have been averaged.
We have utilized the gradient flow smearing technique
to remove UV noise and achieve enhanced overlap with
the ground state.
We have estimated Mη0 from a plateau region

½rmin; rmax� in the correlator. To avoid lattice spacing,
smearing, and finite-size artifacts, the plateau region was
restricted to values of r much larger than the smearing
scale (which in turn was much larger than the lattice
spacing), and much smaller than the spatial lattice extent,
in all cases. Within these constraints, Mη0 was observed
to be independent of the exact choice of the plateau
region and the smearing scale. We have found such a
parameter region for all our ensembles. In particular, a
suitable range of smearing scale was found that was
independent of mf for each Nf.
There are theoretical expectations [12] that the mass Mη0

scales with Nf, as a consequence of an anti-Veneziano limit
where nf ≡ Nf=Nc ≫ 1 is fixed as Nc → ∞ with Ncα
fixed, based on the WT identity for the flavor-singlet axial-
vector current Eq. (2.16) with Eqs. (2.18) and (2.19). For
each Nf ¼ 4; 8; 12, Mη0 was found to be heavier than the
other hadrons, and less dependent on mf. We have adopted

the gradient flow scale
ffiffiffiffiffiffi
8t0

p
as a common measure to

compare the theories with different Nf. The normalized
mass Mη0 ·

ffiffiffiffiffiffi
8t0

p
∼ nf was observed to increase as a

function of nf [see Fig. 20 and Eq. (5.10)]

M2
η0 · 8t0 ≃

8>><
>>:

ð2.5Þ2 Nf ¼ 4;

ð5.0Þ2 Nf ¼ 8;

ð7.5Þ2 Nf ¼ 12;

ð6:2Þ

independent of mf, which is suggestive of anti-Veneziano
scaling in Eq. (2.23). This is the core result of this
paper.
Several subjects remain to be studied in future work.

For Nf ¼ 8 QCD, there are number of reasons to study
a region of mf even smaller than the mf ¼ 0.009 to
which this study was extended: to achieve a stable
chiral limit value of the chiral condensate Σ, to obtain a
more precise value for the chiral limit value of the
dilatonic σ mass in the chiral limit in order to confirm
(or otherwise) the consistency with the discovered
Higgs mass, and to verify whether the pion becomes
lighter than the Higgs-identified dilaton, which for a
walking theory is expected to happen in the vicinity of
the chiral limit. Another important topic is to explore
the mass spectra in the continuum limit. To this end, the
simulations presented here need to be extended to
multiple smaller lattice spacings. Infrared dominance
and the suppression of taste violations by the HISQ action
means that the majority of the spectra of Nf ¼ 8 QCD are
not expected to be very sensitive to the lattice spacing; in
particular, we anticipate this being the case for the η0
mass. To study the anti-Veneziano scaling discussed above
in detail, continuum and chiral extrapolations of Mη0 are
needed for all of Nf ¼ 4; 8, and 12.
We believe that our first-principles results indicating the

walking dynamics in Nf ¼ 8 QCD will provide a very
important guide for BSM model building with the
composite Higgs perspective.
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APPENDIX A: DETAILS OF LATTICE
SIMULATIONS AT mf = 0.009

The simulation parameters of the new ensemble are
summarized in Table IX. The measurements of the hadron
spectra are carried out with the parameters shown in
Table X. The statistical error is estimated by the jackknife
analysis.
The hadron masses for π, ρ, N, and their parity partners

a0, a1, b1, N�
1 at mf ¼ 0.009 are tabulated in Table XI. The

table also shows the results for the decay constant Fπ and
the chiral condensate hψ̄ψi. The notations and calculation
methods for the hadron spectra are described in our
previous paper [17]. As in the paper, we observe a small
taste-symmetry breaking in the pion mass as shown in
Table XII.
In the previous study [17], we found that the finite

volume effects forMπ and Fπ are negligible when LMπ ⪆ 7
at smaller mf by using

δMπðLÞ ¼
MπðLÞ −MπðLmaxÞ

MπðLmaxÞ

and δFπðLÞ ¼
FπðLÞ − FπðLmaxÞ

FπðLmaxÞ
; ðA1Þ

with Lmax being the largest lattice volume at each mf.
Figure 22 is the updated figure from the previous study
[17]. The figure shows that the value of LMπ at
mf ¼ 0.009, which is the vertical solid line, is similar to
the one at mf ¼ 0.012. From this observation, we expect
that the finite volume effects in the new data are similarly
suppressed as at higher mf values.

TABLE IX. Parameters of the new ensemble in Nf ¼ 8. L and T for the spatial and temporal size for L3 × T
lattice, staggered fermion mass mf , molecular dynamics time step Δτ, number of masses for the Hasenbusch
preconditioning NmH

, values of Hasenbusch masses mi
H, and maximum number of thermalized trajectories N̄max

Traj in
τ ¼ 0.5 unit are shown for each “stream.” Nmax

Traj denotes the maximum number of thermalized trajectories in τ ¼ 1

unit as in other ensembles [17].

L T mf τ Δτ NmH
m1

H m2
H m3

H m4
H N̄max

TrajðNmax
TrajÞ Stream

48 64 0.009 0.5 0.0025 4 0.2 0.4 0.6 0.8 864(432) 1
10240(5120) 2

TABLE X. Numbers for trajectories (NTraj) in τ ¼ 1 unit, stream (Nstr), configuration (Nconf ), for the spectrum and
singlet scalar (σ) measurements in the Nf ¼ 8 new ensemble. The bin size of the jackknife analysis (Nbin) and
number of measurements per configuration (Nmeas) are also summarized.

Meas L T mf NTraj Nstr Nconf Nbin Nmeas

Spectrum 48 64 0.009 5440 2 680 68 8
σ 48 64 0.009 5120 1 2560 160 64
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TABLE XI. Results of hadron spectra and Mσ at mf ¼ 0.009
on L ¼ 48 in Nf ¼ 8.

Mπ 0.13950(56)
Fπ 0.03971(20)
hψ̄ψi 0.0055516(54)
Mρ 0.2225(24)
Ma0 0.2355(71)
Ma1 0.3144(59)
Mb1 0.3196(86)
MN 0.3202(22)
MN�

1
0.4156(65)

Mσ 0.112ð17Þð033Þ

TABLE XII. Mass of the NG pion and the taste partners Mπξ at mf ¼ 0.009 on L ¼ 48 in Nf ¼ 8.

ξ5 ξ4ξ5 ξiξ5 ξiξ4 ξiξj ξ4 ξi ξI

0.13950(56) 0.14062(56) 0.14042(54) 0.14112(59) 0.14131(58) 0.14181(60) 0.14198(57) 0.14263(54)

FIG. 22. Updated figures for δMπðLÞ and δFπðLÞ defined in Eq. (A1) from the one in the previous paper [17]. In this paper, we do not
use fermion masses heavier than mf ¼ 0.04, and they are reported here only for comparison with our previous results. Points with error
bars show the difference between the specified quantity at the given lattice size L and at the largest volume considered for that value of
the bare mass. Different symbols and colors represent different bare masses as indicated in the legend. The two vertical lines in blue
represent the two values of mass at which only a single volume was considered: The solid line is mf ¼ 0.009, L ¼ 48, and the dashed
line mf ¼ 0.012, L ¼ 42.
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APPENDIX B: DETAILS OF THE NEW CHIRAL EXTRAPOLATIONS
WITH mf = 0.009

In Fig. 23, we show the chiral extrapolations for hψ̄ψi, supplementing that of the GMOR relation presented in Sec. III B.
In Figs. 24–26, we show the chiral extrapolations of the meson masses including the new mf ¼ 0.009 mass point.

FIG. 23. Chiral extrapolations of the chiral condensate hψ̄ψi in
Nf ¼ 8. The range of mf considered for each fit curve is noted in
the legend.

FIG. 25. Chiral extrapolations forMa1 andMb1 inNf ¼ 8. Data
for Mπ are also plotted for comparison.

FIG. 24. Chiral extrapolations forMρ andMa0 in Nf ¼ 8. Data
for Mπ are also plotted for comparison.

FIG. 26. Chiral extrapolations forMN andMN�
1
inNf ¼ 8. Data

for Mπ are also plotted for comparison.
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APPENDIX C: TASTE-SYMMETRY
BREAKING EFFECTS

We report two different lattice spacings for Nf ¼ 4 and
show the ratio Mρ=Mπ using different states for the
pseudoscalar meson: the lightest (Goldstone boson) state
π5 and the heaviest state πij (which comes from operators
with tensor taste structure ξiξj). Both states are going to be
degenerate in the continuum limit, and we can see the
reduction in taste-symmetry breaking effects when moving
from a coarser (β ¼ 3.7) to a finer (β ¼ 3.8) lattice spacing.

The results are shown in Fig. 27 as a function of the pion
mass, π ¼ π5 or πij, in units of the gradient flow scale.
At the smallest mass considered, the results for Nf ¼ 8

align more closely with those from the LSD Collaboration
[42] when compared using a common scale given by the
Nambu-Goldstone pion mass in units of the gradient flow
scale

ffiffiffiffiffiffi
8t0

p
. This is illustrated in Fig. 28. However, the two

collaborations use different lattice actions, which can
introduce discretization effects, including variations in
taste breaking. We noted in Sec. III that the taste splitting
in our data remains small. We may observe this by

FIG. 27. The ratioMρ=Mπ is shown for Nf ¼ 4 QCD using different fermion taste combinations for the pseudoscalar meson. Results
from two lattice spacings are shown in the two panels. The ratio of masses is shown using the Goldstone pion π5 and the heaviest
pseudoscalar meson πij. The horizontal axis uses the pion mass rescaled in units of the gradient flow scale

ffiffiffiffiffiffi
8t0

p
.

FIG. 28. Comparison of the flavor-singlet scalar mass and the vector meson mass between the LatKMI Collaboration and the LSD
Collaboration for Nf ¼ 8. The pion mass in units of the gradient flow scale is used on the x axis. The left panel uses the Goldstone pion
π5, while the right panel uses the tensor taste structure pion πij. The corresponding pion mass is used to draw the dashed line.
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comparing the pion masses of different taste channels. For
example, if we replace the Goldstone pion mass Mπ5 with
the heavier tensor taste pion mass Mπij , our data do not
appreciably change. In contrast, the data from the LSD
Collaboration shift significantly toward heavier masses, as

shown in Figs. 28 and 29, making the compatibility between
the two datasets even more striking. The results for Nf ¼ 4

are also shown in Fig. 30. Based on the scale of t0, it appears
that the LSD results for Nf ¼ 4 correspond to a finer lattice
spacing, which likely reduces taste-breaking effects.

FIG. 29. Comparison of the pion decay constant between the LatKMI Collaboration and the LSD Collaboration for Nf ¼ 8. The pion
mass in units of the gradient flow scale is used on the x axis. The left panel uses the Goldstone pion π5, while the right panel uses the
tensor taste structure pion πij. The decay constant has been normalized to the 131 MeV convention in usual QCD [17].

FIG. 30. Comparison of the flavor-singlet scalar mass and the vector meson mass between the LatKMI Collaboration and the LSD
Collaboration for Nf ¼ 4. The pion mass in units of the gradient flow scale is used on the x axis. The left panel uses the Goldstone pion
π5, while the right panel uses the tensor taste structure pion πij. The corresponding pion mass is used to draw the dashed line. The LSD
data are only at β ¼ 6.6.
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APPENDIX D: FITS OF THE FLAVOR-SINGLET PSEUDOSCALAR

1. Nf = 4

The plateaux for the fits for each ensemble studied in the Nf ¼ 4 theory are presented in Figs. 31, 32, 33, 34, and 35.

FIG. 31. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 4 QCD with L ¼ 20 and
mf ¼ 0.01.

FIG. 32. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 4 QCD with L ¼ 20 and
mf ¼ 0.02.
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FIG. 33. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 4 QCD with L ¼ 20 and
mf ¼ 0.02. Different rmax ¼ 11.

FIG. 34. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 4 QCD with L ¼ 20 and
mf ¼ 0.03.

FIG. 35. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 4 QCD with L ¼ 20 and
mf ¼ 0.04.
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2. Nf = 8

The plateaux for the fits for each ensemble studied in the Nf ¼ 8 theory are presented in Figs. 36, 37, 38, 39, 40, and 41.

FIG. 36. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 8 QCD with L ¼ 30 and mf ¼ 0.03.

FIG. 37. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 8 QCD with L ¼ 30 and mf ¼ 0.02.

FIG. 38. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 8 QCD with L ¼ 36 and mf ¼ 0.02.
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FIG. 39. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 8 QCD with L ¼ 36 and
mf ¼ 0.015.

FIG. 40. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 8 QCD with L ¼ 42 and
mf ¼ 0.012.

FIG. 41. The η0 mass fitted for different distance regions and smearings for a specific ensemble of Nf ¼ 8 QCD with L ¼ 48 and
mf ¼ 0.009.
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3. Nf = 12

The plateaux for the fits for each ensemble studied in the Nf ¼ 12 theory are presented in Figs. 42, 43, and 44.

FIG. 42. The η0 mass fitted for different distance regions and smearings for a specific ensemble ofNf ¼ 12QCD with L ¼ 30 andmf ¼ 0.06.

FIG. 43. The η0 mass fitted for different distance regions and smearings for a specific ensemble ofNf ¼ 12QCD with L ¼ 30 andmf ¼ 0.05.

FIG. 44. The η0 mass fitted for different distance regions and smearings for a specific ensemble ofNf ¼ 12QCD with L ¼ 36 andmf ¼ 0.04.
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