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SU(3) gauge theories with an increasing number of light fermions are the templates of strongly
interacting sectors and studying their low-energy dynamics and spectrum is important, both for
understanding the strong dynamics of QCD itself, and for discovering viable UV completions of
beyond the Standard Model physics. In order to contrast many-flavor strongly interacting theories with
QCD on a quantitative footing, we use lattice field theory simulations. We focus on the study of the
flavor-singlet spectrum in the scalar and pseudoscalar channels: This is an interesting probe of the
dynamics of the strongly interacting sector, as reminded by the QCD case with the f((500) (o) and #’
mesons. The hierarchy of the spectrum of a strongly coupled new gauge sector of the Standard Model
defines the potential reach of future colliders for new physics discoveries. In addition to a novel hierarchy
with light scalars, introducing many light flavors at fixed number of colors can influence the dynamics of
the lightest flavor-singlet pseudoscalar. We present a complete lattice study of both of these flavor-singlet
channels on high-statistics gauge ensembles generated by the LatKMI Collaboration with 4, 8, and 12
copies of light mass-degenerate fermions. We also present other hadron masses on the lightest ensemble
for N, = 8 generated by the LatKMI Collaboration and discuss the chiral extrapolation of the spectrum
in this particular theory. We contrast the results to Ny = 4 simulations and previous results of Ny = 12
simulations.
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Since the discovery in 2012 of the Higgs boson [1,2], the
Standard Model (SM) has been so successful that there has
been little hint of new physics beyond the SM. However,
the origin of mass remains a central mystery of the SM in
the form of the naturalness problem (see Ref. [3] for a
recent review), which is suggestive that there should be
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some underlying theory to account for it. Walking techni-
color [4,5] is a candidate for such a theorys; it is charac-
terized by a chiral condensate with a large anomalous
dimension y,, ~ 1, and by an approximate scale symmetry
which is broken spontaneously and explicitly (the
scale anomaly) by the same chiral condensate.! The
latter of these predicts the Higgs boson as a composite
light pseudodilaton (“technidilaton”), a pseudo-Nambu-
Goldstone (NG) boson of the broken scale symmetry.
Such a theory would be strongly coupled with a slowly
running (“walking”) gauge coupling.

Such a walking gauge theory may be realized by an
asymptotically free SU(N.) gauge theory with a large
number of massless flavors N(>N..) [9], which we may
refer to as “large-N QCD.” It is inspired by the near scale-
invariant/conformal structure around the Caswell-Banks-
Zaks infrared (IR) fixed point a, in the two-loop beta
function at large Ny (8 < Ny <16 for N, = 3) [10,11].

The walking regime is anticipated to be at a value of the
IR strong coupling «, larger than a critical value a, 2 o,
such that 1 < ny =N, /N, < n;r, where n; = n}r at
a, = a,. We expect a significant separation between the
UV scale Ayy and the scale of the chiral condensate with
dynamical mass mp < Ayy, where Ayy is identified with
Agep generated by the regularization in perturbation
theory. This is in contrast to QCD where Agcp = mp. In
the infrared region u < A = O(mp), the coupling «
blows up with the fermion loop decoupled; i.e., the
perturbative IR fixed point @, is washed out. For
AR < p < Agy, it starts running slowly in units of A
as a(u) \ o and y,,(a(u)) # 0, with a., now being the
UV fixed point; this gives rise to a nonperturbative trace
anomaly of order O(m?},) in contrast to the perturbative one
of order O(A{y).

On the other hand, the region a, < a (ny > n?) is the
conformal window, with m, = 0.

While experiments provide direct access to this spectrum
in the case of QCD with light flavors Ny = 2 + 1, the case
N> 2 has not been observed in nature, and so it can only
be studied theoretically. Analytic approaches involve mak-
ing an approximation, such as the ladder approximation
(see, e.g., Ref. [12] and references therein), which intro-
duces somewhat large theoretical uncertainties in our
understanding of the spectrum. Lattice simulations fill this
gap, providing a nonperturbative first-principles approach
relatively free of large or uncontrolled approximations, and
providing us with data which can be used to benchmark
phenomenological models.

Several lattice groups, including the LatKMI
Collaboration, have searched for a candidate walking
theory within the space of large-N  QCD (N, = 3) theories

'Walking technicolor has also been advocated without the
notion of scale-symmetry breaking giving a dilaton or a large
anomalous dimension [6-8].

on the lattice. The cases Ny, =28 and 12 have drawn
particular attention. The spectrum of the theory toward
the chiral limit gives one avenue to probing the viability of
such a theory as a candidate walking theory. Among other
observables, we have particularly focused on the possible
large anomalous dimension visible in the spectra of bound
states, with a special focus on a flavor-singlet scalar o,
which would be a candidate for the light pseudodilaton
[13-17]. In order to shed light on signals of near-
conformal dynamics, we have checked the hyperscaling
and otherwise compared the behavior of the ¢ mass from
lattice simulations of N = 4,8, and 12 QCD with
simulations that have used the same lattice setup to
minimize systematic differences between the results from
the three theories.

Our prior lattice numerical simulations indicated that
these three different values of N, correspond to rather
different types of dynamics, implying that n¥ < 4.

(i) Ny =4 shows [14,17] essentially the same features
as of Ny =2+ 1 QCD, specifically, spontaneous
chiral-symmetry breaking, and neither hyperscaling
nor a light flavor-singlet scalar state ¢ are observed.

(i) The Ny = 12 theory appears to show [13,17] con-
formal dynamics, and hence lies in the conformal
window, implying mp = 0. The two-body hadronic
mass My shows typical universal hyperscaling

of the (renormalized) fermion mass m}R), My/2 ~

mp + mgcR) = mng) ~ (mf)l/(lﬂm(a*)) [18-20], with
Ym(a) ~0.4 — 0.5 The ratios of various bound
state mass scales remain constant toward the chiral
limit. We subsequently found a light ¢ [15], even
lighter than the pion 7, an observation to which we
shall return to in this work.

In the conformal window, the presence of an
explicit fermion mass m ; means that all bound states
are in fact nonrelativistic “unparticles” due to the
conformal phase transition [22], since there are no
bound states in the chiral limit. Nevertheless, o is
still a pseudo-NG boson, while z is not: Chiral
symmetry is only broken explicitly by my, while
scale symmetry is further broken spontaneously by
the gluon condensate (triggered in turn by the same
my). We will return to this discussion in Sec. II.

(iii) Most excitingly, we found [14,17,23] that Ny = 8 is
a candidate for a walking theory. The pion mass
decreases M, — 0 toward the chiral limit m; — 0,
while other (flavor-non-singlet) bound states mass

“This result is roughly consistent with the ladder Schwinger-
Dyson (SD) equation in the conformal phase, with y,, =1 —
V1 —a/a, ~0.8 at a = a,. Including nonleading terms for the
large mass and finite size gives y,, ~0.5-0.6 when fitted by a
simple hyperscaling form (with only the leading term) as in the
lattice analyses in [21].
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My do not, i.e., My /M, — oco. This signals that the
7 is a pseudo-NG boson of a spontaneously broken
symmetry. At the same time, the theory shows
signals of being in the near-conformal phase. Spe-
cifically, most states in the mass spectrum (including
F, and the string tension) dominated by the explicit

chiral-symmetry breaking m;R) > mp obey the
approximate hyperscaling relation with a large

anomalous dimension

7m = 1' (1 '1)
The exception to this is the pion, as we expect: Since
the pion is a pseudo-NG boson, the hyperscaling
form is expected to fit best near the chiral limit,
while for other states, the scaling breaks in this
region. The would-be anomalous dimension that we
see for the pion is “y,,” ~0.6 in the mass region we
study [17]; we refer to this as “nonuniversal” hyper-
scaling. This has been found to be consistent with
other groups’ results [24-26].°

Moreover, for the Ny = 8 theory we reported [16,17] a

signal that the flavor-singlet scalar state ¢ may be a

pseudodilaton. Specifically, it was observed to be as light

as the pseudo-NG boson pion 7 all the way down to the
vicinity of the chiral limit

M,~M, <M, (1.2)
and displayed “y,,” =0.5 (again, as far as y,, can be
considered meaningful for a pseudo-NG boson). These
observations contrast sharply with QCD with a smaller
number of flavors. By implementing the proposal in

Ref. [29], we also observed that the ratio of decay constants

of the ¢ and 7:,4

o

F./V2

which, with Eq. (1.2), suggests that ¢ in this theory may be
identified as a candidate for the Higgs boson.

We obtained the latter result by fitting the lattice data
using the mass formula [29]

~4>1,

(1.3)

MgEdo‘i‘dl M,zz (14)

3See also Refs. [27,28] for recent and different approaches
that suggest that the Ny =8 QCD theory exhibits a fixed
point existing at a much stronger coupling region than previous
studies, consistent with being near the onset of the conformal
window.

Decay constants of the pion and o are defined as
(0|DM(O)\a(qﬂ)) =iF,q,, or equivalently, <0|9m|a(qﬂ)) =
_Fo’(q;t%/ - g;wq2)/3’ <O|AZ(0)|”/}(qﬂ)> = 160’/}([7”/\/5) s
where our F, corresponds to 130 MeV for the usual QCD pion.

This relation may be derived” via the scale and axial Ward-
Takahashi (WT) identities. Since its original derivation via
these routes, there have been further developments in a
variant of this mass formula based on a low-energy dilaton
effective field theory description [30-39]. To preempt the
results that we will present in Sec. II, we will later
demonstrate that d; ~ 1 in this theory, implying y,, = 1,
and hence, Eq. (1.4). This allows a direct comparison
among the three theories we consider here, regardless of
whether they are conformal or chirally broken, which we
will employ in this work. Here, dy = O(m3)(<A¥,),
which is due to the nonpertubative trace anomaly, and will
be nonzero even in the chiral limit.

We have also observed [16] that this coincides with both
linear-sigma-model-based and holographic calculations, a
result that was further confirmed by subsequent lattice
computations of the scalar decay constant Fg [17,40]. The
light ¢ has been confirmed by lattice studies by other
groups [41,42]. (For more recent lattice studies, see, e.g.,
Refs. [43-46]). The value we obtain for F, is roughly
consistent with more recent analyses of data from the
Lattice  Strong Dynamics (LSD) Collaboration,
F(,/(F,,/\/E) ~ 3.4 [33,47] (see also Refs. [34,46,48)).

We have also reported preliminary results for the flavor-
singlet pseudoscalar 7' [49,50], which has a mass even in
the chiral limit due to the chiral anomaly in the anomalous
chiral WT identity:

M’?, —_ (MWZI,)(anoma.lous) + M% (15)
While for M, d,, and d; depend on N, and N, only
implicitly via y,,, we found [50] that when normalized by
an appropriate IR scale #,, the 5/ mass depends directly on
these as [12]

1o - M2, = 8t - (M2)(@omion) w2 (1.6)
where n; = N;/N .. These flavor-singlet bound states have
additional mass due to anomalies—the trace anomaly for ¢
and the chiral anomaly for ’—which gives extra symmetry
breaking beyond the fermionic mass term. We will revisit
this in more detail in Sec. II.

Extending our previous study of the flavor-singlet scalar
o [15-17] and also the preliminary studies of the flavor-
singlet pseudoscalar 1’ [49,50], in this work we perform
lattice field theory simulations of QCD with different N/ to
study the spectrum of bound states. We highlight the
differences, and similarities, between QCD theories with
different numbers of light (or massless) flavors, in a
quantitative way, with new data. In particular, we present
an extensive study of 7/, as well as an updated study of the

This was first derived in Ref. [29] in the context of dilaton
chiral perturbation theory, giving the same expressions for d,,
and d;.
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spectra of o and other bound states, all of which are
consistent with our previous results mentioned above.

This comparison is informed by the mass formulas
above, Egs. (1.4) and (1.5), discussed in more detail in
Sec. II, which are valid independently of the chiral phase
(spontaneously broken or conformal), and hence may be
applied equally to all values of Ny we consider.

We also measure the gradient flow energy scale 1/+/81,
for N = 4,8, 12, with the same systematics, including a
study of the hyperscaling of ¢, for Ny = 8, 12.

The remainder of this paper is organized as follows: In
Sec. IT we motivate the use of the gradient flow scale
1/+/81, as an infrared scale and derive mass formulas from
anomalous WT identities for the scale symmetry (for o)
and for the U(1), symmetry (for #'), which will be used to
contextualize the lattice data in subsequent sections. In
Sec. III, we describe our setup of the lattice measure-
ments. We then present an update of the flavor-non-singlet
spectra:

(1) We first confirm our previous results on the char-
acteristic m, dependence of M,/M, toward the
chiral limit for Ny =4,8,12, as deeply broken,
walking, and conformal phases, respectively.

(2) We present measurements of the gradient flow
energy scale 1//8¢, for N, = 4, 8,12, which pro-
vide the basis for comparing the lattice results for
different N ;. We show that it obeys hyperscaling for
Nf = 8 and 12, while not for Nf = 4, reinforcing
previous indications that the former theories are in a
(near-) conformal phase, while the latter has a deeply
spontaneously broken chiral symmetry.

(3) Then the updated results for the nonsinglet N, = 8
spectra are given, which are all consistent with our
previously published data [17].

Then in Sec. IV, we present the data for o mass, giving an
update to our previous data for Ny = 8, which are analyzed
according to the formula Eq. (1.4) and found to give d,, d,
consistent with the previous publications [16,17]. We also
present new data for Ny = 4, and further compare d, d,
among Ny = 4,8 and Ny = 12. We also present the 6 mass

and the nonsinglet masses both in units of F,/+/2 and in
units of 1/+/81,, and highlight the characteristic features
of Ny =4,8,12.

Section V is the core part of the present paper, presenting
completed results for the #/ in comparison with other
spectra. We show the results for the mass both in terms
of the UV and IR scales; the latter indicate good agreement
with the prediction of the n; dependence in the anti-
Veneziano limit Eq. (1.6), thus confirming the previous
results [49,50]. Section VI is devoted to the summary.

We also include more detailed data and analyses in the
Appendixes. In particular, Appendix C compares our
results with those of the LSD Collaboration in units

of 1//3%.

II. MESON MASSES IN THE
ANTI-VENEZIANO LIMIT

In the following sections, we will present new lattice data
for N = 4,8,12 QCD. In particular, we will present
results for the masses of the flavor-singlet scalar ¢ and
the pseudoscalar 7/, each of which has characteristic con-
tributions from the anomaly, the scale, and the U(1) axial
anomaly. In order to understand and contextualize the
numerical results we will present, we must have a theoretical
functional form to compare them with. In this section, we
will discuss the theoretical issues surrounding the character-
istic n;(=Ny/N,) dependence of the anomalous parts of the
two mesons we will be focusing on, in the limit

N.— oo with N_.a = fixed,

ng=Ny/N,=fixed>1. (2.1)
We refer to this as the anti-Veneziano limit [12], by analogy
with the related limit proposed by Witten [51] and Veneziano
[52] in which n; is fixed at a small value referred to as the
Veneziano limit. The anti-Veneziano limit is of interest in our
setup as in the theories we are considering, 1, € [% ,4]; this
range is well away from the Veneziano limit, and we may
expect the upper end to be better represented by the anti-
Veneziano limit than the lower end.

A. An IR scale from the gradient flow

In the discussion that follows, we will normalize the
spectral quantities using an IR scale Ajg = Ap| NN, that
is, a scale where the coupling becomes strong, allowing the
formation of bound states from the nonperturbative dynam-
ics. This scale is intrinsic to the theory specified by the
combination of N. and N. To allow comparisons between
theories with different Ny, bound state masses such as those
of the 7' and & should be measured in terms of such a scale.

In the broken phase, Ak is essentially the confinement
scale and/or the spontaneous chiral breaking scale mp, (the

“dynamical mass”). More properly, this can be called the
“consitutent quark mass” m(fconmuem); it is related to the

mass of the ground state bound state

(constituent)

R
A = 2m} ~2mp +2m =M, (2.2)
where m}R) is the “current quark mass” defined as the
renormalized, on-shell mass of the fermion: m(R> =
(R) .
mf (//l) |#:m}cnnsmnem) .

®Note that another ground state mass, that of the =, is the NG

boson mass in the broken phase, and so it has a different

dependence on mp and m}R).
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However, defining Az via Eq. (2.2) is not suitable for
theories in the conformal phase, where bound states exist
only in the presence of a nonzero explicit fermion mass

m;R) # 0. Ordinary fermionic bound states (except for the
flavor-singlet scalar ¢ discussed in a later subsection) are

formed via the weakly coupled Coulomb force instead of
the confining force. The masses of two-body hadrons then

become
_ Agy \ 7
()
mg

(2.3)

where y,, :}/m<a(/t>)|ﬂ:mye) and Ayy a corresponding

UV scale (the intrinsic scale denoted in QCD as Agcp),
which characterizes the asymptotically free running of
the coupling. Specifically, for scales p > Ayy, then
Ym(a(u)) ~a(u) ~1/In(u/Ayy) < 1. On the lattice, we
may identify this UV scale with the inverse lattice spacing
Ayv = 1/a, then this is nothing but the hyperscaling
relation [18-20]
(R) e
aMy ~2am; " = 2(amg)%m. (2.4)
This explicit fermion mass also introduces a new IR scale
Aym below which the fermions decouple, leaving a con-
fined pure Yang-Mills theory. [Although the IR fixed point
a, is washed out, there still remains a remnant a(u) ~ a, for

m}R) < p < Ayy.] This is given by [18]

1
bo(x*
me \ T 1
N (i - . (25
o <AUV> exp( bo%) ( )

where by = ”62’ < is the coefficient of the one-loop beta

function of pure Yang-Mills theory, and «, the IR fixed
point in two-loop perturbation theory.

For the specific case of N, = 3, N; = 12, then by = 3L,
a,~0.754, giving exp(—;1-) ~047. On the lattice,
Eq. (2.5) then becomes

Aym = m(fR) €xp (‘

by

Comparing Eq. (2.3) with Eq. (2.6), we see that in the
conformal phase,

When comparing theories in different phases including
inside and outside the conformal window, we may choose
to use for Ak the gradient flow scale [53]

1
A =
IR Rig

(2.8)

as an alternative to using M), as in Eq. (2.2). As a gluonic
operator, we expect this to be relatively independent of
explicit chiral breaking effects, and allow a more robust
comparison between theories in different phases. On the
lattice, we may compare A with a corresponding UV
scale Ayy = 1/a. Analogous to Eq. (2.2), we expect the
scale 1/+/81, to consist of two contributions: the chiral
limit value from the dynamics of the theory 1/+/81, |m,~:0’
and a deformation due to the fermion mass, proportional to
m;-R). This leads us to anticipate the following behavior for
the ratio of the two scales:

AR a
Ayy 81y

+ C,O(amf)m.

a
~2amp + C,Oam}R) ~ N
0lmy=0

(2.9)

The first term is expected to scale with the dynamical
mass mp generated by the chiral condensate
a/\/8to|m,—o ~a-2mp; this then tends to zero as the
conformal window is approached from below, while in
the conformal window, there is no chiral condensate, and
a/\/81o|,y,—o = 0. We also introduce the coefficient C,,
which depends on the flow time. Since this is a gluonic
operator, C, is expected to be smaller than the coefficients
associated with the two-body hadron masses in Eq. (2.3).
Therefore, in the broken phase, we expect C,) < 2, while in
the conformal phase, Eq. (2.6) implies C,) < 1.

More concretely, as we will demonstrate in Sec. III, these
expectations—or even the stronger condition C, <1 for

ahyy = amng) exp <_ 1 > :O.47amj(£R> < am;R)' (2.6) N; = 4, 8—are typically satisfied for our chosen values of
' boa. ' the flow time. This implies
|
(R) > (R)
2mp + 2m 22 (m;' > mp),
Broken(near-conformal): M, /81, ~ D LN !

Conformal :

R
2mp + Clom‘; )

M/) 81‘0(2M7Z Sto) > 2.

~1 (mj(fR) < mp),

(2.10)

114503-5



YASUMICHI AOKI et al.

PHYS. REV. D 112, 114503 (2025)

B. ##/ mass in the anti-Veneziano limit

We will consider first the #/ meson. In QCD with N,
degenerate fermions, the flavor-singlet axial-vector current

Ny

Z X)y,rswi(x)

(2.11)

has divergence
Ny
PAY) = 2y S Wiy + 2N oo GG (), (212)

i=1

where the second term is the chiral anomaly. We may then
define the 5 decay constant via

(01AR(X) [ (q,)) = i
<0‘0”A0 \/_F M2 —qu

which then gives F,y = F,/ V/2; this is independent of
whether the theory is in the broken or conformal phase.

2NfF”/q”€_iqx, (213)

' (q,)) (2.14)

( M2/ ) (non-anomalous)

N
1 < { . 0 f / .
=——5( |—iQs.2my Yilysyi

NyF i=1

The relevant anomalous chiral WT identity then takes the
form

0= limig* / d*xe™ (T (A (x) - 0*AD(0))
q"=0

= ([iQ4, "AY(x)]) + iF T AT (0"A%(x) - *A%(0))],, ~o.

(2.15)
—([iQS, ' AL(x)]) = iF.T (T (" Au(x) - 0"45(0)))]y,—0
N F2M?,
=L (2.16)
M,,/ —q q,—~0
— NfF,Z, [(M;?’ ) (non-anomalous)
+ (MVZII)(anomalous)]’ (217)

where F.7 . refers to the Fourier transform of the corre-
lator, which the anti-Veneziano (i.e., large-N ) limit allows
us to evaluate using a single pole.

The nonanomalous and anomalous contributions are
then given by

l)

N,
1 . _
:W-szZ—zmw,.) = M2 - 0(m; — 0), (2.18)
Vi i=1
M2 (amomaous) — a2 pp2 — i T T( 2N, o= GG, (x) - 2Ny o GG, (0
( 7 ) n T NfF,zz l f Sr ;u/(x) f 87 ;w( ) 400
N N
~ FgA?R [(gluonloop) + fo (fermionloop)]
N N
~ Ff AR [(gluonloop) + Ff (fermionloop)] . (2.19)

Here, “gluon loop” and “fermion loop” refer to the
contributions from the diagrams in the left and right panels
of Fig. 1, respectively [12].

In the Veneziano limit ny = Ny/N. < 1, the theory is in
the broken phase, and the gluonic loop contribution in
Eq. (2.19) dominates over the fermionic one. In this case,
the anomalous mass of the #' becomes

2 '\ (anomalous)
(M)

~np <. (2.20)
Al !

This matches the expectations that in this limit, the 7' meson
. . . L. 7
is a pseudo-NG boson with parametrically vanishing mass.
In the anti-Veneziano limit as defined in Eq. (2.1),
however, the fermion loop contribution in Eq. (2.19)
dominates over the gluon one. This then gives

n N = N.=3QCD, as observed in experiments, we see a
large value of M, comparable with M ,, which does not align with
this prediction of a parametrically vanishing mass. This is
because Ny = N, = 3 is far from the idealized Veneziano limit

of Ny < N..
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FIG. 1. The loop diagrams contributing to the correlation function of aG,wG/‘” coming from the gluon loop (left panel) and fermion
loop (right panel). The large-N. and -N scalings have also been specified.

N 2
(M3 )onomlons) L (NN o Afy) ~ % - A (2:21)

T

The nonanomalous contribution proportional to the pion
mass is negligible in this limit, giving

M2, M2/ (anomalous)
q L

2 T 2
AIR AIR

(2.22)

We therefore expect to observe the normalized 7' mass to be
approximately independent of m, in the broken phase.
Meanwhile, in the conformal phase, the only scale is
provided by the explicit deforming fermion mass, meaning
M, (anomalous) oheys the same hyperscaling relations as M2
and A% = 1/(81), and so the normalized #' mass should
be fully independent of m.
We may now define the ratio

M(anomalous) 2
R2 =8t - (M(anomalous))Z _ 7
Ny = 00 7 N, AR

2 2
- M, - M3 5
o A2 an
R N,

in the anti-Veneziano limit. Thus, for the values of N, we
consider, we expect

Ny

(2.23)

R,: R3:R3~9:4:1. (2.24)
These will be shown to be consistent with our lattice data
in Sec. V.

C. 6 mass in the conformal and
broken phases

The flavor-singlet scalar ¢ has a mass obeying the WT
identity for the scale symmetry, such that

Ny

G;24u+ (1 +Ym)mlepil//iv
i=1

(NP)
¢ =0,D" :ﬂT(a) (2.25)

@) 2 s i
where == G, is the nonperturbative component of the

trace anomaly, in which G, is the gluon field strength, and

SNP)(q) is the nonperturbative beta function for the non-
perturbative running (or walking) of the coupling. The
mass anomalous dimension y,, here is the nonperturbative
infrared value y,, = y,, (a(#))],= -

In the broken phase, both the nonperturbative beta function
and the nonperturbative infrared mass anomalous dimension
may be estimated via the ladder SD equation (which con-
ceptually aligns with the anti-Veneziano limit), giving

— (R (R) Mp
= T~ ..D
mp=m; m g
S0P () — oa(A)
dlnA mp=fixed
 2tay 20, (a : 3/2
BRTE (@) 1 \agy '
mp
olnZz,!
Ym(a) = A o= 1, (2.26)
D
and
b3
mp = 4Aexp (— 7>; (2.27)
V a/acr -1

then mp/A = mp/Ayy — 0 near the conformal edge in an
essential singularity and cannot be power expanded. (Fuller
details are presented in Ref. [12] and references therein.)

We then expect bound state masses to have a hierarchy of
order O(AR) = O(2mp) < Ayy as a = a. Noting that
ny =ny at @ = a, = a;, we have

AUV AUV

AIR ZmD

b2 A
~ €X ——— | ~€X e —
p< \V a/acr - 1> p( n;r _nf>
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At this point, at the two-loop level,

of

2=A ) =— " ~0.78a,, 2.29
C((,Ll UV) 1 -+ W(e'l) a ( )
where the IR fixed point is at
471' 11 - an
M— 2.30
“EN. 130, 34 (2.30)
and the ladder critical coupling is
z 1 & 2N 2r
==r—== > . 2.31
% =370, T3NZ-173N, (231)
The two-loop values are then
3V2x
A s = 2.7, ni <4 (2.32)

This suggests that Ny = 12 is barely inside the conformal
window, although the two-loop value for a, is not expected
to be precise, and hence neither is the value of n§'. Further
details may be found in Ref. [12].

Turning our attention back to the conformal phase,
we may at first sight expect that since we introduce
a nonzero fermion mass, both the scale symmetry
and chiral symmetry are broken explicitly but not
spontaneously. In this case, all fermionic bound
states, including the z and o, would be Coulombic
bound states as discussed in Eq. (2.3) above. This is
what is observed in heavy quarkonia, for similar
reasoning.

However, a key difference of the conformal phase from
the heavy quarkonia is that the degenerate massive
fermions giving rise to confinement decouple, with the
induced confinement scale—the gluon condensate—
totally governed by the fermion mass m'® as described
by Eq. (2.5). The gluon condensate breaks the scale
symmetry not only explicitly, but also spontaneously.
Specifically, the ¢ is a pseudo-NG boson of the scale

symmetry (although the explicit breaking scale m;R) is

much larger than the spontaneous breaking scale Ayy >

m}R) /2 in the N; = 12 case). The gluon condensate does
not however break chiral symmetry, which as such is
only explicitly broken; the z therefore remains a non-
NG boson.

Given this, we may try to estimate the ¢ mass not
only in the broken phase, but also in the conformal
phase, where the scale symmetry is broken both
explicitly and spontaneously by the same infrared mass

scale of the fermion mass mj(fR). (It is of course also

explicitly broken in the UV by the regularization; this
makes no difference to the formation of bound states.)

Following the argument of Ref. [29], we may start with
the dilatation current given in Eq. (2.25), whose WT
identity [with single-pole dominance as in the case for
7' in Eq. (2.16)] is

M2F? = iF T (T(3,D*(x) - 9,D"(0)))]

4,—0
= ([=iQp. 9,D"(0)]) (2.33)
ﬂ(NP)(a) , Ny o
- P G 1m0
(2.34)

Similarly, the single-pole-dominated WT identity for the
nonsinglet axial-vector current Afj (a=1,2,3) for each
doublet w' (i=1,2) gives the Gell-Mann—Oakes—
Renner (GMOR) relation:

<%> M2 5 = ([-igz, ¢ AL(O)])

(') - 6%,
1

(2.35)

2

l

While Egs. (2.33) and (2.35) are usually derived using
the soft pion theorem, they are in fact based simply on
the pole dominance and hence are valid in both the
broken and conformal phases. This then gives [29]

G-r)- (0 +7)% (%

)2
- M?
F2 g

M[QT _ <M((yanomalous)>2 +

This may then be used as a fit form for lattice data.

When combined with an estimate of the anomalous
dimension y,,, the results of the fit for d; may be used to
estimate the ratio F,/(F,/v2) = /NpF,/vgw (Where
Np is the number of electroweak doublets). From
Eq. (2.36),

dy = (\/(3 —7m) (L +7m) N F”/ﬁ>2

2 F,
F./V2\?
m Fo'

(2.37)

Linear sigma model and holographic QCD calculations
in the near-conformal broken and conformal phases suggest
that (via footnote 18 of Ref. [12] and references therein)

r-a (%) —e-nr Y () e
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with d; = 3 —y,, the scale dimension of ¢ ~ 1/71,//.8 If this is
the case throughout the near-conformal and conformal
phases, then from Eq. (2.37) we have

1+ ym

d pr—
! 3_ym

(2.39)

We may also use this result to make predictions
informing potential lattice studies of 12 < Ny < 16.5: In
this case, the SD equation gives

rw=1=VT=a/a, (2.40)
N0 asa, \(O(N; 7 16.5). (2.41)

This in turn would predict
dy\(1/3 asM, \(\M,/V3 and  (2.42)

M%(anomalous) X F% — l]:T<T <ﬂ

~N ;N .mj}, (2.46)

with

FL2T ~ (3 - ym)szNcsz (247)
up to a numerical factor roughly independent of Ny and N,..
An implicit N ; dependence comes from F2 ~ (3 —y,,)* via
the details of the dynamics as in the linear sigma model/
holography discussed above.

This then implies

2
Milmf_o=do=0<< b ) ) V Ny, (2.48)

3_7/m

As the conformal window is approached from below, we
expect the anomalous dimension y,, — 1, and so this
vanishes:

8For N = 2, this becomes the standard linear sigma model
relation F,=F,/ V2 = (o) for d, =1, or equivalently, the
Nambu—Jona-Lasinio (NJL) model with y,, = 2. Note also that
the kinetic term (the scale-invariant part) of the Ny = 2 linear
sigma model (or the Standard Model Higgs Lagrangian) is
rewritten into the dilaton chiral perturbation theory (dChPT)
Lagrangian, Eq. (2) of Ref. [29], through polar decomposition,
with its mass from the explicit scale-symmetry breaking potential
M? = 2A(c)? as a pseudodilaton for 2 < 1. The interested reader
is referred to Ref. [54] and references cited therein.

M) ()
E G -Tczy<o>>>|q B

F
g 8.6 as MY ~d,M2(> d,). 2.43
5 MG d). (243)
On the other hand,
4-(0 NP) () (G2,
dy = M2 (anomalous) _ _ (Ou) = _ﬁ (@) (Giw) (2.44)

F2 a F2
comes from the nonperturbative trace anomaly. In the
broken phase, it is nonzero even in the chiral limit, as
myp, violates the scale symmetry, both spontaneously and
explicitly. Thus, the chiral limit ¢ mass d, is a key
observable to understand whether a theory is a suitable
candidate for a walking technicolor model with a composite
Higgs boson of appropriate mass.

In the anti-Veneziano limit, the fermion loop dominates
over the gluon loop in the computation of the anomaly.
Similar to the #’ in Fig. 1, this then gives from Eq. (2.33)

(2.45)

mp 2
Mtzylmf:o = O((T) ) -0 (l’lf / nj:r) (249)
This is similar to other states in the spectrum, which obey

M0 = O(2mp)?) >0 (ng /' 1) (2.50)
with no additional suppression, contrary to the popular
assumption [5,30,55,56] that the vanishing beta function
suppresses M2 relative to other states.” Thus, in the near-
conformal region, ¢ as a pseudo-NG boson has a small but

nonzero ratio:

2
M3
2
MH m;=0

— const.(< 1)

(ny /' nf). (2.51)

Note that M;|, o= dy~mp’> has no additional
dependence on N, when expressed in units of A =
1/4/8t, (aside from the abovementioned implicit N,
dependence of F2 through y,,). Similarly, d; also has

’An explicit ladder computation [12,57] shows that the
vanishing beta function in Eq. (2.26) is precisely canceled by
the diverging (G7,) ~ N N.mj, -In*(A/mp) — oo, such that
- (a)/a - (G2,) ~ NyN.mj, is independent of A, with the
result precisely the same as an independent computation of (6,)
through the effective potential. Such a complete cancellation
might be avoided only by including nonladder effects, such as in
the holographic model [58].
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no explicit dependence on N, in the anti-Veneziano
limit (but again has an implicit N, dependence from
Ym). This contrasts the result in Eq. (2.23)
that My, - 81 = My /Ajg ~ N7.

Equation (2.36), here based on the WT identity for the
scale symmetry, was originally derived in the broken phase
via dChPT [29] at tree level. It has further been shown
explicitly [29] that there exists a possible deviation from
Eq. (2.36) due to the chiral log of the pion loop effects (as in
the standard ChPT) near the chiral limit. For the loop
expansion parameter

=M /A<, (2.52)

where

A} =(4n-(F/V2))*/Ns,  F=F|, o (253)

as well as M2 < M2. Then, from Eq. (10) of Ref. [29]

M2 do(
A2 A2 2

(2.54)

While this expansion is relatively flat for 0 < y < 1, as y
increases past this region, the chiral log present in dChPT
no longer makes sense, and Eq. (2.36) should be used
instead. This is the region where our numerical results lie,
with y > 1 and (for N, = 8) M%< M3. Further, since
A~ (N./Ny) - (2mp)?*, simulations at much smaller val-
ues of m; would be needed in order to observe the loop
effects.

This implies that the value obtained for d, by fitting
using Eq. (2.36) is effectively shifted to a smaller value than
the true chiral limit value of dy = M §|m,-:o = )2 (anomalous)

as illustrated in Fig. 2 of Ref. [29]. On the other hand, the fit
value of d; is the same as d; in the chiral limit y — 0 where

. . . F,
chiral log effects disappear, and so is the value 7

Eq. (2.59). We shall return to this point in Sec. IV where we
discuss the new data of this paper on the mass of the ¢ as a
candidate for the Higgs boson.

While dChPT is valid in the near-conformal broken
phase, the alternative derivation [29] presented here shows
that Eq. (2.36) is also valid not only deep in the broken
phase (again with the d, fit value up to the chiral log) in the
absence of any remnant of scale symmetry (and where we
do not expect to observe hyperscaling), but also inside the
conformal window where dChPT is irrelevant. Inside the
conformal window, both d, and fN")(a) are identically
zero in the chiral limit, where no bound states exist. As
such, there is a “conformal phase transition” where the
order parameter mp continuously changes going from the

in

d 9
1 —|——1;(1n;() +d, (1 —i—Z;(ln;() x(Ny>1).

broken to the conformal phase in the essential singularity
form, while bound states do not [22].

When we introduce an explicit fermion mass my, the
scale symmetry is broken explicitly and spontaneously as
described in Sec. II A. We expect that similar to Eq. (2.5),
the anomalous component of the ¢ mass is of the order of

the confining scale of pure Yang-Mills theory Ayy =
m}R)/Z = 1/(2+/81y) instead of Ajr = 1/1/81y, in contrast

to that of # [Eq. (2.23)], which is irrelevant to the
spontaneous scale-symmetry breaking. Specifically,

A%{M ~ (mf ~
(3_ym)2 4(3_}’;71)2 16(3—}’,,,)2’
(2.55)

do _ (Mt(yanomalous) )2 ~

where we have again relied on relation Eq. (2.38). Putting
this back into Eq. (2.36) gives

1
M:=|—F—+d |M;.
’ (16(3—ym>2+ ) g

Let us now briefly explore the compatibility of the
predictions above with our previous work. Considering
Eq. (2.36), for Ny=8 we found in our previous
work [17]10:

(2.56)

dy = —0.0028(98)(3¢,), d, =0.89(26)(3). (2.57)
Here, dy <0 would suggest that
M2 <diM2~M2, (2.58)

suggesting that if the N, = 8 theory is in the broken phase,
then our data are far from the chiral limit, where we
expect M2 > M2 = 0.

Our previous observations for y, from hyperscaling
would then indicate that for N;=8, vy, ~1.
Considering Eq. (2.37), this then implies = C, ~4,
and so

VNyF, F 1

=—7_=C, -——c~4.
VEwW F./\V?2 vz

(2.59)

This is consistent with the linear sigma model prediction
in Eq. (8), and gives d; ~ 1. For Ny =12, y,, ~0.4-0.5
would give

'9A consistent set of coefficients was obtained in the first
lattice result for M, in Ny = 8 QCD [16].
A consistent result was also obtained through the measure-
ment of the scalar density decay constant Fg which is indepen-
dent of the d; measurement; see Fig. 50 in Ref. [17].
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Ny=12

dM =" ~0.54 - 0.6. (2.60)

Equation (2.56) implies that M, is less than M,

for Ny = 12, since d\"'~"? < 1 [see Eq. (2.60)]; i.c., the
smallness of the o mass is related to that of its slope. Since
there is no chiral log correction in the conformal phase, we
expect M2/M?2 < 1 all the way down to near the chiral limit
(although not, as previously discussed, at m; = 0, where no
bound states exist).

By directly comparing the three theories, we will later
demonstrate in Sec. IV how our updated lattice results for
M, and M, align with these formulas. Meanwhile, the
relation M, < M, for Ny =12 has been numerically
confirmed in our previous lattice result [15], independently
of these formulas.

III. SETUP OF LATTICE SIMULATIONS AND
HADRON SPECTRUM

The LatKMI Collaboration has been systematically
investigating N, = 4,8, 12, and 16 QCD using a common
setup for the lattice action, exploring different fermion
masses and volume sizes, and employing a single value for
N; = 8 and two values of the gauge coupling for Ny =4
and Ny =12 [13-17].

The fermionic action discretization used is the highly
improved staggered quark (HISQ) action [59], while the
gauge action is the tree-level improved Symanzik action
[60]. It suppresses the effects of taste breaking that spoil
flavor symmetry [14,17]. Moreover, for theories with a
number of degenerate quarks that is a multiple of 4,
staggered quarks are very efficient compared to other
numbers of flavors, as taking a fourth root of the fermionic
determinant is not required.

The spectrum of the low-lying flavor-non-singlet states
is extracted using standard techniques involving the analy-
sis of two-point correlation functions of interpolating

operators with the correct quantum numbers. The bench-
mark states are the vector and the pseudoscalar, which are
called the p and = meson, respectively, by analogy with the
corresponding QCD states. Their masses, denoted by M),
and M, respectively, are easy to compute, and their mass
ratio is a good qualitative indicator for spontaneous chiral-
symmetry breaking or for conformality. In the first case, the
m mass would be expected to go to zero and M,/ M, to go
to infinity in the massless fermion limit. On the other hand,
an infrared conformal spectrum in the presence of an
explicit fermion mass would show a constant finite
M,/M, toward the masslesss limit, with possible correc-
tions to this behavior at large quark masses.

Our previous studies have shown that the SU(3) gauge
theory with N = 4 and 8 is in a hadronic, chirally broken
phase where the lattice simulations show a decisive
increase of the ratio M,/M, toward the massless quark
limit. On the contrary, the N, = 12 theory displays a
constant ratio in our simulations. We repeat this compu-
tation using an updated set of lattice simulations (discussed
in more detail in the specific subsection below), and
confirm that we continue to observe this effect, as can
be seen in Fig. 2. Note that, while the fermion mass range
for the three theories is similar (in lattice units), the hadron
mass ratio M,/ M, has a different scale, highlighting a large
deviation from a constant in the N, = 4 and 8 cases. The
staggered fermion taste-symmetry breaking, which is the
relevant lattice discretization effect in this investigation, is
briefly discussed in Appendix C; this includes, for exam-
ple, Ny =4 simulations performed at different lattice
spacings. For N, = 8, we have already shown that these
effects are small [17].

In the following subsections, we will first define the
means by which we set the scale using the gradient flow, as
well as how this scale can be used to extract the anomalous
dimension via finite-size hyperscaling, and then revisit
the spectrum computations of our previous work. After

Ny =4 Ny =8 Ny =12
2.5 7 b B =3.8, PV $- B =38, PV
B =38, 1.60 % B =38, 1.20 -
v ke 8 =3.8, VT kB =38, VT
2.50
. . 1.55 - : . ,
= 2251 3 1.50 1 31,19 1
2.00 - “y 1.45 ~ g
i, —4.0, PV
1.75 T ‘.T 1.40 7 T ? 1181 § B T %
0.00 0.02 0.04 0.00 0.02 0.04 0.00 0.05 0.10
am: g amy amy

FIG.2. Theratio M,/M, shows indications of spontaneous chiral-symmetry breaking in the massless fermion limit for N, = 4 and 8
QCD different from N, = 12 QCD. For N, = 8, the results using different taste operators for the p meson are shown. The range of
fermion mass considered in the three theories is similar. Lines connecting the data points are meant to guide the eye, and points are

horizontally shifted for clarity.
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establishing that the conclusions of our previous work still
hold for N; = 8 with the updated simulations at smaller
quark masses, we will not repeat a full chiral or conformal
analysis; subsequent sections will focus on the flavor-
singlet spectrum.

A. Gradient flow scale and hyperscaling

In addition to the mass scales of the hadronic spectrum,
we measure the gradient flow scale 7, [53]. We use the
Symanzik flow kernel to smooth the clover definition of
the one-point energy operator (E). From this, we define the
scale t¢ as the value of flow time ¢ such that (E(t)) = &,
and in particular, the scale #, as the value of 7 where
E=03=¢,. This is the same setup we used in our
previous publications [17,61]. We calculate ¢, for Ny = 4
at two f values and four quark masses my, for Ny = 8 at
one f and six quark masses, and for Ny = 12 at one  and
five quark masses, while we have simulated at two S values
for Ny = 12 (see Ref. [17] for details of the mass spectra
analysis). The results are summarized in Table I. While ¢, is
in units of a2, it is convenient to define a length scale
(associated with the smearing radius of the diffusion
process to which the gradient flow is equivalent) as
r = /81y, which can be intuitively associated with the
Sommer radius ry in QCD [62]. We plot the energy scale

TABLE L. The gradient flow scale 7, in lattice spacing units for
the ensembles used in the spectrum analysis.

4 3.7 20 0.01 1.13807(89)
4 3.7 20 0.02 1.09109(73)
4 3.7 20 0.03 1.05237(86)
4 3.7 20 0.04 1.01459(73)
4 3.8 20 0.01 1.4535(19)
4 3.8 20 0.02 1.3841(20)
4 3.8 20 0.03 1.3262(17)
4 3.8 20 0.04 1.2752(15)
8 3.8 48 0.009 5.0762(72)
8 3.8 42 0.012 4.7543(56)
8 3.8 36 0.015 4.4556(64)
8 3.8 36 0.02 4.0304(49)
8 3.8 30 0.03 3.3842(35)
8 3.8 30 0.04 2.9563(39)
8 3.8 24 0.05 2.6599(70)
8 3.8 24 0.06 2.39320(77)
8 3.8 24 0.07 2.1885(32)
12 4.0 36 0.04 11.206(57)
12 4.0 36 0.05 8.292(26)

12 4.0 30 0.05 8.338(26)

12 4.0 30 0.06 6.603(19)

12 4.0 36 0.08 4.632(17)

12 4.0 24 0.08 4.627(12)

12 4.0 24 0.1 3.6133(70)

0.35 4 e e

o ® b Ny=4,8=37
i x % ¥ Nyj=4,8=338
0.30 x X 5 Ny—8.5=38
0.25 . i Ny=12,8=4.0
° ©
= 0.20 o ° )
69° ° 8
- ©
S 0.15 o
8
0.10 =
0.05
000 T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
amy
FIG. 3. The hadronic energy scale 1/1/8%, in lattice units as a

function of the bare quark mass is plotted for all values of Ny.

corresponding to 1/+/8%, for all values of N as a function
of the bare quark mass in lattice units in Fig. 3. We observe
smaller a//8t, as Ny/N, increases, which indicates that
the chiral limit values would decrease toward the conformal
window.

To understand the scaling behavior of a/\/87¢, we fit
these data with a finite-size hyperscaling (FSHS) ansatz of
the form

L 1
— L 1.+V"’ ,

(3.1)

where y,, is the mass anomalous dimension, as enters into
Eq. (2.3) in the conformal phase. This fit was performed
using the piecewise-interpolating curve-collapse method
proposed by Bhattacharjee and Seno [63] and previously
deployed by DeGrand [64]. The value found for y,, shows
significant dependence on &, as shown in Fig. 4. As the
gradient flow has a smoothing effect removing ultraviolet
effects, the fit result at larger values of r—and since *E
increases monotonically with ¢, larger values of £—is
closer to the infrared value than that at smaller values.
Furthermore, since the residual P(y,,) (analogous to a y?
measure for this type of fit) decreases as 1/£ approaches
zero for N, = 12, this suggests that a//8f¢ can be well
described by the FSHS ansatz at larger flow times t.
This result, together with the observation in Fig. 3,
supports our identification of a hadronic energy scale
Awr/Auy = a/+/81%, as indicated in Eq. (2.9), though
Eq. (2.9) strictly applies only in the infinite volume limit.
Among various possible definitions, for comparisons across
different theories, it is convenient to use a gluonic definition
a/+/8t, as the reference scale Ar/Ayy, since it exhibits
only mild fermion mass dependence, as discussed later in
Secs. IVand V. As aresult, in the following we will often use
the length scale r = /8%, (and its reciprocal) as a reference
scale across theories with different number of flavors.
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N;=38
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FIG. 4. The result of the finite-size hyperscaling analysis for Ny = 8 (left) and N, = 12 (right). In each case, the upper panel shows
the value of the anomalous dimension y,, obtained via a fit of the energy scale ¢ as a function of the reference scale £ (points), and the
lower panel the residual P(y,,) [defined in Eq. (19) of [65]] of the fits for the points in the upper plot. The dashed line shows the

exponential fit used to find the final quoted values for y,.

In Fig. 4, we show the result for y,, as a function of 1/&,
for both values of N r= 8, 12. We note that the region of £
in which a stable fit is obtained differs between the two
cases. This is due to differences in the fermion masses and
lattice volumes considered in the two cases, since there
must be sufficient overlap between the data at different L to
allow all data to contribute to the fit; we would anticipate
that dedicated studies controlling these parameters could
allow overlapping regions of £ to be explored.

In both cases, the data visibly begin to level off at larger
values of £, which we interpret as y, = limg_,, 7,,. This is
most pronounced in the Ny = 12 case, which appears to
almost reach its plateau value; in the N,=38 case,
extrapolation to the & — oo limit is needed. Imposing
ad hoc an exponential form for this behavior gives a
limiting value of y, = 1.0830(11) for N, =8 and y, =
0.4395(20) for N, = 12, both of which agree closely with
results previously obtained from (basic and finite-size)
hyperscaling of the mass spectrum [17] (specifically that
obtained for states other than the x in the Ny = 8 case).

B. Updates of hadron spectra in Ny =8 QCD

Before discussing the scalar spectrum, we will give an
update of the hadron spectra and their chiral extrapolations,
which include a newly added lightest mass pointin N, = 8

QCD at my = 0.009. These new data were generated with
volume L3 x T =483 x 64 at = 3.8, using the same
algorithm as in our previous works [14,16,17] where
the lightest point was m; = 0.012 on L? x T = 48 x 64
lattices.

We report details of the simulation parameters and a
finite volume study in Appendix A.

In the analyses that follow, physical quantities are extrapo-
lated to the chiral limit by a polynomial function of my, as
in the previous work [17], whereas effects from chiral

TABLE II.  Fit results for F and M2/m ¢ in the chiral limit of
Ny =8 using a fit form Co+ Cymy+ Cymj. “Linear” and
“Quadratic” denote the fit forms with C, =0 and C, # 0,
respectively. The value of y?/d.o.f., the number of d.o.f. in
the fits, and the fit range are also tabulated.

C x*/d.of. dof. Fit form m, fit range

F 0.02105(61)  0.17 2 Quadratic [0.009, 0.03]
F 0.0212(13)  0.33 1 Quadratic [0.009, 0.02]
F 0.02371(52) 1.22 1 Linear [0.009, 0.015]
M,z,/mf 1.892(41) 0.24 2 Quadratic [0.009, 0.03]
M2/ my  1.945(92) 0.06 1 Quadratic [0.009, 0.02]
M,Z,/mf 1.938(39) 0.07 1 Linear [0.009, 0.015]
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FIG. 5.

the left panel but for M2/m.

logarithm are taken into account to estimate the systematic
error of chiral extrapolation for some limited cases.

1. F,and M,

The decay constant F, is fitted by a quadratic fit with the
fitting range am; €[0.009, 0.03], because including larger
masses results in large fit residuals (y*/degree of freedom).
Having a new lightest mass point at m, = 0.009 allows us
to shift our fitting ranges toward the chiral limit while
keeping the same number of fit degrees of freedom.

The chiral limit extrapolations of these fits (F') are shown
in Table II. The result of F' with a quadratic form using the
fit range m, €[0.009,0.03] agrees reasonably well with
other fit results, which are from quadratic and linear fit
forms using the data in the intervals m ;e [0.009,0.02]
and m; € [0.009,0.015], respectively. These results are
presented in Fig. 5, and a comparison of these results with
those from the LSD Collaboration [42] is provided in
Appendix C.

The data for M,z,/mf are also fitted by the same fit
forms as F, and shown in Fig. 5. The results are presented
in Table II, and are in good agreement with those in
the previous paper [17]: F =0.0212(12)(*3]) and
MZ%/m; = 1.866(57), including the possible chiral log
effects for F.

Although the updated and previous results are consistent,
our data are far from the chiral limit. At m; = 0.009 the
expansion parameter of ChPT for Ny = 8 QCD [66-68] is
still large,

X =M2/A2 =2N¢(M,/4nF)* = 4.388(528)(33;) > 1.
(3.2)

In order to obtain a more reliable value of F', we would need
several data points at yet smaller values of my. The

2.8 ®
2.6
£ 2.4 -
aw
=
2.2 4
—$¢— Quadratic, am; € [0.009, 0.03]
2.0 1 - .
Quadratic, amy € [0.009, 0.02]
—&— Linear, am; € [0.009, 0.015]
T T T T T
0.00 0.01 0.02 0.03 0.04
amy

Left: chiral extrapolations of ', in Ny = 8. The range of m considered for each fit curve is noted in the legend. Right: same as

systematic error of F' is estimated with the same procedure
we used in our previous paper [17], and we obtain

F =0.0210(6)(*2)), (3.3)
where the quoted uncertainties are statistical and system-
atic, respectively. The central value and statistical error are
determined from the quadratic fit with m, €[0.009, 0.03].
The lower systematic error is estimated from the effect of
the chiral log term in next-to-leading-order ChPT, and the

upper from the difference between the quadratic and linear
fit results tabulated in Table II.

2. Chiral condensate

We estimate the chiral condensate in the chiral limit with
two analyses. The first is a direct measurement of the chiral
condensate

Tr[Diyisq)
(py) = TQ~ (3.4)
The chiral extrapolation of () using a quadratic fit in the
range my € [0.009, 0.03] is presented in Appendix B.
The second analysis is based on the GMOR relation,

_ F’B
<WV/>|mf->0 =5 (3.5)
where 2B = M2/m ¢ in the chiral limit. We calculate X
given by

o

e (3.6)

at each m,. The data in the interval m; €[0.009, 0.02] are
extrapolated to the chiral limit with a quadratic function of
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FIG. 6. Chiral extrapolations of £ = FZM3/4m; in N; =8
using a quadratic fit form. The dashed line represents the
estimated m dependence of X using the fit results for £, and M.

my, as shown in Fig. 6. Comparing the fit curve with one
estimated using the fit results of F, and M2/ m; shows a
reasonably good agreement. However, we observe a large
fit range dependence of the chiral limit value, similar to our
previous study [17]. A fit with a wider fit range gives a
smaller value in the chiral limit, as presented in Table III.

The fit results in the chiral limit are summarized in
Table III. We also tabulate the estimated value from the
GMOR relation in Eq. (3.5), using the fit results for ', and
M2/m ¢ presented in Table II. The fit result of the direct
measurement agrees with the GMOR relation, and also
with the result in the previous paper [17], which was
(W) m,—o = 0.00022(4). The new result (py)l,, o =
0.000200(20) has a smaller error thanks to the wider mass
range for the fit given by the addition of a precise value at a
lighter fermion mass.

The result of X with the shorter fit range
m € [0.009,0.02] is consistent with the direct measure-
ment, although the error is large. It is in tension with the fit
results with £ in our previous work [17], where all the
extrapolated values are negative. It is expected that the
chiral extrapolation of X will become more stable as we add
several smaller m, data points.

TABLE III.  Fit results for the chiral condensate (yy) and £ =
F,Z[M%/4mf in the chiral limit of N, = 8 using a quadratic fit
form Cy+ Cymy + sz]% together with the result from the

GMOR relation F2B/2. The value of y?/d.o.f., the number of
d.o.f., and the fit range in the fits are also tabulated.

Co x*/dof.  dof.  my fit range
(pw) 0.000200(20) 0.41 2 [0.009, 0.03]
(pw) 0.000198(42) 0.82 1 [0.009, 0.02]
z 0.000031(39) 1.69 2 [0.009, 0.03]
z 0.000156(79) 0.09 1 [0.009, 0.02]
F’B/2 0.000210(13) e e

O 4 HeH

TEX
2'\}
X

0.0 T T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

amy

FIG. 7. Chiral extrapolations of M, and My in N, = 8 using a
quadratic fit form. There is a noticeable curvature at the lightest
fermion masses.

3. Masses of mesons and baryons

We extrapolate the masses of the p, ay, a;, by, N, and Nj
states to the chiral limit using a linear fit of the data for
m; € [0.009,0.03]. The p and N states show a curvature in
this range, and so they are also extrapolated using a
quadratic fitting form, for the same fit range, as shown
in Fig. 7. The results of these fits are tabulated in Table I'V;
plots of the individual fits for the different mesons are
included in Appendix B. As the y*/degree of freedom
(d.o.f.) of the linear fit of N is large, we consider only the
quadratic fit result for the following discussion. While the
linear fit of p is acceptable, we choose the quadratic fit
result as the central value, and the linear fit result is used to
estimate a systematic error. The results in the chiral limit are
consistent with the ones in the previous paper [17], except
for My: This is about 20% smaller than the previous result
due to the curvature at light m .

Note that M, agrees with the value in the previous paper
within the systematic error coming from the difference of
the quadratic and linear fits. Using the results in Table IV,
we obtain M, /M, = 1.59(14)(},), where the first and
second errors are statistical and systematic ones, respec-
tively. Here we have used the quadratic fit for M, and the
linear fit for M, to determine the central values. This
agrees with the result in the previous paper within uncer-
tainties.'> Moreover, it is also compatible with the Particle
Data Group value [69] of M, /M, = 1260/770 ~ 1.64
corresponding to ordinary QCD. A more detailed discus-
sion of this ratio will be presented in a forthcoming
publication [70]. To obtain more stable results in the chiral
limit, calculations with several lighter fermion will be
necessary. We also note that our extrapolations are not
based on a rigorous effective description, but rather are

“In Ref. [17], we extrapolated linearly the ratio M, /M ,;
repeating the same analysis with our new data reproduces the
same results within uncertainties.
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TABLE IV. Fit results for hadron masses in the chiral limit of
N; =8 with a polynomial fit form Cy + Cyms + sz% in the
range m; € [0.009,0.03]. “Linear” and *“Quadratic” denote the fit
forms with C, =0 and C, # 0, respectively. The value of
y?/d.o.f. and the number of d.o.f. in the fits are also tabulated.

Co y%/d.of. d.o.f. Fit form
M, 0.1485(25) 1.68 3 Linear
M, 0.1326(90) 0.83 2 Quadratic
M, 0.1450(99) 0.85 3 Linear
M, 0.210(12) 1.28 3 Linear
M, 0.206(18) 0.39 3 Linear
My 0.2058(26) 4.84 3 Linear
My 0.1749(92) 1.10 2 Quadratic
My: 0.273(11) 0.00 3 Linear

meant to provide guidance for interpreting our results in the
context of strongly coupled theories near the edge of the
conformal window, and as a comparison with previous
results.

The ratios for the hadron masses (shown in Table IV) to
F [in Eq. (3.3)] are presented in Table V and are our chiral
limit predictions for the spectrum of the Ny =8 QCD
theory. These ratios are suggesting that this theory is in the
hadronic, chirally broken phase, but these results alone
cannot establish how close the theory is to the conformal
window.

Note that the central values for p and N are determined
from the quadratic fit results, and the systematic error
quoted for v/2M ,/ F includes the difference between the
quadratic and linear fit results for M, shown in Table IV.
Our result in Table V

V2My s o1(66)(1) (3.)

obtained from a quadratic fit for both M, and F is
consistent with the values included in our previous
works: v2M,/F = 7.7(1.5)(13%) in [14] and V2M,,/F =

TABLE V. Ratios of v/2M,/F in the chiral limit. The first and
second errors are statistical and systematic errors. p and N are
evaluated from the quadratic fit results, and others from the linear
results shown in Table IV.

H V2My ) F

M, 8.91(66)(155)
M,, 9.74(72)(163)
M, 14.13(88)(]%)
M, 13.9(1.3)(73)
My 11.75(70)(3%9)
My: 18.34(92)(30¢)

10.1(0.6)(17:9) in [17], where the latter was obtained from
a linear extrapolation for M, and a quadratic one for F.

Finally, we should discuss the discretization effects and
their implications for our study of the phase structure. In the
N = 8 theory, the suppression of taste breaking indicates
that lattice artifacts are at least reduced in the fermion
sector. However, the overall magnitude of the discretization
error is difficult to estimate, and with the present data we
cannot definitively exclude the conformal scenario. At the
same time, our spectrum analysis provides strong evidence
for chiral-symmetry breaking. Unlike other bound states,
the pion mass does not exhibit universal hyperscaling.
Instead, the effective anomalous dimension y,, extracted
from M, decreases as mj increases. This behavior is
naturally explained by the GMOR relation

) 4

>|m -0

2 i

M” = 4—2mf =
17[

o my+Om s

(3.8)

in which the linear term dominates near the chiral limit
(y,, = 1), while the quadratic term controls the large-mass
regime (y,, ~0). Our N, = 8 results are fully consistent
with this tendency, which is characteristic of NG bosons, in
sharp contrast to conformal dynamics. For Ny = 12, by
contrast, the effective y,, never decreases with m, and
shows a universal value at small fermion masses, as
confirmed for two different f values (Fig. 33 of our
previous paper [17]). For the N, =8 theory, it remains
possible that all y,, values could converge near 1 at much
smaller fermion masses than we have simulated, making it
exceedingly difficult to distinguish a chirally broken phase
from a conformal one based solely on spectrum analysis
(cf. Ref. [46]). Furthermore, the theory could undergo a
phase transition at stronger coupling, as recently suggested
in Refs. [27,28]. Since our Ny = 8 study is limited to a
single f and masses far from the chiral limit, exploring a
wider range of f values and smaller fermion masses will be
essential for a more definitive conclusion, though such an
analysis lies beyond the scope of this work.

IV. THE FLAVOR-SINGLET SCALAR STATE

In this section, we report our results for the lightest
flavor-singlet scalar state in the Ny =8 and N;=4
theories. While the former is an update of our previous
results by adding a new lightest fermion mass, the latter is
new to this work. We also summarize these data, comparing
both with theoretical predictions and with the nonsinglet
spectrum together with the data for N = 12 previously
reported in [13,17].

A. Update for N,=8 QCD

The mass of the flavor-singlet scalar in Ny = 8 QCD at
p=3.8, my = 0.009 is calculated in the same way as the
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FIG. 8. The effective ¢ mass at my =0.009 in N, = 8. The

circle and diamond symbols represent effective masses from
positive parity projected and disconnected correlators, respec-
tively. The effective mass of the connected correlator with
negative parity projection is also plotted for comparison. Solid
and dashed horizontal lines express the fit results with 1 standard
deviation error bands. The dot-dashed line is M.

results at larger m ¢ presented in our previous work [15-17].
The simulation parameters, including the number of con-
figurations and the bin size for the jackknife analysis, are
summarized in Table X.

Figure 8 shows the effective mass of the o state at m, =
0.009 evaluated from the vacuum subtracted disconnected
correlator 2D(¢). The effective masses from the positive
parity projected full correlator 2D_ (1) — C(f) and the
negative parity projected connected correlator —C_(¢) are
also plotted, where C.. (1) =2C(t) £ C(r+ 1) = C(t—1)
at even t. We estimate M, separately from two fit ranges,
te[6,11] and r€[16,21]. Both results are statistically
consistent with each other and also with the effective o
mass of the full correlator. We obtain M, = 0.112(17)(%;)
as shown in Table XI. The central value is determined from
the result with the fit range at smaller ¢. The result from the
larger-t fit range is used to estimate the systematic error, as
in our previous work [15-17]. At this my, finite volume
effects are expected to be small, because the value of

TABLE VI.  Results of the chiral extrapolation of M, in Ny = 8
with the fit form from the anomalous WT identity/dChPT,
Eq. (4.1), and the linear fit form. The fit range in both cases
is m; €[0.009,0.03]. The first and second errors are statistical
and systematic errors, respectively. The value of 2 /d.o.f. and the
number of d.o.f. in the fits are also tabulated.

Fit form M2 =dy+d M M, = co+cymy
dy = —0.0066(62)(8L,) ¢ = 0.0526(184)(2,)
dy = 1.01(20)(2) c; =7.35(96)(35°)
7*/d.o.f. 0.21 0.34
d.of. 3 3

a?M?
0159 3 w2m2 =18
b a®M2, L=24
$ a?MZ L =30
. 0.10
3
7
S 0.05 %
0.00 +

T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
a?M?

FIG. 9. The chiral extrapolation of M, in N, = 8, fitted with
M2 = dy + d,M?2. The inner error is statistical, while the outer
error represents the combined error, where statistical and sys-
tematic errors are added in quadrature. The dotted line shows the
case where M2 = M2.

LM, = 5.38(79)(} ) statistically satisfies the criterion for
negligible finite volume effects LM, > 6 [17].

We have updated the chiral extrapolations of the ¢ mass
with this new data point. The data are fitted using the form
from the WT identity/dChPT discussed in Sec. II,
Eq. (2.36), represented here for convenience,

and with an empirical linear fit form,
M6:C0+C1mf. (42)

The results of these fits are tabulated in Table VI and
plotted in Figs. 9 and 10. As emphasized in Sec. II, any
possible deviations of the dChPT from the WT identity
Eq. (2.36) that may arise near the chiral limit (due to the z
loop [29]) are not relevant to our lattice data, lying as they
do far from the chiral limit.

— 1
., (PV)

aM,, L =18
aM,, L = 24
aM,, L = 30
aM,, L = 36
aMy, L = 42
aM,, L = 48

. o+
5 A %

e - HEH KO B4 ke

T T T T
0.00 0.01 0.02 0.03 0.04
amg

FIG. 10. The chiral extrapolation of M, in N = 8 fitted with
M, = ¢y + cymy. The inner error is statistical, while the outer
error represents the combined error, where statistical and sys-
tematic errors are added in quadrature. M, and M, are plotted for
comparison.
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These results are consistent with the those presented
previously [16,17] with a good overlap, while the lower
systematic errors are improved by more than a factor of 2.

The linear fit result ¢y = 0.0526(184)(35;) combined
with our chiral fit value of F = F,,|mf:0 =0.02120x

(127)(33%), Eq. (3.3), gives M,/(F/v2)=351x
(1.25)(1%,). This is slightly smaller than, but consistent
within uncertainties, with our previous result omitting
the new lightest point [17] M,/(F/v2) = 4.2(2.0)(}).
The new value would give M,/vgw = (M,/F)X
/2/Np~ 175 for Np =4 (the one-family model),
which remains consistent (within uncertainties, which
remain large) with the possibility to identify ¢ with the
Higgs boson, with M, /vy ~ 1.

The fit results for dy and d; from the WT identity and
dChPt presented in Table VI also remain consistent with the
previous ones [16,17] discussed in Eq. (2.57). As such, the
logic of Egs. (2.58) and (2.59) holds:

M2 <d M2~M2,

F 1
— 2 _=C, -——=3.97(40)(%) forC, =4.
F,[/\/j Ym \/d_l ( ) 63) Vm

dy is consistent (up to a large uncertainty, and the possible
chiral log effects discussed in Sec. II) with the value

(4.3)

2y Np F2 N
dy= M2, o= ”’fTW === =P-0.0002247(270) (37
(4.4)

that would be required for o to be identified with the Higgs
boson in the TC model with N, electroweak doublets.

Our data for M2 vs M2 (and y,, ~ 1) are also consistent
with those of the LSD Collaboration [42]; we provide
details of the comparison in Appendix C. As such, the
result Eq. (4.3) is also consistent with F/(F,/\/2) ~ 3.4
in Ref. [33],13 fit from the LSD Collaboration’s data (see
also similar estimates in Refs. [34,48]).

B. Results for Ny=4 QCD

The o mass in Ny =4 at f =38 on L x T = 20° x 30
is calculated using the same action as in Ny = 8. Fermion
masses are chosen to be m; =0.01, 0.02, and 0.03 in
lattice units.

In contrast to N, = 8, the effective ¢ mass of D() in
Ny =4 has a strong oscillating behavior. (A typical
example is the data at my = 0.01, as plotted in Fig. 11.)

BTheir fit formula, Eq. (14) combined with Eq. (15) in [33], is
the same as our Eq. (2.59), with the parameters corresponding to
C, =+/(N;/2)y(4-y)=4.00 [from y(=3-y,) =
2.06 £0.05 in their Eq. (16)], and \/d; = M,/M, = 1 from
their Fig. 1, thus with F_/(F,/+/2) slightly smaller than ours.

0.5
0.4 1 :
For T eoood I
$
< 037 , & ° } % ]
= [  —
0.2 o
0.1 A 5 DZt)
I Dy —Cy(t)
0.0 T T T T T T T
0 2 4 6 8 10 12 14
t/a
FIG. 11. Effective masses for the D () — C,(#) and D(r)

correlators at m; = 0.01 and # = 3.8 for N; = 4. The dot-dashed
line represents M,. The solid lines express the fit result of
D, (t) — C,(t) with the 1 standard deviation band.

This is because, despite using the HISQ action, the taste-
symmetry breaking of the pseudoscalar masses is larger in
N; =4 QCD (cf. Fig. 27) [17].

Because of this oscillating behavior, we do not determine
M, from D(t); instead, we calculate M, from the positive
parity projected correlator D, () — C,(¢), whose effective
mass and fit result are plotted in Fig. 11." Since the
signal of the effective 6 mass is limited in the Ny = 4 case
compared to the one in Ny =8, we do not estimate the
systematic error coming from the choice of the fit range. In
contrast to Ny =8, the figure shows that M, > M, in
N = 4, which is similar to the usual QCD [71-74] and to
the Ny = 4 QCD result reported by the LSD Collaboration
[42] with a different choice of lattice regularization.

We also obtain M, in m; = 0.02 and 0.03 using the same
method. The results are tabulated in Table VII together with
the masses for 7 and p. The extraction of M, becomes
harder as my increases, as the correlator of o rapidly
degrades as m; increases, as can be seen in Fig. 12 where
we plot the data in lattice units. Similar to the Ny = 8 case,
we extrapolate the ¢ mass to the chiral limit using Eq. (4.1).

C. Comparison of theories

Here we present summary plots of M2 vs M2 for the
three theories considered. Figure 13 shows the results in
lattice units, including the fits for d,, d;, while Fig. 14
shows the results in units of 1/+/81,.

Our new data summarized in Table VIII indicate that M2
is dominated by the term d,M2 > d,, such that M2 ~
dMZ%not only for N; = 12 but also for N; = 4 and 8 (with
the caveat that our data are still some distance from the

“We have confirmed that the same M, is obtained from the
positive parity projected correlator after subtracting the contri-
bution of the parity partner of o.
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TABLE VIIL.

Results for M,, M, F,, and M, at each m, in Ny = 4 at # = 3.8. The number of configurations in

the ensemble analyzed (N.,,¢) and the bin size (Ny;,) for the flavor-singlet scalar calculation are also tabulated.

amg aM N cont Niin aM, afF', aM,

0.01 0.311(35) 3750 150 0.19731(26) 0.09039(17) 0.526(14)
0.02 0.498(49) 6250 250 0.27927(26) 0.10487(13) 0.5931(78)
0.03 0.58(10) 6250 250 0.34384(24) 0.11555(12) 0.6549(56)
0.04 e e e 0.40030(20) 0.124636(96) 0.7146(46)

chiral limit). As suggested in Sec. II, this implies that
whether M2 > M2 is determined by whether d; > 1, which
may in turn be linked to whether y,, > 1. The approximate
equality of the power-law behavior of m  for ¢ as well as =
(i.e., the nonuniversal “y,,” value [16,17]) may be the cause
of the comparable values of the M, and M in the N, = 8
theory.

The fit result d, ~ 0 within (large) uncertainties, both for
N;=4 and Ny =38, arises from Eq. (4.1), which is
obtained from the WT identity, and it so is valid for the
present lattice data with y > 1. However, in the region of
the chiral limit we would expect chiral log effects to
become more significant. As discussed in Eq. (2.54) of
Sec. II, this will increase the chiral limit value of d, relative
to that obtained from these relatively heavy-mass data, as
dy = M2 o > 0[29]. In contrast, the fit result dy ~ 0 in

2,
N; =12 in the conformal phase has no such chiral log
corrections.

Meanwhile, the fit value of d; has no such chiral log
effects, neither in the broken nor the conformal phase, and
hence the obtained result for F,/(F,/+/2) may be iden-
tified with that in the chiral limit, which is of direct
relevance to the comparison with the anticipated properties
of a composite Higgs boson.

In addition to the result of a hyperscaling fit for
N; =8 and 12, we also present in Table VIII the value
of y,, obtained by solving Eq. (2.39) (the prediction of
d; from holographic and linear sigma models) for the

0.7
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FIG. 12. The fermion mass dependence of M, in Ny =4 at
p = 3.8 compared with M, and M,,.

fitted value of d;. For Ny = 8 and 12, this is consistent
with the hyperscaling result. The larger value y, =
2.11(21) in the N = 4 case cannot be verified, as that
theory does not exhibit hyperscaling. However, it may
be suggestive of an alternative description of infrared
QCD with N, <4, with A ~ Ayy: the gauged NJL
model with induced strong four-fermion interaction and
effectively reduced gauge coupling a. < 1. The model
in the broken phase has y,, ~ 1 + /1 — ae/a., =2 for
Qepr <K A, With the four-fermion operator becoming
relevant [75]. By contrast, in the N, =38 case, A <
Ayy is realized by the essential singularity scaling, with

Wt Ny =4
0.4 1 $ do = —0.039(54)
dy = 3.5(1.1)
Ny =8
037 § do = —0.0066(62)
L ——d1 = 1.01(20)
. 0.2 A %1 Ny =12
% _— § do = 0.003(20)
01 4 - dy = 0.71(23)
0.0 4=
5 T T T
0.00 0.05 0.10 0.15 0.20
a2M2
FIG. 13. Results for M2 for N, = 4,8, 12, showing in each case

the fit to Eq. (4.1).

i

4 Ny=4,8=38

14 % %% % H N;=8,8=38
X Ny =12, 8=4.0

O T T T T T T T
0 1 2 3 4 5 6 7

M?2 - 8ty

FIG. 14. Results for M2 for Ny =4,8,12 in units of 1//8%,.
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TABLE VIIL

Summary of the fits of the data for M, to Eq. (4.1) in lattice units, including also the approximate

value of y,, estimated by comparing the fit value for d; with Eq. (2.39) and that from hyperscaling, both consistent
with each other for Ny = 8 and 12. (We do not observe hyperscaling in the N, = 4 case.).

Nf d0a2 d, Vm Ym |hyperscaling
4 -0.039(54) 3.5(1.1) 2.1121)

8 -0.0066(62)(1,) 1.01(20)(33) 1.01(20) ~1 [14,17,23]
12 0.0030(202)(3}) 0.712(229)(3%) 0.66(31) 0.4-0.5 [13,17]

the gauge coupling staying strong a.; ~a. even at
induced four-fermion coupling, such that y,, ~ 1. If it is
the case, from Eq. (2.37) we may have F,/(F,/\/2)~

V3N, J2/\/d =2 for Ny = 4.7
Further, we may also observe from Fig. 14, though with
large uncertainty, that

(anomalous) 1
Mg 8tyx————, VY Ny, 4.5
(A TCEr A

consistent with the arguments in Sec. II, Eqgs. (2.9), (2.48),
and (2.56).

Considering now each Ng in more detail, in the Ny = 4
case, M, lies between p and 7 in the observed range of my,
similar to the behavior observed in Ny =2 + 1 QCD. M2
decreases rapidly, with slope d; ~3.5(1.1), toward the
chiral limit. d, appears very small, comparable with the
value in the N, = 8 case, up to a factor of 1/(3 —y,,)? in
units of A = 1/1/8%,.'° However, the relatively large
uncertainties on these data mean that this statement cannot
yet be made definitively.

For N; = 8, the 6 mass is comparable with (with hints of
being slightly smaller than) that of the pseudo-NG boson z
in the observed range of m . The values found for d;, and d,
obtained Eq. (4.3) are consistent with those previously

found [16,17], with F,/(F,/v/2) also observed to be
consistent with the holographic and linear sigma models
described in Eq. (2.38).

We may regard o in the Ny = 8 theory as the techni-
dilaton in the walking technicolor model [4,5] with
Np electroweak doublets, which would correspond to
the physical Higgs boson with mass My~

125 GeV = vgy /2. Then we would expect dy = My, =~
Np - (F/+/2)?/4, which reads dy~ Np/4 x 0.0002247x

15Indeed, we may expect this to extend to Ny =2, where
Ym~2 = dy ~3, and hence, F,/(F,/v/2) ~ 1; this would also
be expected from linear sigma model predictions, as discussed in
footnote 8.

16Equation (4.5) also implies that for Ny = 2, with y,, =2
similar to N; = 4, M2 ~ (M,/2)? + 3M2 ~ (450 MeV)? for the
physical point M, ~ 140 MeV, in rough agreement with the
reality for f,(500).

(270)(377), with our result F=~0.02120(127)(33%) in
Eq. (3.3). This is in rough consistency with our direct
measurement of d in Table VIII [up to chiral log effects,
Eq. (2.54), and large uncertainties]. Taken together
with Eq. (2.10), which reads dy~ (2-F/v/2)? (with
Mp/(F/\/E) ~ 8, from Table V), Eq. (4.5) would imply
do~ (1/4x1//815)* ~(M,/4)* that is, the implied
Higgs mass would be roughly consistent with reality, up
to a factor of 2, for Np = 4. The result in Eq. (4.3) implies
that vgw/F, ~+/Np/4, which may be compared directly
with ~0.27 from the LHC experiments for the signal
strength of the 125 GeV Higgs boson [12].

For N r= 12, d, is also very small, consistent with zero
as suggested by Eq. (2.56). Setting d, = 0 for simplicity in
Eq. (4.1) and adopting the scale Ay = 1/+/81, gives

M(z;'gt() :dlM,zz‘8t0; (46)
hyperscaling implies that both sides of this equation should
be constant in a conformal theory, independent of the
deforming mass m. This is indeed what we see in Fig. 14.
In this case, the reason that M, < M, is that d; < 1 [in
turn, via Eq. (2.39), because y,, < 1] because ¢ in the
conformal phase is a pseudo-NG boson, while 7 is not, as
discussed in Sec. II C. Using the measured values of d; and
¥m» We then find

M, ~\/d\M, ~0.844(136) 2})M,.
F
¢ _~56-5.7
F./V2

We also present summary plots of ¢ mass together with

(for y,, = 0.4 = 0.5). (4.7)

nonsinglet spectra in units of v/2F, in Fig. 15 and in units
of 1/4/8t, in Figs. 14 and 16. The former are consistent
with the picture that for N = 8 the nonsinglet masses
behave in the same hyperscaling as F,, while ¢ and z do
not, and for Ny = 12 all the spectra behave in the universal
hyperscaling. In the latter case, the m; dependence is
approximately consistent with Eq. (2.10).

It is interesting to note that the ratio v2M o/ Fp=8is
almost independent of m for all N, = 4,8, 12, consistent
with our previous results [14,17]. Its value is also close to
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Ny=4,8=38 Ny =8, =38 Ny =12, =40
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FIG. 15. The ratio \/QMH/F,[ for H = r,0,p,a;, and N as a function of m for N, = 4,8, and 12 QCD using the N, = 12 data from

Appendix G of Ref. [17] and the Ny = 4 data from Table VIL

Ny =4,8=338 Ny =38,58=338 Ny =12, =40
geg B )
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@ o Z EVE IR *
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> ) © 8 M, M, Mg,
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amy amy amy
FIG. 16. The ratio My+/8t, for H = n,6,p,a;, and N as a function of m, for N, = 4,8, and 12 QCD.

that of N; = 2 + 1 QCD (experimental value ~8.3)."” The
chiral extrapolation of this ratio for Ny =8 given in
Eq. (3.7) is also consistent. The Kawarabayashi-Suzuki-
Ryazuddin-Fayyazuddin relation [76,77] suggests that this
ratio should be equal to the p—zz coupling (up to a factor of
\/i) in the broken phase, which would then also be
universal—independent of both m; and n(<nf). A
similar observation has already been reported in
[42,78,79], where lattice numerical results confirm that
the ratio M,/ F, remains insensitive to N up to Ny < 10.
We will further explore this ratio in a companion publica-
tion to this work focusing on the S parameter [70].
From a phenomenological perspective, in the Ny =8
walking technicolor scenario, such nonsinglet spectra could
appear as resonances detectable in experiments, while new

"This s consistent with the Pagels-Stokar

d(S(x)?
formula (F,/v/2)? = %fé\ﬁv dxx% ~ (3/47%) - M%
(Mp/4)? (Mp = mgf‘msmuem)) with the integral dominated by
x < MZ%, roughly independently of N, under the simplest ansatz
for the mass function X(x)=~Mp(x < M%). This is to be
compared with M, ~2M (= 2m_§,R) ~ M, for N; = 12) roughly
independently of N.

roughly

~

particles predicted by many other extensions of the
Standard Model have yet to be observed. Notably, the p
meson in the N = 8 theory could lie at the order of a TeV
within uncertainties, as indicated in Eq. (3.7). This opens
the possibility that the 2 TeV diboson excess reported by
ATLAS and CMS could be interpreted as a contribution
from technivector mesons [80,81]. To confirm or exclude
this scenario, further progress is needed on two fronts:
lattice simulations with lighter fermion masses near the
chiral limit, and more precise experimental studies of TeV-
scale resonances in ongoing and future LHC runs.

V. THE FLAVOR-SINGLET
PSEUDOSCALAR STATE

In this section, we present lattice results for the flavor-
singlet pseudoscalar state for a different number of flavors:
N;=4,8, and 12. Preliminary results have been reported
before in conference proceedings [49,50].

The flavor-singlet pseudoscalar state has quantum num-
bers JP€ = 07". In Ny =2+ 1 QCD, this state is known
as the #/ particle, with mass M,y =958 MeV. In the
following, for convenience we refer to the flavor-singlet
pseudoscalar state in theories with many flavors using the
same name as in QCD. Witten [51] and Veneziano [82]
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showed that the #' mass is directly related to the contri-
bution of the axial anomaly as

M2/ — (M;?,)(anomalous) + MIZL'

2 (5.1)

As discussed in Sec. II, in the Veneziano limit, where
N, — oo with N.a = fixedand n; = N;/N, = fixed < 1,
where Ar ~ Ayy and gluon loops dominate, we have

(Mi/)(anomalous)/AIZR ~ (Mil)(anomalous)//\%v ~ny < 1.

(5.2)

Hence, the 1/ has a parametrically small mass in the chiral
limit M2 = 0 and behaves as a pseudo-NG boson. In the
realistic Ny =2 + 1, N, = 3 QCD with mg > m,; > m,,
however, we have

(M7, )lenomalons) o M2 4 My — 2M = (0.726 GeV)?,
(5.3)

and hence [52],
(Mi/)(anomalous) /AIZR ~ (Mfi/)(anomalous)/M% ~ 1<an)‘ (54)

Thus, the # behaves as a pseudo-NG boson only in the
idealized case of the Veneziano limit where ny <1, even in
the chiral limit.

Conversely, as we described in Sec. II, large N, =
4,8,12 QCD is close to the anti-Veneziano limit, where
ng=Ny/N, = fixed> 1 for N, — oo with N a = fixed,
in which case Ajr < Ayy, and fermion loops dominate
over gluon loops in the computation of the chiral anomaly,
and we have [12]

(M2 )anomalons) / Afe > 1. (5.5)

Then we have as in Eq. (2.23):
Mi,/l\lzR ~ (Mﬂr(*““’malm‘s)/AIR)2 10 n]% > 1. (5.6)

It is notoriously difficult to compute the mass of the
flavor-singlet pseudoscalar, because the pion contribution
to the two-point function on the Ilattice is statistically
challenging to remove. In our calculations, we design a
gluonic operator (without fermion fields) to construct the
correlation function. This bypasses the challenge,
because a gluonic operator does not couple directly to
n states. The same method has been adopted in N, =
241 QCD and has led to results in agreement with
experiment [83].

In practice, the gluonic interpolating operator used in
our calculations is the topological charge density. On
the lattice, the topological charge density operator is

defined through the clover-plaquette field strength
tensor G*(x):

q(x) = €ps TTGH (X)GP° (x).

= 5.7
30 HUPo ( )

The two-point function (g(x)g(y)) is computed for all
pairs of points (x,y) in the four-dimensional volume
L3 x T. Using a fast Fourier transform allows this to be
done efficiently, obtaining a full-volume object in a
single calculation step. Moreover, because of translation
invariance, the two-point correlator only depends on the
distance r = |x —y|, and we average all contributions at
fixed distance to increase statistics and reduce discre-
tization effects due to the breaking of rotational sym-
metry. For a particle freely propagating in four
dimensions [84], the correlator takes the form

A 3
C _ 1 -~ —Mﬂrr
(r) rl3 ( + 8r> ¢

at large distances r — co. We fit the lattice data of C(r)
to the form in Eq. (5.8), and we choose a specific
fitting window of distances r € [Fyin, Fmax) t0 €xtract the
two parameters A and M,/ corresponding to the propa-
gating single-particle ground state. A posteriori, we
check that the fitting window is at large enough r that
the form in Eq. (5.8) is valid. For the fitting procedure
we use the LSQFIT Python package [85], and we assign
large (uninformative) Bayesian priors on the parameters
based on the analysis of effective masses at large r.

Additionally, it is well known that ultraviolet fluctua-
tions strongly affect the operator in Eq. (5.7). We utilize the
gradient flow [53] of the Symanzik action as a smearing
technique to remove the UV components and smooth the
operator before constructing the two-point function. In
other words, the interpolating operator in Eq. (5.7) is used
to construct the correlator, but G*(x) is computed for
several values of the flow time ¢,,. We choose t,, values in
units of the lattice spacing @ lying in the interval [0, 3] and
in steps of 0.15. This is a large range and we expect that the
operator g(x) at some smearing 7,, will have an approxi-
mate physical size with good overlap to the ground state.
This physical size can be identified with a smearing scale
s, = \/81,,. As a consequence, we obtain a large number of
correlators C, (r) = —(q, (x)q, (y)). The statistical fluc-
tuations are dramatically reduced by the gradient flow
smearing, such that correlators at larger ¢,, can be easily
fitted to the exponential form in Eq. (5.8). Moreover, the
autocorrelation effects on C, () are negligible. However,
the smearing scale s,, introduces systematic corrections that
have to be addressed [86]. In fact, it turns out that the
dominant source of uncertainty in extracting M, comes
from systematic effects of the fitting procedure. There are
mainly two competing effects:

(5.8)
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(1) Equation (5.8) can only be assumed to be valid in a
specific region of large r, where the ground state
dominates: In other words, we should make sure that
the extracted mass does not depend on the value
of r min-

The correlator at large distances suffers from larger
statistical fluctuations and can be extracted only at
large values of the smearing scale s,,, where smear-
ing artifacts [86] are larger: In other words, we
should check that the extracted mass does not
depend on 7.

We estimate the systematic uncertainty on M, by
looking for a plateau in the fitting range [rmin, Fmax)
and for a plateau in the smearing range s, = \/81,.
Representative examples of such plateaux for one ensemble
of Ny =12 QCD are shown in Fig. 17. Note that s,, is
always smaller than the fit range boundary r;, > 7 we
typically choose, and that r,,,, is always less than half the
lattice spatial extent L. When the smearing range s,, is
considered in units of the characteristic radius given by the
gradient flow scale /8%,, we seem to find a common region

of \/t,,/ty values for all the ensembles at fixed N, where
the fitted mass does not change within the statistical
uncertainty. This region does not appear to depend on
the fermion mass or on the volume: It corresponds to the
interval [0.69, 0.81] for N = 4, [0.39, 0.51] for N, = 8,
and [0.35, 0.41] for Ny = 12. The difference in these
intervals might be related with the nature of the flavor-
singlet pseudoscalar state as N, is increased because
such a smearing scale s,, corresponds to some physical
scale for the operator with the best coupling to the

(@)

ground state. In the identified region, we take the
difference between the largest and the smallest fitted
mass as an estimate of the systematic error. The
statistical errors of the individual points are typically
smaller than or of the same order as this systematic
uncertainty. Additional plots for the rest of the ensem-
bles are collated in Appendix D.

We can now compare the flavor-singlet pseudoscalar
state with the rest of the low-lying spectrum as we change
the number of flavors. The results obtained for N, = 4,8,
and 12 QCD are summarized in Fig. 18 in units of 1/a.
We identify a notable increase in the gap between
the flavor-singlet pseudoscalar and the vector meson
visible in Fig. 19. In Ny=4 QCD the mass ratio
M, /M, is close to 1 and gradually increases toward the
chiral limit, while it grows rapidly from near 2 to ~3—4 for
Nf =8, and it stays around 2.5 for Nf = 12. We shall
return to this point later.

In Sec. II, we discussed the expectation that

M2, (anomalous)
i 2

oA ~ n. (5.9)
As anticipated in that discussion, we do not see this
proportionality when we choose M, as the IR scale, as
is shown in Fig. 19. None of the values of N, gives flat
behavior, and the Ny = 12 data are not higher than N, = 8
as would be predicted.

However, when A = 1/4/81, is chosen instead, we
obtain the result shown in Fig. 20. In this case, the resulting
behavior for each N is significantly flatter, and the values

Ny =12, L = 30, my = 0.06

1.4 1 r € [7.0,11.0]
r € [8.0,11.0]
1.2 - r €[9.0,11.0]
r € [8.5,12.0]
, 10 : r € [9.0,12.0]
]
g 0.8 L O
% QQ¢&x3x
0.6 1 i
2
0.4 -
o 2 T - T T T
S
B 00 et RO S RIS 5235055 R AR SRR g bR
=<

O T T

0.2 0.3

0.4 0.5

Vtw/to

FIG. 17. The ' mass fitted for different distance regions and smearings, for a specific ensemble of N, = 12 QCD. The error bars on
the horizontal axis are much smaller than the symbols, and points for different fitting ranges are shifted for clarity. /87, = 7.2680(99)
for this ensemble. The gray band shows the estimate of the systematic error computed as described in the text.
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FIG. 18. The flavor-singlet scalar and pseudoscalar spectrum compared to flavor-non-singlet pseudoscalar and vector spectrum for

Ny =4,8, and 12. The #/ mass has error bars that reflect a large systematic uncertainty. For the other states, only statistical errors are

reported.

obtained in the three cases display the predicted scaling.
Specifically, we observe that

(25> N;=4,
M- 819 = M, (nomalows) . 81~ ¢ (5.0 Np=8,  (5.10)
(7.5 Nyp=12,

independent of m, in close agreement with the expectation
Eq. (2.23) in the anti-Veneziano limit as shown in Fig. 21.

In view of this result, we may now gain some further
understanding of the gross features of M, /M, shown in
Fig. 19. From Eq. (2.10), we expect that in the broken
phase, M,\/81) — 1 toward the chiral limit, and — 2
toward the heavy-fermion limit, while we have observed
that M, is roughly constant. For N, = 4 and 8, moving to
larger M,/M, in Fig. 19 corresponds to dividing the
constant M, /81y by M,\/81y =2, and so giving
M, /M,~125 and 2.5 respectively, which is approxi-
mately what we observe. Moving to smaller M,/M,
meanwhile takes the opposite limit, and in Fig. 19 we

354 & Ny=4,8=38 %
Ny =8,8=38 Jr
3.09 = Ny=12,8=4.0 %
2.5 A ] %
QU
§ 2.0 1 ¥
=
= 1.5 1 B
2 g
1.0 4 e
0.5 1
00 T T T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M~ /M,

FIG. 19.  Comparison of the results for M,; between the theories
with N, = 4,8, 12 when normalized by M,,.

do indeed see the data move in this direction, although the
limit is not reached. Meanwhile, the data for Ny = 12 are
constant within uncertainties, as we would expect.

84 ¢ N;y=4,8=338
I N;y=8,8=38
$ Ny=12,8=4.0 #
6 -
< % % % %
g % ;
= 4 4
=
[ 3 2 3
2 -
0 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
Mr+/8to

FIG. 20. Comparison of the flavor-singlet pseudoscalar mass
for N, = 4,8, and 12 as a function of the pion mass. The
hadronic masses are in units of the gradient flow scale 1/+/81, for
the various N theories. Different quark mass regions are
explored for different N, values, in particular for Ny = 12.

604 ¢ Ny=4,8=238
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%
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FIG. 21. Comparison of the difference M 3/ — M2 normalized by
the gradient flow scale +/8%.
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VI. SUMMARY

We have investigated the mass spectra of the SU(3)
gauge theory with Ny =4, 8, and 12 fundamental flavors
(4-, 8-, and 12-flavor QCD), using a first-principles lattice
gauge theory analysis. This analysis used the tree-level
improved Symanzik gauge action and the HISQ fermion
action.

In the case of Ny =8 QCD, we observe approximate
conformality, which we interpret as indicating the theory is
in the hadronic phase just below the conformal window;
i.e., the chiral limit shows walking dynamics with a light
flavor-singlet scalar “c” as a pseudo-NG boson (pseudo-
dilaton) of the scale symmetry, broken spontaneously and
explicitly by the same origin of the spontaneous mass
generation, a candidate for the composite Higgs boson
[16,17]. This property and the N, =8 flavor structure
match the simplest version of the WTC model, which is
advocated as a viable candidate for a theory of physics
beyond the Standard Model (BSM). Regarding the walking
dynamics, the mass spectra at small fermion mass m  are of
particular interest. These have been investigated in this
paper by updating our previous results [16,17] with a new
lightest fermion mass: m; = 0.009 (in lattice units). We
have compared the N, = 8 spectra with those in Ny =4
QCD the latter is close to real-world QCD, showing
spontaneous chiral-symmetry breaking, but without the
walking dynamics. For N, = 4, we have updated our data
to include a finer lattice spacing. This has allowed us to
extract the flavor-singlet scalar spectrum in Ny = 4.

We also compared the spectrum for Ny =4, 8 on the
same footing as the previous results of Ny = 12 [13,17],
which was shown to be the conformal phase without
spontaneous  chiral-symmetry breaking in contrast
to N f= 4, 8.

Moreover, we have examined the flavor-singlet pseudo-
scalar spectra “y’” for all N r=4,8, and 12 QCD, and
discussed the N, dependence of the spectra in terms of the
scaling law emerging in the anti-Veneziano limit described
in Sec. IL.

For N, =38, we have confirmed that two important
properties remains intact in the updated data: First, the
improvement in the HISQ action has continued to allow
the taste violation to be suppressed to 5% or less of the
Goldstone pion mass, and second, the ratio M,/M,
increases with decreasing my, consistent with the sponta-
neous breaking of the chiral symmetry. We have also
observed this ratio increasing similarly for N, =4 QCD.

In N, =8, we have evaluated the chiral limits of F,
My/me, M,, My, M, , M), , My, and My with a poly-
nomial ansatz in m;. All of their chiral limit values have
been positive finite with good fit qualities and are consistent
with our previous studies [17]. For the chiral condensate,
we have investigated three different observables: (yy), Z,
and F’B/2, as defined in Eqs. (3.5) and (3.6). With the

inclusion of the new data at the lightest value of my, the
chiral limit values for these three observables are now
consistent when a linear fit ansatz is used, as is expected
theoretically. While previously, the central value of the X
extrapolation was negative [17], the inclusion of the
updated spectral data gives a positive result for the central
value. Thus, the update has provided further evidence of the
broken chiral symmetry for N, = 8.

We have observed that the flavor-singlet scalar mass M,
in the new ensemble for Ny = 8 at m; = 0.009, similar to
previous observations at heavier m [16,17], is significantly
smaller than the other hadron masses except the pion. At
this new mass in particular, M, is still even smaller than the
pion mass M ,, similar to the previous result, and in contrast
to the expectation in the chiral limit that M, > M, = 0.
Conversely, M, in Ny = 4 tends to remain larger than M,
though getting closer, with decreasing m . The light M, in
N; = 8 indicates a dilatonic feature and a stable sigma
meson, which contrasts sharply with real-world QCD. We
have performed chiral extrapolations of the light M, data
both with a simple linear ansatz M, = ¢, + ¢;my and with
the WT identity for the scale symmetry M2 = d, + d, M2,
Eq. (2.36). The results are given together with those for
Nf = 4,12 in Table VIII. Both extrapolations for Nf =8
resulted in masses consistent with the discovered Higgs

boson mass 125 GeV ~ vgyw /2 = \/Np/4 - F/+/2. Owing
to the updated data, the lower systematic errors are
improved by more than a factor of 2.

Equation (2.36) may also be derived by the dChPT in the
broken phase, up to chiral log effects that are irrelevant to
our data points, lying as they do far from the chiral limit.
However, chiral log effects will raise the value of M, near
the chiral limit, and as such a value estimated from a fit
form excluding them (and extrapolated from data in the
region where they are not present) will by necessity
underestimate the chiral limit value d. This is reflected
in our data; the central value for the fit of d,, is negative,
although the large uncertainties still do allow for a
positive value.

On the other hand, the fit value of d; is identified with
that in the chiral limit where chiral log effects disappear,
and so is the ratio F,/(F,/+/2) as in Eq. (2.37), which is
most relevant to the Higgs phenomenology. It was obtained
from the observed value of d; for Ny = 8 to give Eq. (4.3):

F,/(F./V2) =3.97(40)(%) fory, =1,  (6.1)

which is consistent with the previous results
Fo/(Fr/V2) >4 [16,17]. This implies vgw/(Fyl,,—o) =
VNp/4 to be compared with vEW/F¢,|mFon.27, the

value from the LHC data when & identified with the Higgs
boson [12], where vgyw = 250 GeV and N, is the number
of weak doublets of the WTC model.
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More importantly, the WT identity formula Eq. (2.36)
is valid in both the broken (at least for our data points,
which lie away from the chiral limit) and the conformal
phase, thus is our basic framework to compare N, =
4,8,12 on the same footing. The measured values of d,
for Ny =8 and Ny =12, when combined with the
measured y,, through hyperscaling, give values of

F,/F./\/2 consistent with those from linear sigma
and holographic models, Eq. (2.38); this in turn gives
the relation between d; = (1 +7v,,)/(3 = 7.), Eq. (2.39),
consistent with the fit values, as summarized in
Table VIII. It is remarkable that for Nf =12, ¢ with
M2 ~0.7M2 is definitely lighter than 7 in spite of the
P-wave bound state compared with the S-wave z; this is
consistent with the picture discussed in Sec. II that ¢ is a
pseudo-NG boson while 7z is not. If this relation is also
valid for N = 4 without a fit value of y,, due to the lack
of hyperscaling, then the large value of d; would imply
Ym=2.11(21), suggesting the system to be effectively
described by the gauged NJL model with reduced
effective gauge coupling in the infrared. If this relation
is valid also in the whole conformal phase where the
SD equation gives y,, = 1 —+/1 —a,/a,, then we may
predict M; ~d\M7; = Mz (n; = n{) further down to
M2 ~dM%=1/3-Mz(n; =16.5/3).

Our focus in this work has been on the flavor-singlet
pseudoscalar meson 7. We have extracted the #
correlator from the two-point function of the topological
charge density (g(x)g(y)), where pion contaminations
are absent. To increase the statistics, the correlator has
been expressed as a function of the distance r = |x — y|,
and all contributions at a fixed r have been averaged.
We have utilized the gradient flow smearing technique
to remove UV noise and achieve enhanced overlap with
the ground state.

We have estimated M, from a plateau region
[Fmins 'max] 10 the correlator. To avoid lattice spacing,
smearing, and finite-size artifacts, the plateau region was
restricted to values of r much larger than the smearing
scale (which in turn was much larger than the lattice
spacing), and much smaller than the spatial lattice extent,
in all cases. Within these constraints, M,, was observed
to be independent of the exact choice of the plateau
region and the smearing scale. We have found such a
parameter region for all our ensembles. In particular, a
suitable range of smearing scale was found that was
independent of m, for each Ny.

There are theoretical expectations [12] that the mass M,
scales with N, as a consequence of an anti-Veneziano limit
where ny =N;/N.>1 is fixed as N, - co with N.a
fixed, based on the WT identity for the flavor-singlet axial-
vector current Eq. (2.16) with Egs. (2.18) and (2.19). For
each Ny = 4,8,12, M, was found to be heavier than the
other hadrons, and less dependent on m . We have adopted

the gradient flow scale /8¢, as a common measure to
compare the theories with different N;. The normalized
mass M, - /8ty ~ny was observed to increase as a
function of n, [see Fig. 20 and Eq. (5.10)]

(2.5)2 N;=4,
M} -81p= 4 (5.0 Np=8, (6.2)
7.5)2 Ny =12,

independent of my, which is suggestive of anti-Veneziano
scaling in Eq. (2.23). This is the core result of this
paper.

Several subjects remain to be studied in future work.
For N = 8 QCD, there are number of reasons to study
a region of my even smaller than the m; = 0.009 to
which this study was extended: to achieve a stable
chiral limit value of the chiral condensate X, to obtain a
more precise value for the chiral limit value of the
dilatonic ¢ mass in the chiral limit in order to confirm
(or otherwise) the consistency with the discovered
Higgs mass, and to verify whether the pion becomes
lighter than the Higgs-identified dilaton, which for a
walking theory is expected to happen in the vicinity of
the chiral limit. Another important topic is to explore
the mass spectra in the continuum limit. To this end, the
simulations presented here need to be extended to
multiple smaller lattice spacings. Infrared dominance
and the suppression of taste violations by the HISQ action
means that the majority of the spectra of Ny = 8 QCD are
not expected to be very sensitive to the lattice spacing; in
particular, we anticipate this being the case for the #
mass. To study the anti-Veneziano scaling discussed above
in detail, continuum and chiral extrapolations of M,  are
needed for all of N, =4,8, and 12.

We believe that our first-principles results indicating the
walking dynamics in Ny =8 QCD will provide a very
important guide for BSM model building with the
composite Higgs perspective.
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APPENDIX A: DETAILS OF LATTICE
SIMULATIONS AT m;=0.009

The simulation parameters of the new ensemble are
summarized in Table IX. The measurements of the hadron
spectra are carried out with the parameters shown in
Table X. The statistical error is estimated by the jackknife
analysis.

The hadron masses for 7, p, N, and their parity partners
ag, ay, by, N7 at my = 0.009 are tabulated in Table XI. The
table also shows the results for the decay constant F, and
the chiral condensate (). The notations and calculation
methods for the hadron spectra are described in our
previous paper [17]. As in the paper, we observe a small
taste-symmetry breaking in the pion mass as shown in
Table XII.

In the previous study [17], we found that the finite
volume effects for M, and F,, are negligible when LM, X 7
at smaller m, by using

M (L) — M (Lnax)
Mz (Linax)

Fa(L) = Fr(Lmax)
Follma)

SM,(L) =

and OF,(L) = (A1)

with L, being the largest lattice volume at each my.
Figure 22 is the updated figure from the previous study
[17]. The figure shows that the value of LM, at
ms = 0.009, which is the vertical solid line, is similar to
the one at my = 0.012. From this observation, we expect
that the finite volume effects in the new data are similarly
suppressed as at higher m, values.

TABLE IX. Parameters of the new ensemble in N, = 8. L and T for the spatial and temporal size for L’xT
lattice, staggered fermion mass m;, molecular dynamics time step Az, number of masses for the Hasenbusch

preconditioning N,

my

values of Hasenbusch masses m{{, and maximum number of thermalized trajectories N™& in

Traj

7 = 0.5 unit are shown for each “stream.” Nzt denotes the maximum number of thermalized trajectories in 7 = 1

unit as in other ensembles [17].

L T my T At N, my  omy omy N (NTE) Stream

48 64 0.009 0.5 0.0025 4 0.4 0.6 0.8 864(432) 1
10240(5120) 2

TABLE X.  Numbers for trajectories (Ny,;) in 7 = 1 unit, stream (N ), configuration (N o), for the spectrum and

singlet scalar (¢) measurements in the N, = 8 new ensemble. The bin size of the jackknife analysis (Ny;,) and
number of measurements per configuration (N,.,) are also summarized.

Meas L T my NTraj Nstr Nconf Nbin Nmeas
Spectrum 48 64 0.009 5440 2 680 68 8
c 48 64 0.009 5120 1 2560 160 64
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TABLE XI.

Results of hadron spectra and M, at m; = 0.009
on L =48 in Ny =8.

0.13950(56)
0.03971(20)
0.0055516(54)
0.2225(24)
0.2355(71)
0.3144(59)
0.3196(86)
0.3202(22)
0.4156(65)

0.112(17)(%)

TABLE XII. Mass of the NG pion and the taste partners M, at my = 0.009 on L =48 in Ny = 8.

&s E4és

&ids

$ida

&g &4

Si

9

0.13950(56) 0.14062(56)

0.14042(54)

0.14112(59)

0.14131(58)

0.14181(60)

0.14198(57)

0.14263(54)

1
n my = 0.0121 |my = 0.009
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1
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= =
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m; = 0.0121 [m; = 0.009
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0.015

FIG. 22. Updated figures for M (L) and 6F (L) defined in Eq. (A1) from the one in the previous paper [17]. In this paper, we do not
use fermion masses heavier than m, = 0.04, and they are reported here only for comparison with our previous results. Points with error
bars show the difference between the specified quantity at the given lattice size L and at the largest volume considered for that value of
the bare mass. Different symbols and colors represent different bare masses as indicated in the legend. The two vertical lines in blue
represent the two values of mass at which only a single volume was considered: The solid line is m; = 0.009, L = 48, and the dashed

line my = 0.012, L = 42.
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APPENDIX B: DETAILS OF THE NEW CHIRAL EXTRAPOLATIONS
WITH m; =0.009

In Fig. 23, we show the chiral extrapolations for (), supplementing that of the GMOR relation presented in Sec. III B.
In Figs. 24-26, we show the chiral extrapolations of the meson masses including the new m; = 0.009 mass point.

—$— Quadratic, amj € [0.009,0.03] ©
0.020 4 —F— Quadratic, amy € [0.009,0.02]
0.015
=
=
= 0.010 A
0.005
0.000 T T T T T
0.00 0.01 0.02 0.03 0.04
amy
FIG. 23. Chiral extrapolations of the chiral condensate (yy) in
Ny = 8. The range of m, considered for each fit curve is noted in
the legend.
0.6
¢ M, %
¥ M.,
0.5 @ M /f/ e
©

T T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

am yf

FIG. 24.  Chiral extrapolations for M, and M, in N, = 8. Data
for M, are also plotted for comparison.

0.8

XEE

3

A B FeA

state

a.

0.0 T T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

amy

FIG.25. Chiral extrapolations for M, and M;, in N; = 8. Data
for M, are also plotted for comparison.

b My
% Mn;
¢ M

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
amy

FIG. 26. Chiral extrapolations for My and M N; in N, = 8. Data
for M, are also plotted for comparison.
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APPENDIX C: TASTE-SYMMETRY
BREAKING EFFECTS

We report two different lattice spacings for N, = 4 and
show the ratio M,/M, using different states for the
pseudoscalar meson: the lightest (Goldstone boson) state
ms and the heaviest state r;; (which comes from operators
with tensor taste structure £;£;). Both states are going to be
degenerate in the continuum limit, and we can see the
reduction in taste-symmetry breaking effects when moving
from a coarser ( = 3.7) to a finer ( = 3.8) lattice spacing.

Np=4,8=37

The results are shown in Fig. 27 as a function of the pion
mass, 7 = 75 Or x;;, in units of the gradient flow scale.
At the smallest mass considered, the results for Ny = 8
align more closely with those from the LSD Collaboration
[42] when compared using a common scale given by the
Nambu-Goldstone pion mass in units of the gradient flow
scale 1/81,. This is illustrated in Fig. 28. However, the two
collaborations use different lattice actions, which can
introduce discretization effects, including variations in
taste breaking. We noted in Sec. III that the taste splitting
in our data remains small. We may observe this by

Ny=4,=38

e ¢ ms

x

1.6 7

% Tij

4 HeH
3
ot

3
&

T T T
0.75 1.00 1.25

maxv 8to

T T
0.00 0.25 0.50

T T T
0.75 1.00 1.25

My 8to

T T
0.00 0.25 0.50

FIG. 27. Theratio M,/M, is shown for N; = 4 QCD using different fermion taste combinations for the pseudoscalar meson. Results
from two lattice spacings are shown in the two panels. The ratio of masses is shown using the Goldstone pion 75 and the heaviest
pseudoscalar meson 7;;. The horizontal axis uses the pion mass rescaled in units of the gradient flow scale /8.

,,,,, v ° - ¢
50 ] & LatkMI, M, @ 1+ LatkMI, M, °
H LatKMI, M, ° e LatKMI, M, ®
#+ LSD, M, ® 1- #H LSD, M, ° .
§1.5— 4 LSD, M, a ° % 4 4 Lsp, M, °@ %
0 @ @ ® =
[} B o
] oo
% 1.0 1 ] m’% % % % — m ,1%% % %
B T
0.5 - % /é—"‘ . /’,%"‘ %
00 T T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
MTrs vV 8t() Mwij‘/StO

FIG. 28.

Comparison of the flavor-singlet scalar mass and the vector meson mass between the LatKMI Collaboration and the LSD

Collaboration for N, = 8. The pion mass in units of the gradient flow scale is used on the x axis. The left panel uses the Goldstone pion
s, while the right panel uses the tensor taste structure pion z;;. The corresponding pion mass is used to draw the dashed line.
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comparing the pion masses of different taste channels. For
example, if we replace the Goldstone pion mass M, with
the heavier tensor taste pion mass M, ., our data do not
appreciably change. In contrast, the data from the LSD
Collaboration shift significantly toward heavier masses, as

shown in Figs. 28 and 29, making the compatibility between
the two datasets even more striking. The results for N, = 4
are also shown in Fig. 30. Based on the scale of ¢, it appears
that the LSD results for N, = 4 correspond to a finer lattice
spacing, which likely reduces taste-breaking effects.

—++ LatKMI, F,
~++ LSD, F i

—++ LatKMI, F,

0.25 H%HLSD, Fr

0.20 i
o ® ®
@ 0.15 i
&S
0.10 i

0.05 A i

0.00
0.00

T T T T
0.75 1.00 1.25 1.50

M, \/Blo

T T T T T T
0.75 1.00 1.25 1.50 0.25 0.50

My /B0

T T
0.25 0.50 0.00

FIG. 29.  Comparison of the pion decay constant between the LatKMI Collaboration and the LSD Collaboration for Ny = 8. The pion
mass in units of the gradient flow scale is used on the x axis. The left panel uses the Goldstone pion x5, while the right panel uses the
tensor taste structure pion ;. The decay constant has been normalized to the 131 MeV convention in usual QCD [17].

,,,,, M, 1| M,
2.0 " LatKMI, M, . 4 ¢ LatKMI, M, T .
¢ LatKMI, M, e LatKMI, M, ®
# LSD, M, m % % #4 LSD, M, m % %
S 1.59 = LSD, M, o 1 = LSD, M, @
3 x X
3
% 1.0 - i % - 4 %
=
0.5 1 .
0.0 T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
M,\-S\/% M"'Zj v 8to

FIG. 30. Comparison of the flavor-singlet scalar mass and the vector meson mass between the LatKMI Collaboration and the LSD
Collaboration for N, = 4. The pion mass in units of the gradient flow scale is used on the x axis. The left panel uses the Goldstone pion
s, while the right panel uses the tensor taste structure pion 7;;. The corresponding pion mass is used to draw the dashed line. The LSD
data are only at f = 6.6.
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APPENDIX D: FITS OF THE FLAVOR-SINGLET PSEUDOSCALAR
1. N f = 4
The plateaux for the fits for each ensemble studied in the N = 4 theory are presented in Figs. 31, 32, 33, 34, and 35.

Nf=4,L=20, mf=0.01

1.4 - $ re[7.0,10.0]
b re[7.5,10.0]
1.2 4 $ re[8.0,10.0]
$ r€[8.5,10.0]

mass

0.4 4
. T T T T T
“ 2
,g o®_o®_o® D D D D & g & & & O ®O®O®®®® @@ 00 00 0O O O O 00 0 00 o0 00 0O0
T (e P«
e
0 T T T T T
0.7 0.8 0.9 1.0 1.1
\/tw/to

FIG. 31. The ' mass fitted for different distance regions and smearings for a specific ensemble of N, = 4 QCD with L = 20 and
myg = 0.01.

Nf:4,L=20, mf:0.02
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FIG. 32. The # mass fitted for different distance regions and smearings for a specific ensemble of N, = 4 QCD with L = 20 and
my = 0.02.
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Ny =4, L =20, my = 0.02

1.4 1 ¢ re€[7.0,10.0]
b re[7.5,10.0]
1.2 1 b r€[8.0,10.0]
¥ re[7.511.0]
" 1.0 ¥ ref[s8.0,11.0]
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=
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FIG. 33. The 7 mass fitted for different distance regions and smearings for a specific ensemble of N, = 4 QCD with L = 20 and
my = 0.02. Different ry,, = 11.

Ny =4, L =20, m; = 0.03
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FIG. 34. The ' mass fitted for different distance regions and smearings for a specific ensemble of N, = 4 QCD with L = 20 and
my = 0.03.

Np=4, L =20, ms;=0.04
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FIG. 35. The #' mass fitted for different distance regions and smearings for a specific ensemble of N, = 4 QCD with L = 20 and
my = 0.04.
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2. Ny=8
The plateaux for the fits for each ensemble studied in the N, = 8 theory are presented in Figs. 36, 37, 38, 39, 40, and 41.

Ny =8, L =30, ms = 0.03
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FIG. 36. The #' mass fitted for different distance regions and smearings for a specific ensemble of N, = 8 QCD with L = 30 and m, = 0.03.
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FIG. 37. The #' mass fitted for different distance regions and smearings for a specific ensemble of N, = 8 QCD with L = 30 and m, = 0.02.

N =8, L =36, my = 0.02
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FIG. 38. The #' mass fitted for different distance regions and smearings for a specific ensemble of N, = 8 QCD with L = 36 and m, = 0.02.

114503-34



NOVEL VIEW OF THE FLAVOR-SINGLET SPECTRUM FROM ...

PHYS. REV. D 112, 114503 (2025)

Ny =8, L =236, m; = 0.015
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FIG. 39. The #' mass fitted for different distance regions and smearings for a specific ensemble of N, = 8 QCD with L = 36 and
m; = 0.015.
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FIG. 40. The # mass fitted for different distance regions and smearings for a specific ensemble of N, = 8 QCD with L = 42 and
m; = 0.012.
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FIG. 41. The ' mass fitted for different distance regions and smearings for a specific ensemble of N, = 8 QCD with L = 48 and
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3N =12

The plateaux for the fits for each ensemble studied in the Ny = 12 theory are presented in Figs. 42, 43, and 44.
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